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Cyclic group actions on odd-dimensional spheres

C. KeEAarRTON* AND S. M. J. WILSON

Abstract. We show that for any simple (2q —1)-knot k, q>1, and any positive integer n, the knot #7k
is the fixed-point set of a Z,_-action on $29*1, Further, we show that for many values of n there are
examples of (2q —1)-knots, q =2, which are the fixed-point sets of inequivalent Z,-actions.

0. Introduction

An n-knot is a locally-flat PL pair (S"*2, S"), where S™ denotes the n-sphere.
A (2q —1)-knot is simple if the complement of $?3~! has the homotopy type of a
circle up to but not including dimension q. For ¢q>1 such knots have been
classified in [L] in terms of the S-equivalence classes of their Seifert matrices, and
in [K, T1, T2] in terms of their Blanchfield pairings. Using these classification
results, for any simple (2q —1)-knot k, with q>1, and for any positive integer n,
we construct a simple (2q —1)-knot k, such that the n-fold cyclic cover of $%3*!
branched over k,, is again $?**!, and such that k, lifts to #7k, the sum of n copies
of k. An immediate corollary is that for any such k and n, there is a Z, -action on
$29*1 with fixed point set #7k.

The construction in this paper is purely algebraic, and may be contrasted with
the geometric construction in [G], where for any m-knot k (m=2) Gordon
constructs an m-knot which is the fixed-point set of a Z,-action and whose
fundamental group is isomorphic to that of #}k.

As an application of our construction we are able for many values of n to find
examples of (2g—1)-knots which are the fixed-point sets of inequivalent Z,,-
actions. The technique is to pick simple (2q—1)-knots k and [ such that
#1k = #1711, and such that k, # [,.

1. The main construction

Let k be a simple (2q—1)-knot, g>1, and n>1 an integer. Let A be a
non-singular Seifert matrix of k, and set € =(—1)% Following Trotter [T1], we set
S=(A+eA")!, T=—cA'A™.

* This paper was written whilst the first author was in receipt of a Research Grant from the Science
Research Council of Great Britain.
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616 C. KEARTON AND S. M. J. WILSON

PROPOSITION 1.1. The pair (S, T) has the following properties.

(i) S is integral, unimodular, €-symmetric.
(ii) I—=T)"" exists and is integral.
(iii) T'ST=S.
iv) A=I-T)'S™ .

Moreover, any pair of rational matrices (S, T) satisfying (i)—(iii) yields a.Seifert
matrix A by the formula (iv).

Proof. It is well known (see [L], [T1]) that A +€eA’ is unimodular, and so S is
integral and unimodular. Clearly S is e-symmetric.

Now I-T=IT+eA'A'=(A+cA)A '=S"1'A"! from which (ii) and (iv)
follow at once. Property (iii) is easily checked.

Now suppose that we are given a pair of rational matrices (S, T) satisfying

(i)-(iii); then we can define the matrix A =(I—T)'S™?, which by (i) and (ii) is a
non-singular matrix over the integers. We have
A+eA'=I-T) 'S '+e(S)'I-T)!
=I-T)'S'+S'I-ST'sH! by (1), (iii)
—(I-T) 'S 4S8 1SI-T ) s~ |
—[I-D) ' -U-T)'TIS =1 -T)"U-T)S* =S~

which is unimodular. It follows that A is a Seifert matrix. [

Now we define matrices U, V by

(0-----0 T
I 0
U=| - v, V= S‘\O,
NN 0 S
L0 T 0 J

there being n X n blocks in each case.

THEOREM 1.2. The pair (V, U) determines a simple (2q—1)-knot k,. The
n-fold branched cyclic cover of k, is the knot #tk=k+---+k (n times).

Proof. We have to check that the pair (V, U) satisfies conditions (i)-(iii) of
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Proposition 1.1. Clearly V satisfies (i), and it is easy to check that

I-n! Ta-n----TI-7)"

'
] S%

I-uy'=| TA-T)"'].

e
S~
~

But TU-T) '=-eA’A '"(I+eA’A" ") 1= —-eA'(A+€A")"}, which is an in-
teger matrix. Hence (ii) is satisfied. To check (iii) is a simple matrix multiplication.

Hence (V, U) determine a unique simple (2q — 1)-knot k,. A routine computa-
tion shows that

T 0
Un:( \‘~ ),
0T

and hence the pair (V, U") satisfies (i)—(iii), and in fact represents the knot #7k.

Let K,, denote the complement of k,, and K, the infinite cyclic cover of K. If
u is a generator of the group of covering translations, then K,, is obtained from K,
by quotienting out by the action of u. Similarly the n-fold cyclic cover of K, is
obtained from K, by quotienting out by the action of u".

Algebraically this can be described as follows, using Trotter’s description of
Hq(IZn) in [T1]. Let B be a basis of Q™ corresponding to (V, U) where T is an
r X r matrix; then H, (K,) is the Z[u, u~']-module generated by B, the action of u
being given by U. The fact that (1—u):Hq(IZn)—>Hq(IZn) is an isomorphism
means that when we quotient out by the action of u we get a homology circle. But
the form of U™ means that (1——u"):Hq(IZn)——->Hq (K,) is also an isomorphism,
and hence the n-fold cyclic cover of K|, is a homology circle. Therefore the n-fold
branched cyclic cover of k, is a homotopy sphere, and hence a sphere. []

COROLLARY 1.3. If k is a simple (2q —1)-knot, q > 1, then #1k is the fixed
point set of a Z,-action on S***!,

PROPOSITION 1.4. Let B be the Seifert matrix of k,, corresponding to (V, U).
Then

>
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Proof:
(-1 TU-D*-1U-7") [$70 ]
B=(I-U)"'V'=| ! RO \
: . TU-1)" 5
(T = T) 7 emmmmmmmeees ca-nt) L §Y
((I-T)7'S7! TU-T)'S T -T)'s™")
§ T TA-T) 'S
| (I=T) 18 e I-T)s
(A TA------TA)
5 TA
kA -------------- AJ
(A —eA'-----—eA’)
: S —EA
V. CEREER—— T =

Next we prove a result which relates an Alexander matrix of k to one for k,.
Recall that an Alexander matrix M(t) of k is a matrix over Z[t, ¢t '] which
presents H,,(IE) as a Z[t, t ']-module; that is, there is an exact sequence of
Z[t, t ']-modules

M(t) N

F > G » H,(K)

where F and G are free Z[t, t']-modules.
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PROPOSITION 1.5. Let M(t) be a square Alexander matrix for the knot k; then
M(t") is an Alexander matrix for k,,.

Proof. We can describe the Z[u, u”']-module structure of H, (K,) in the
following way. Let L,,..., L, be n.copies of the Z[t, t"']-module Hq(K). Then
for Isi<nu:L,— L., is a Z[t, t"']-isomorphism, and u:L, — L, is defined so
that u":L,—>L,— -+ — L, — L, coincides with t:L;— L,. Thus a presenta-
tion matrix for H,(K,) as a Z[u, u~'}-module is

-
M(u") 0 0 )
~
~ ~\ \
-~ ~ '
-~ ~
~ S~ '
- ~o
.~ o ~ [
~ -~ 1
' - ™ ~
N ~ .~ 1
1 Se ~ - '
~ ~ -
] - ~ -
o~ ~
- ™ 0
' ~a ~e
[} e ~
~o .~
] - ~
0--mmmsmmmmmeeaeaeeoo 20 M(u™)
.
~ ~ ~ 1
N [N !
b . Y 1
* ~ . 1
~e ~ N ~
p ~o % R “ ]
~ .
1 Se . N N
Se . . N
; - ) . 0
1 ~~~ . \\
' ~ ~ “~
~
1 ~~ ¥, .
1 ~e %% S
.o N b
...................... 0 S -
0 .
.
N
AN
n .
|~ unI 0---------0  ul ).

|
Mu™) e iy 0
‘~~ ‘\\ 1
0.. \~~~‘, \~\‘~ :
: “~‘\ ‘~‘\ ‘~\~ :
0 T M@t 0
u" M)  Q---------------230
ul —I  Q-----mmmmmemeeeees 0
Q ul -1 0-------------- 0
—un Q---mnmmmmmneeee “ul 0
L —u"l Q--------rnmeeenns 0 ulj.
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We eliminate the final row and column to give

r n 3
M(u™) Oum-mmmmmmmmmmemee e 0
.
‘N
0.. M(u™) e 0
1 T ~. ~“~\ t
; -~ “~ ey |
P T "0
1 Sl Sso
1 hE S
' S o
.. .
0---mmmmmmmmmm e 0 Mu")
u" *M(u") [ e m s e 0
ul = | 07-----mmmm--- 0
\\ ]
\\' 1]
0.. ul —-I. - :
-~ ~ \s s\ 1
. O o
' Tl v, .70
' ~o S RS
' S e o
\\~ \\ -~
0 . I
~“~ \‘s
n—1 o> S~
L —U I 0 ------------- 0 uI J-

Now subtract u"~! times the first row from the n™ to obtain a row of zeros,

which may be eliminated. Continuing in this way we eventually arrive at the
matrix M(u™). O

THEOREM 1.6. The knot k,, depends only on k and n, and not upon the choice
of Seifert matrix A.

Proof. Let A be an r X r matrix, and let A =Z[¢t,t~', (1—1t)"'], a subring of the
field Q(t¢), the field of rational functions in one variable over the rationals.
According to Trotter’s viewpoint [T1], k gives rise to an e-symmetric bilinear
form [,] on Q" represented by the matrix S, and a A-module M contained in Q"
where the action of ¢ is represented by T. A choice of Seifert matrix corresponds
to an admissible lattice contained in M (see [T1] for definitions). Although our
construction is given in terms of the matrices S and T, it is clear that it could be
phrased in terms of M and [,], and hence that it does not depend upon the choice
of A.

Alternatively, one can use the formula of Proposition 1.4 to show that if A is
S-equivalent to A,, then B is S-equivalent to B;. [J

2. Knots having distinct Z,-actions, n odd

In this section we shall show that for many odd integers n, there exist simple
(4q+1)-knots (q=1), k and [, such that #tk = #}l but k,#1,.
Let A,.(t) denote the m™ cyclotomic polynomial, where m is not a prime
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power. Let ¢ be a primitive m™ root of unity, K=Q({) and F=Q({+ "), the
fixed field of K under complex conjugation. Let hy denote the class number of K,
he that of F, and h_ = hg/hg. According to the work of Bayer [Ba: Example 6.2],
the number of distinct simple (4q +1)-knots (g=1) with Alexander polynomial
A () is h_24 if m =2p and h_2¢"! otherwise, where 2d =[K :Q]. The factor h_
represents the number of isomorphism classes of Z[t, t ']-modules supporting a
Blanchfield pairing [Ba: Corollary 1.3], and the factor 2¢4(2¢7") represents the
number of non-isometric pairings which a given module supports. Note that
Bayer’s work is couched in terms of pairings on Z[{]-modules which are hermitian
with respect to complex conjugation (t—t~! becomes { — ¢ ' =), and we shall
adopt this viewpoint.

Let U be the group of units of (the ring of integers of) K, U, the group of
units of F, and N : K — F the norm. If I is a principal ideal, then let (u) denote the
hermitian form h on I given by h(a, b) = uab. As in [Ba: Prop. 2.1], the set of
isometry classes of unimodular hermitian forms on a given ideal (not necessarily
principal) is in one-one correspondence with U,/N(U).

Now suppose that h_ has a factor n > 1, where n is odd and (m,n)=1. Let a
be an ideal of Q({) admitting a non-singular hermitian form h, with a being of
order n in ker N:Cyx — Ci. Then _l_"(a, h) has determinant (u) .-for some ue

Uy/N(U); see [Ba: Definition 1.9] for the definition of determinant. Since the
order of Uy/N(U) is 24 or 2471, and n is odd, there exists v € Uy/N(U) such that
v" =u. Then {."(v) has determinant (v")=(u).

Set K=(a, h)1l(a,—h), L=(v)l{(—v). Then Jl_"K, anL are indefinite and

have the same rank, signatures and determinant. Hence by [Ba: Corollary 4.10]
they are isometric. But K is not isometric to L, for the determinant of K is
(a? a), and a? is non-zero in ker N:Cx — Cg since n is odd.

In fact, if k, | are the simple (4q + 1)-knots corresponding to K, L respectively,
we can show that k, # l,. For let M(t) be an Alexander matrix of k, so that by
Proposition 1.5 M(t") is an Alexander matrix of k,. The work of Fox and Smythe
[F-S] enables us to obtain a row ideal class from the matrix M({), and the work of
Hillman [H: Chap. III, Theorem 12] identifies this with the ideal a® in the
determinant of K. But the Alexander polynomial of k,, is A,,,(t"), which has A,,(t)
as one of its factors since (m,n)=1. Let 7 be a primitive m™ root of unity such
that 7" = {. Setting t = 7 in the Alexander matrix M(¢t"), we obtain M(7") = M({),
and hence obtain a Fox-Smythe invariant a® again. In the case of ,, these ideal
invariants are all trivial, hence k,# ..

Taking the n-fold branched cyclic covers of k,, I, we obtain respectively the
knots #7k, #1l. Since _}_”K is isometric to _{_"L, we have #1k = #11.

Many examples may be obtained from the tables in [Sch].
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For the case of (4q—1)-knots, q=1, and m# 2p’', p", where p is a prime, then
as in [Ba: §5], {—{ ' is a unit and so we can multiply all the pairings above by
{—{¢7' to obtain skew-hermitian pairings. The argument then goes through as
before. We are grateful to Dr. Bayer for pointing out this extension to the case of
(4q — 1)-knots.

3. Number theory

This section deals with some results from algebraic number theory, which will
be used in the next section to deal with the case n=2.

Let K be an algebraic number field, R =int (K) its ring of integers, Z, the
p-adic integers, R,=RQ®Z,K,=KQ®Z,, UR)=[[pR; and J(K)=
U(R) 11, K}, where [ denotes the direct sum. K™ is considered as a subgroup of
J(K) under the “diagonal” map. If C(K) denotes the ideal class group of K, then
we have C(K)=J(K)/U(R) - K™ an isomorphism which is natural with respect to
ring extensions.

Now suppose that L is an algebraic number field, I' a group of automorphisms
of L,S=int(L), K=L" the subfield of L fixed under I', and R =int(K)=S'.

LEMMA 3.1. ker [C(R)— C(S)]=ker [HXT, S*)— HX(I', U(S))], where the
first map is induced by ring extension, the second by the ‘“‘diagonal” map $™—
U(s).

Proof. Consider the exact sequence

0—-U(S)-L*—=J(L)—>C(S)—0,

Since J(L)' = J(K), we obtain a commutative diagram

0->UR)-K* —=J(K)—>CR)—0

| |

0—(U(S) - L' = J(L)F = C(S)F

Applying the Snake Lemma [Bass: p. 26] we find that

ker [C(R)— C(S)]=ker [C(R)— C(S)"]
=coker [U(R) - K*— (U(S) - L™)"].
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Now consider the exact sequence
0-S*"->UWS)PL*->US)-L*—0

where the first map is s~ (s, s7'). From cohomology theory we obtain the exact
sequence

0= R*=> URYDK*—(U(S): LY - H(I", S)— HY(I, U(S))®H\T, L™).
Since by Hilbert 90, H'(I', L*) =0, we have

coker [URY® K™ — (U(S) - L)']=coker [U(R) - K*— (U(S) - L™)']
=ker [H T, $*)— HXI', U(S))],

and the result follows. [

Now let

L=Q+—-123,V-31) S =int (L)
K =Q(+ —123) '=Gal(L/K), R =int(K)
K'=Q(+/3813) I"'=Gal (L/K') R'=int (K.

The action of the non-trivial elements of I', I will be denoted respectively by
", 7. Our immediate purpose is to show that C(R)— C(S) is injective.

LEMMA 3.2. The fundamental unit of R’ is v =247 +4+/3813.
Proof. Certainly 247>—16.3813=1, so v is a unit of R'. If v is not the

fundamental unit, then there exist positive integers a, b, ¢, d such that (a +b\/ﬁ
(c+dvN)=4v, where N =3813. Thus

ac +bdN + (ad + bc)VN=4(247 + 4JN).

But ac +bdN = N >4.247, so this is impossible. [

By the Dirichlet Unit Theorem, rank (S*)=1 and S$*=(x1)X(u) for some
u (a fundamental unit).
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LEMMA 3.3. S has u=+v—123+2v-31 as a fundamental unit.

Proof. Note that uii=v, so ueS™. If u=+w" for some weS (1 are the
only units of finite order) then ww e R"™ and so ww = +v™ for some m e€Z. But
then (v™)" = £ v whence m =n = +1. Hence the result. [

LEMMA 3.4. H\(I', S¥)— H'(T’, S3,) is injective, and hence so is H\(I', $*) —
H\(T, U(S)).

Proof. For an abelian I'-group A we use the representation

{aeA:aa=1}

1 -
HAT, A)= {ala:ac A}

This representation is natural with respect to extension of A. Now

uii =(—-123+2V-31)-123-2V=-31)= —123+124 =1,
and u/it = u?/uit = u? so

H\(I, $*) = 8™ [u?) ={(1), (- 1), (w), (-u)}.

We must show that none of —1, u, —u is of the form s/§ for some s e S3;.

If for some s € S5, s/§=—1, then s= —5 and so s =rv—31 for some re Rs;.
Hence s is not a unit.

If for some se S3,, s/§=u, then, as S;; =Rj3;[u], s=a+bu with a, be R,
and so a+bu=(a+bit)u=au+b. Hence a=>b and s=a(l+u). As s is a unit,
Ny o(s) is also a unit. But Ny ,o(s) =(ad)*(1+u)(1+a)(1+a)(1+a) = (aa)* - 16.31
and this is not a unit in Z;;.

A similar argument disposes of the possibility s/§ =—u and the result is
proved. [

Remark 3.5. We can now see that the primes of S above 31 are principal. By
our calculation above, Nj,((1+u)/2)=31 and so, since (1+u)/2 is integral

(N k(1 +u)/2=(14+v—=123)/2€ R), ((1+u)/2)s is a prime of S above 31. But
L/Q is galois so all the primes of S above 31 are conjugate and hence principal. In
fact, (31)s=((1+u)/2)5((1—u)/2)s.

PROPOSITION 3.6. (3, Vv—123)s[1/31] is not principal.

Proof. (3,v—123)g is clearly not principal, for the equation a?+123b%=12
has no solutions over Z. Since C(R) — C(S) is injective by Lemmas 3.1 and 3.4,

(3, v —123)s is not principal.
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In passing from C(S) to C(S[1/31]) we kill off the ideal classes represented by
ideals dividing (31)g; since by Remark 3.5 these ideals are all principal, the map
C(S)— C(S[1/31]) is injective. The result follows. [

4. The case n =2

In this section we construct two simple (4q+1)-knots k and [ such that

LEMMA 4.1. Let A(t)=31t>—61t+31. Then Q(~—123, ¥ —31) is a splitting
field for A(t?).

Proof. Let 7 be a root of A(t%); then we can take 2= (61++—123)/62, so that
A(t) splits in Q(v—123). Now 317%2=(61++v—123)/2=—[(1-v—-123)/2F, and so
T=(1-+—123)/2v/=31. Hence 7€ Q(v'—123, v—31). But the conjugates of t
are 7, —7, 7=1/7 and —1/7, so A(t?) splits in Q(v—123, v—31). O

Let J denote the ideal (3, —123) over the ring Z[7%, v 2]= R[1/31] in the
notation of Section 3. Note that J =J and JJ =(3), where here denotes complex
conjugation. Hence we can define a non-singular hermitian form b:JXJ—
R[1/31] by b(a, B)=apB/3. Let (J®J, B) denote the orthogonal direct sum
(J, b)L(J, b), and set

e =((6++v-123)/31,(51++v—123)/31)
f=((51-v—-123)/31, (-6 +v —123)/31).

It is easily checked that B(e,e)=B(f,f)=1 and that B(e, f)=0. Hence
(J,b) L(J, b)=(1)L(1).

Let k be the simple (4q+1)-knot (q=1) represented by (J,b) and | the
corresponding knot represented by (1). Then k+k=I[+1, but since J is a
non-principal ideal by Proposition 3.6, k#l. Let M(t) be a square Alexander
matrix for k; then by Proposition 1.5, M(t?) is an Alexander matrix for k,. The
Fox-Smythe row ideal class of k, is obtained from the matrix M(7?) over the ring
Z[7, 7 ']=S[1/31], and by [H: Chap. III, Theorem 12] this is the ideal Jgf;,3,;. By
Proposition 3.6, this ideal is non-principal. Since the corresponding invariant for
l, is trivial, we have k, # L.

REFERENCES

[Bass] H. Bass. Algebraic K-theory. W. A. Benjamin, Inc. (1968).
[Ba] E. BAYER. Unimodular hermitian and skewhermitian forms. Jour. Algebra (to appear).



626 C. KEARTON AND S. M. J. WILSON

[B] R. C. BLANCHFIELD. Intersection theory of manifolds with operators with applications to knot
theory. Annals of Math. 65 (1957), 340-356.

[F-S] R. H. Fox and N. SMYTHE. An ideal class invariant of knots. Proc. Amer. Math. Soc. 15
(1964), 707-709.

[G] C. McA. GoORDON. On the higher-dimensional Smith conjecture. Proc. London Math. Soc. (3)
29 (1974), 98-110.

[H] J. A. HoLiMAN. Alexander ideals. Springer Lecture Notes 895.

[K] C. KearToN. Classification of simple knots by Blanchfield duality. Bull. Amer. Math. Soc. 79
(1973), 952-955.

[L] J. LEVINE. An algebraic classification of some knots of codimension two. Comment. Math. Helv.
45 (1970), 185-198.

[Sch] G. SCHRUTKA V. RECHTENSTAMM. Tabelle der (relativ-) Klassenzahlen von Kreiskorpern. Abh.
Deutsch Akad. Wiss. Berlin 1964, Math. Nat. Kl. Nr 2.

[T1] H. F. TROTTER. On S-equivalence classes of Seifert matrices. Invent. math 20 (1973),
173-207.

[T2] ——. Knot modules and Seifert matrices. Knot Theory, ed. J.-C. Hausmann, Lecture Notes in
Mathematics 685 (1978), Springer-Verlag.

Department of Mathematics
University of Durham
Durham, DH1 3LE, England.

Received September 23, 1981

Note added in proof: The second author has recently shown that for any integer n
there is an integer m, prime to n and not a prime power, such that, if { is an mth
root of 1, there is an ideal class in Cgp,; of order n with norm 1 in Cgppyr-1y. Thus
the results of section 2 are valid for any odd n.
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