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Self homotopy équivalences of virtually nilpotent spaces*

E. Dror, W. G. Dwyer and D. M. Kan

§1. Introduction

The aim of this paper is to prove Theorem 1.1 below, a generalization to
virtually nilpotent spaces of a resuit of Wilkerson [13] and Sullivan [12]. We recall
that a CW complex Y is virtually nilpotent if

(i) Y is connected,
(ii) tti Y is virtually nilpotent (i.e. has a nilpotent subgroup of finite index) and

(iii) for every integer n>l,ir1Y has a subgroup of finite index which acts

nilpotently on 7rnY. The class of virtually nilpotent spaces is much larger than the
class of nilpotent spaces. For instance such non-nilpotent spaces as the Klein
bottle and the real projective spaces are virtually nilpotent, and so is, of course,

any connected space with a finite fundamental group.

1.1. THEOREM. Let Y be a virtually nilpotent finite CW complex. Then the

classifying space of the topological monoid of the self homotopy équivalences of Y is

of finite type (i.e. has the homotopy type of a CW complex with a finite number of
cells in each dimension). In fact it has the somewhat stronger property that each of
its homotopy groups is of finite type (i.e. has a classifying space of finite type).

1.2. Remark. For abelian groups, being of finite type is the same as being
finitely generated, but for non-abelian groups, being of finite type is stronger than

being finitely generated or even being finitely presented.

1.3. Remark. As it is easy to verify that, in Theorem 1.1, the higher homotopy
groups in question are finitely generated, the main content of Theorem 1.1

is that the group of homotopy classes of self homotopy équivalences of Y is of finite
type.

1.4. ORGANIZATION OF THE PAPER. The paper consists essentially of
three parts:

(i) After a brief discussion (in § 2) of the notion of finite type for groups and

simplicial sets, we reduce Theorem 1.1 (in §3) to a similar (and in fact équivalent)

* This research was m part supportée by the National Science Foundation
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600 E DROR, W C DWYER AND D M KAN

statement (3.6) about the homotopy automorphism complex (i.e. complex of self

loop homotopy équivalences) of a simplicial group and then (in § 4) to a similar
statement (4.1) about the homotopy automorphism complex of a simplicial virtually
nilpotent group. The arguments are standard, except in 3.5, where we make the
transition from pointed simplicial sets to simplicial groups and hâve to show that
the usual notion of a function complex of maps between two simplicial groups is

indeed the "correct" one.
(ii) In the next two sections we make the crucial transition from homotopy

automorphisms to automorphisms, i.e. we reduce Theorem 4.1 to a similar
statement (6.1) about the automorphism complex of a simplicial virtually nilpotent

group. A key step in the argument is a curious lemma (5.1) which states that,
under suitable circumstances, the homotopy groups of the automorphism complex of
a simplicial module differ by only a finite amount from the homotopy groups of the

homotopy automorphism complex.

(iii) The last two sections are devoted to a proof of Theorem 6.1. It turns out
that it suffices to show that the automorphism complexes involved are dimension
wise of finite type and this we then do by combining variations on arguments of
Baumslags proof that the automorphism group of a finitely generated virtually
nilpotent group is finitely presented [1, Ch. 4] with the resuit of Borel and Serre

that arithmetic subgroups of algebraic groups are of finite type [2, § 11]. Of course
it would be nice if one could do this without resorting to such non-homotopical
notions as algebraic groups and their arithmetic subgroups.

§2. Finite type

We start with a brief review of the notions of finite type for simplicial sets and

for groups, and note in particular (2.9) that a connected simplicial set with finitely
generated higher homotopy groups is of finite type if and only if its fundamental
group is of finite type.

2.1. SIMPLICAL SETS OF FINITE TYPE. A simplicial set X is said to be of
finite type if, for every integer n > 0, there exists a map fn:Fn^> X such that

(i) Fn is finite (i.e. has only a finite number of non-degenerate simplices) and

(ii) fn induces, for every vertex veFn and every integer 0<i<n, an

isomorphism tt, (Fn ; t; ~ ir, (X ; fnv

This définition readily implies ([8], [11, Ch. III and Ch. VI]):

2.2. PROPOSITION. A simplicial set X is of finite type if and only if its

realization \X\ has the homotopy type of a CW complex with a finite number of cells

in each dimension.
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2.3. PROPOSITION. A reduced (i.e. only one vertex) simplicial set X is of
finite type if and only if its simplicial loop group GX has the loop homotopy type of a

free simplicial group which is finitely generated in each dimension.

The next two propositions are very useful ones.

2.4. PROPOSITION. Let U be a bisimplicial set such that, for every integer
fc > 0, the simplicial set Uk# is of finite type. Then the diagonal diag U is also of
finite type.

2.5. PROPOSITION. Letp:E-*B be a fibration onto and assume that ail its

fibres are of finite type. Then E is of finite type if and only if B is so.

Proofs. The proof of 2.4 is easy once the diagonal of the bisimplicial set U has

been identified with the "realization" of U [3, Ch. XII, 3.4]. The "if" part of 2.5
is straightforward. To prove the "only if" part of 2.5, let U and V be the

bisimplicial sets such that, for every integer fc>0,

Vkt# B and Uk# £xB ••'XB£ (fe + 1 factors)

and let 17—> V be the obvious map. Then it is not hard to verify that, for every
integer n > 0, the induced map U^n —> V*n =Bn is a weak homotopy équivalence

and so is therefore [3, p. 335] the induced map diag £/—» diag V B. The
desired resuit now follows from 2.4, the "if" part of 2.5 and the fact that Uo# E
and that, for every integer k>0, the face maps dx : Uk+1# —> Uk# are fibrations
with the fibres of p as fibres.

Next we consider

2.6. GROUPS OF FINITE TYPE. A group G is said to be of finite type if the
simplicial set K(G, 1) is of finite type.

2.7. EXAMPLES. Using 2.5 one readily vérifies that the following groups are
of finite type:

(i) ail finitely generated free groups,
(ii) ail finite groups
(iii) ail finitely generated abelian groups,
(iv) ail finitely generated nilpotent groups,
(v) ail finitely generated virtually nilpotent (see § 1) groups, and

(vi) ail homotopy groups of a simplicial set which is virtually nilpotent (see § 1)

and of finite type.
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Less obvious are

2.8. EXAMPLES, (i) Every arithmetic subgroup of an algebraic group is of
finite type. This is a resuit of Borel-Serre [2, § 11].

(ii) The group of automorphisms of a finitely generated virtually nilpotent group
is of finite type. To prove this one combines Baumslag's proof of [1, th. 4.7] with
2.5 and 2.8 (i).

We end with several propositions which will be needed later.

2.9. PROPOSITION. Let Xbea connectée simplicial set and assume that irnX
is of finite type forn>\. Then ttxX is of finite type if and only ifXis of finite type.

2.10. PROPOSITION. Let Cbe a simplicial group such that Cn is of finite type
for ail n >0. Then its classifying complex WC [11, Ch. IV] is of finite type.

2.11. PROPOSITION. Let G-*{Gt} be a pro-isomorphism of groups
[2, Ch. III] in which each G, is of finite type. Then G is also of finite type.

Proofs. Propositions 2.9 and 2.10 follow readily from Propositions 2.5 and 2.4

respectively, while Proposition 2.11 is an immédiate conséquence of the fact that

any retract of a simplicial set of finite type is also of finite type.

§ 3. Réduction to simplicial groups

In this section we reduce Theorem 1.1 to similar and équivalent results for
simplicial sets (3.2), reduced (i.e. only one vertex) simplicial sets (3.4) and

simplicial groups (3.6). Most of the arguments are routine. However, in the last
réduction one runs into the problem that the loop group functor G is not a

simplicial functor with respect to the usual simplicial structures on the catégories
of reduced simplicial sets and simplicial groups. To get around this difficulty we
introduce on the category of reduced simplicial sets a new simplicial structure
which is better behaved with respect to the functor G and which gives rise to
function complexes homotopically équivalent to the usual ones. Of course one
could instead hâve appealed to the rather gênerai Proposition 5.4 of [5].

3.1. REDUCTION TO SIMPLICIAL SETS. For a CW complex Y let haut Y
dénote its simplicial monoid of self homotopy équivalences, i.e. the simplicial
monoid which has as its n-simplices the homotopy équivalences |4[n]|x Y—» Y,
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and for a fibrant (i.e. satisfying the extension condition [11, § 1]) simplicial set X,
let hautX dénote its simplicial monoid of homotopy automorphisms, i.e. the

simplicial monoid which has as its rc-simplices the weak homotopy équivalences

A[n]xX->X. Using
(i) the adjointness of the realization functor | | and the singular functor Sin,
(ii) the fact that, for every CW complex Y and fibrant simplicial set X, the

adjunction maps |Sin Y| —» Y and X->Sin|X| are homotopy équivalences, and

(iii) the fact that, for every simplicial set X, the obvious maps |4[n]xX|—>
|4[n]|x|X| are homeomorphisms, one readily vérifies that the induced maps
TTn haut X —» irn haut |X| are isomorphisms for ail n>0. As haut Y is clearly
isomorphic to the singular complex of the topological monoid of self homotopy
équivalences of Y, if follows that Theorem 1.1 is équivalent to

3.2. THEOREM. Let X be a virtually nilpotent fibrant simplicial set which has

the (vveafc) homotopy type of a finite simplicial set. Then irn haut X is of finite type

for ail n>0.

3.3. REDUCTION TO REDUCED SIMPLICIAL SETS. For a reduced (i.e.

only one vertex) fibrant simplicial set K, dénote by haut* K the submonoid of
haut K which "keeps the vertex fixed" and note that there is an obvious fibration
haut K->K with haut*K as fibre. Using 2.5 and 2.7 (vi) one then readily sees

that Theorem 3.2 is équivalent to

3.4. THEOREM. Let K be a virtually nilpotent fibrant simplicial set which is

reduced and has the (weak) homotopy type of a finite simplicial set. Then

un haut* K is of finite type for ail n > 0.

3.5. REDUCTION TO SIMPLICIAL GROUPS. We start with constructing
a new simplicial structure on the category of reduced simplicial sets along the lines
of [7, § 12], i.e. for a simplicial set X and a reduced simplicial set K, we dénote by
X • K the reduced simplicial set which is the quotient of X x K by the équivalence
relation: (x1? fe1)~(x2, k2) if and only if kl k2 sl0k for some non-degenerate
k € K and d\^1xl dô+1x2, and note that this définition readily implies the
existence of a natural isomorphism (X'xX) • K~ X' • (X • K).

Next, for a fibrant reduced simplicial set K, dénote by haut0 K c haut* K the

subcomplex consisting of the maps A[n]xK-+ K which factor through A[n] • K.
Then hauto K is clearly a submonoid of haut* K. Moreover the usual retraction

4[l]x4[n]-»4[n] of 4[n] onto its first (or last) vertex induces a retraction of

â[n] - K onto K and hence [5, §6] the induced maps irn haut0 K —» irn haut* K are

isomorphisms for ail n >0.
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Finally, for a simplicial group C, dénote by haut C its simplicial monoid of
homotopy automorphisms, i.e. the simplicial monoid which has as its n-simplices
the homomorphisms A[n]®C-^> C which are weak (loop homotopy) équivalences
[11, Ch. VI] (i.e. induce isomorphisms on 7rn for ail n>0). Using [11, Ch. VI],

(i) the adjointness of the loop group functor G and the classifying complex
functor W,

(ii) the fact that, for every fibrant reduced simplicial set K and every free
simplicial group C, the adjunction maps K —> WGK and GWC —> C are respec-
tively a homotopy équivalence and a loop homotopy équivalence, and

(iii) the fact that, for every reduced simplicial set K, the homomorphisms
A[n]<8)GK-^G(A[n]- K), given by [7, p. 118] (x, rk) -» r(sQx, k), are actually
isomorphisms, one vérifies that the induced maps irn haut0 K-* rrn haut GK are

isomorphisms for ail n ^0. It now follows that Theorem 3.4 is équivalent to

3.6. THEOREM. Let C be a free simplicial group which is finitely generated

(i.e. has a finite number of non-degenerate generators) and has a virtually
nilpotent classifying complex WC [11, Ch. IV]. Then irn haut C is of finite type for
ail n>0.

§ 4. Réduction to simplicial virtually nilpotent groups

Now we reduce Theorem 3.6 to a similar resuit for simplicial virtually
nilpotent groups (4.1). To state this resuit dénote, for a homomorphism of

simplicial groups C —» ir, by haut^ C <= haut C the simplicial monoid of homotopy

automorphisms of C over ir, i.e. the simplicial monoid which has as its n-simplices
the commutative diagrams

\7
7T

in which the top map is in haut C and the other maps are the obvious ones.
Furthermore, for a (simplicial) group B, let FtB be the i-th term of its lower
central séries (i.e. r\B B and FJB [T^B, B] for i > 1. Then one has

4.1. THEOREM. Let 1—»£—»C—> tt-^1 be an exact séquence of simplicial
groups such that

(i) tt is discrète and finite,
(ii) C is free and finitely generated (see 3.6), and
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(iii) the classifying complex WB [11, Ch. IV] is nilpotent.
Then the groups irn haut^ CIFfi (n >0, î > 1) are of finite type.

That indeed this Theorem 4.1 implies Theorem 3.6 is an immédiate
conséquence of 2.11 and the following three propositions.

4.2. PROPOSITION. Let 1 -» B -> C -> tt -> 1 fre as in 4.1. TTien tfie obwows

maps

7TM hautw C -» {7rn hautw CyrjB} n > 0

are pro-isomorphisms of groups [3, Ch. III].

Froo/. In view of [3, Ch. III] the obvious map C-^IQ^B} is a weak

pro-homotopy équivalence and it is not difficult to show, using induction on the
number of non-degenerate generators of C, that so is the induced map of function
complexes over tt

homw (C, C) -> {honv (C,

and the desired resuit now follows readily from the obvious isomorphisms

hom, (C, CirtB) -honv (C/r.B, C/r.B)

4.3. PROPOSITION. Let C—> tt be a homomorphism of simplicial groups such
that ttqC is finitely generated and tt is discrète and finite. Then tth haut,,. C

7rn haut C for rc > 1 and tt0 hautw C is a subgroup of finite index of tt0 haut C.

Proof This follows readily from the fact that a finitely generated group (such
as ttqC) has only a finite number of subgroups of a given finite index.

4.4. PROPOSITION. Let C be a finitely generated free simplicial group with a

virtually nilpotent classifying complex WC. Then there exists an exact séquence
1—»B—»C—»7r—>1 of simplicial groups such that

(i) tt is discrète and finite, and
(ii) WB is nilpotent.

Proof. In view of [8] if suffices to show that every virtually nilpotent finite CW
complex Y has a nilpotent finite cover. To prove this let (pc^Ybea nilpotent
subgroup of finite index which acts nilpotently on tthY for 2< n <dim Y. Then <p

acts on the universal cover Y of Y. As <p acts nilpotently on TrnY for 2<
dim Y and dim Y dim Y, it follows that <p acts nilpotently on HnY for ail n

and therefore on tthY for ail n>2. The desired resuit is now immédiate.
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§ 5. Automorphisms of simplicial modules

In préparation for the next step in our réduction (in §6) we prove hère a

lemma for simplicial modules (5.1) which seems to be of interest in its own right.
For a simplicial tt-module M, let haut^ M be its simplicial monoid of homotopy

automorphisms (an n-simplex of which is a 7r-module homomorphism Zi[n](8>

M^>M which is a homotopy équivalence) and let aut^Mcihaut^M be its
maximal simplicial subgroup of automorphisms. Then one has:

5.1. LEMMA. Let tt be a finite group and let M be a finitely generated (3.6)
simplicial rr-module which, in each dimension, is torsion free as an abelian group.
Then the obvious maps irn aut^ M -» 7rn haut,, M (n > 0) hâve finite kernels and
cokernels.

5.2. Remark. Lemma 5.1 remains true if M is not required to be torsion free
in each dimension, but we don't need this extra generality.

Proof. The proof consists of three parts and will often, explicitly or implicitly,
use the fact that [11, Ch. V] there exists an isomorphism of catégories N between the

category of simplicial ir-modules and the category of differential graded ir-modules
which are trivial in négative dimensions. First we note that 5.1 holds if NMX 0 for
i^n,n + l and ttJsA 0 for i ^ n. Next we consider a finite direct sum of such

simplicial ir-modules and finally we treat the gênerai case.
I. Assume that M is as in 5.1 and that in addition NMt 0 for i: ^ n, n +1 and

7TtM 0 for i ^ n. Then the boundary map d : NMn+l —> NMn is a monomorphism
and we can therefore consider NMn+l as a submodule of NMn. Furthermore
N(4[K]®M)n is a direct sum of copies of NMn indexed by the n-simplices of A[k]
and if, for every n-simplex peA[k] and élément xeNMn, we dénote by XpG

N(A[k]®M)n the copy of x that lies in the summand indexed by p, then a

straightforward calculation yields that the image of the boundary map
d:N(A[k]<8>M)n+1-*N(â[k]<8>M)n is generated by the éléments

xp — xq where x e NMn and p, q e A[fc]n

xp where xeNMn+1 and peA[k]n

Next one notes that a fc-simplex /ehom^ (M, M) is completely determined by
a collection of ir-modules maps fp:NMn-*NMn indexed by the n-simplices of
A[k] and it is not difficult to verify that conversely such a collection {/p}

(i) cornes from a fc-simplex of hom^ (M, M) iff each fp maps NMn+x into itself
and ail fp induce the same endomorphism of NMJNMn+1,
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(ii) cornes from a fc-simplex of haut,,. M iflf, in addition to the conditions of (i),
the /p induce an automorphism of NMJNMn+1 and

(iii) cornes from a fc-simplex of aut^M ifï, is addition to the conditions of (i)
and (ii), each fD is an automorphism of NMn.

From this, together with the usual combinatorial formulas for the homotopy
groups of a complex satisfying the extension condition [10, p. 5], it is not hard to
deduce that the homotopy groups of aut, M and haut^ M vanish in dimension >0
and that the map tt0 aut^ M —» tt0 haut, M can be identified with the inclusion, into
the group of automorphisms of NMJNMn+1 that lift to endomorphisms of NMn, of
those automorphisms of NMJNMn+x that lift to automorphisms of NMn. To see

that this inclusion is of finite index, one notes that NMn détermines an élément in
the finite group Ext, (NMJNMn+1, NMn+1) and that the automorphisms of
NMJNMn+l that stabilize this élément are contained in the image of the inclusion
in question.

II. Assume that M^M°(B- • -©M" where each M" (0<n<r) is as in I; in
particular NM^ 0 if i ^ n, n +1 and t^M" 0 if i f n. Then one readily vérifies,
using the functor N, that hom, (M\MJ) Q for i>j. Hence the k-simplices of
aut, M (resp. haut^ M) are in 1-1 correspondence with (n x n)-matrices {st]} (resp.

shP tltJ g hom^ (M1, MJ)k for i < j.

5^ ^=0 for i>j
sM g (aut^ Ml)k fM g (haut, M%

and the desired resuit is now immédiate.
III. Finally assume that M is merely as in 5.1. For every integer fc>-l, let

EkMczM be the maximal simplicial submodule which is trivial in dimensions <k.
As M is finitely generated there is an integer r such that £^ 0 and the
finiteness of tt now readily implies the existence of an isomorphism of simplicial
77-modules

Using the functor N it is not hard to show that there is a séquence of positive
integers t (t0,..., 0 with tk_! dividing tk (1 < fc < r) such that, for the simplicial
submodule t~lMaM®Q given by

xet~lM iff tkxeEkM+Ek_x{M®Q) for ail 0<k<r
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there is an isomorphism of simplicial modules

i.e. t lM satisfies the conditions of II. Moreover the naturality of the construction

r"1 implies the existence of a commutative diagram

aut,, M » aut,, t~lM

iind mcl

haut^ M > haut^ t~xM

in which, because M was assumed to be dimension wise torsion free as an abelian

group, the horizontal maps are 1-1 and it remains to show that the maps they
induce on the homotopy groups hâve finite kernels and cokernels in ail dimensions

>0.

To do this for the top map we note that a k-simplex /eaut^M (resp.

aut^ t~xM) is completely determined by a collection of automorphisms
/p .*Mdlmp -» Mdimp (resp. rxMdimp -* t~xMdlmp) indexed by the simplices p € A[k]
of dimension <r + fc. From this and the fact that, in each dimension, M has index
in t~xM, it is not difficult to deduce that the image of aut^ M in aut^ t~xM also has

finite index in each dimension and the desired resuit follows.
The bottom map is the restriction to certain components of a homomorphism

of simplicial abelian groups hom^ (M, M)—» hom^ (f~1M, t~1M) which is 1-1 and
has a finite cokernel in each dimension. Hence the induced map irn haut^M—>
7rn haut,, t~xM has a finite kernel for n > 0 and a finite cokernel for n > 0. That
this map also has a finite cokernel for n 0 follows from the fact that (see above)
the composition tt0 aut^ M —> tt0 haut^ M-* tt0 haut^ t~xM does.

§6. Réduction to automorphisms

The next réduction step is to show that Theorem 4.1 is équivalent to a similar
resuit for the maximal simplicial sub-groups of automorphisms aut^ C/jT.B c
haut^ CIFJB, i.e.

6.1. THEOREM. 1-* B-* C-* ir-+l be as in 4.1. Then the groups

irn aut^ C/rtB (n > 0, i > 1) are of finite type.
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6.2. LEMMA. Let 1 -* B -* C-> tt-+ 1 be as in 4.1 (i) and (ii). Then the
obvious maps irn aut,, C/Ffi -» 7rn haut,, C/FtB (n > 0, i > 1) haue /îrate kernels and
cokernels.

Proof. Note that there is a pull back diagram

aut,, C/rtB > haut^ QFfi
i i

aut,, C/r2B > haut,, QF2B

in which, since C is free, the map on the right is a fibration. Hence it suffices to
prove the lemma for i 2 only, which we will do by reducing this case to Lemma
5.1.

Consider the commutative diagram

BIT2B H2(7i;B/r2B)

Z\tt; B/r2B) ^ haut,, C/r2B -^ haut,, B/T2B -> end^ B/r2B -^ H2(tt; B/r2B)

constructed as follows:
(i) The maps b are induced by the functor which, to every epimorphism

H—» 7T with abelian kernel, assigns this kernel (as a tt-module).
(ii) For every 1-cocycle z e Z1(tt; Bjr2Bn) (i.e. function z : it —» Bn\T2Bn such

that z(xy) xz(y) + z(x) for ail x, yGTr), the map az\/±\n\®C\T2B->QT2B
assigns to fc-simplices peA[n] and qeC/r2B9 the fc-simplex p'(zq') • qeC/F2B,
where qf dénotes the image of q in rr and p' is the simplicial operator such that

p pfin, where ineA[n] is the non-degenerate n-simplex.
(iii) For an n-simplex r g end^ B/F2B hom^ (B/F2B, B/F2B) we put cr

K^r^kn, where kneH2(7r;Bjr2Bn) is the extension class [8, Ch. IV] of
Bjr2Bn -> Cjr2Bn -* TT and r' : BJF2Bn -> Bjr2Bn is the restriction of r to the

non-degenerate n-simplex ineA[n].
Then it is not difficult to verify that the maps a are 1-1, that Z1(7r; BIF2B)

acts principally on aut^ C/F2B and haut^ C/F2B and that the maps b map the

resulting quotients isomorphically onto the subcomplexes of aut,,. B/F2B and

haut^ B/F2B which go to 0 under c. Moreover the first of thèse quotients is a
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simplicial group which acts principally on aut^ B/F2B and this readily implies that
the image of autw B/r2B in H2(tt; B/r2B) is fibrant; as H2(tt; B/F2B) is dimension

wise finite, so is this image and its homotopy groups are thus finite in ail
dimensions >0. To obtain a similar resuit for the image of hautw B/F2B in
H2(tt;B/F2B), one notes that the map c rend,,B/F2B ->H2(tt; B/F2B) is a

translation by fe g H2(tt; B/F2B) of a homomorphism and that therefore the image
of endw B/F2B under c is fibrant. As haut^ B/F2B is a union of components of
endw B/F2B, the same holds for the image of haut,,. B/F2B under c and the desired
resuit now readily follows.

§7* Automorphisms of diagrams of ir-kernels

In this section we obtain a lemma (7.3) on automorphisms of diagrams of
7r-kernels in the sensé of Eilenberg-Maclane, which will be used in § 8 to prove
Theorem 6.1.

We start with a brief discussion of

7.1. tt-KERNELS AND CENTRAL MAPS BETWEEN THEM. For a

group G, let £G dénote its center, aut G its group of automorphisms, in G ~ Gj(G
its group of inner automorphisms and out G (aut G)/(in G) its group of outer
automorphisms. Given a group tt, a tt-kernel then is [9, Ch. IV] a pair (G, i/r)

where G is a group and i/>:tt —»outG a homomorphism. Similarly we define a

central map (G, ift) —» (G', $') between two 7r-kernels as a pair (g, p) consisting of
a homomorphism g:G-* G' which sends £G into £G' and a homomorphism

tt xoutG aut G A 7T xoutG, aut G'

over tt which, over the identity of tt, agrées with the homomorphism in G~
GIÇG-*G'IÇG'~in G' induced by g.

7.2. EXAMPLE. If 1-*B -> C-* tt-+ 1 is as in 4.1 (i) and (ii), then each

Bn/FtBn (n > 0, i > 1) is a ir-kernel in an obvious manner and ail face operators
between them become central maps [10, p. 347]. Moreover the same holds for the

degeneracy operators if each BJFfin is nilpotent of class exactly i -1 ; otherwise

they need not be "center preserving". This is automatic if Co and hence Bo is free

on more than one generator.

7.3. LEMMA. Let tt be a finite group, let D be a finite category (i.e. its nerve is

a finite simplicial set) and let Fbe a functor from D to the category of TT-kernels and
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central maps between them such that, for every object deD,Fd is finitely generated,

nilpotent and torsion free as a group. Then the group aut^F of self natural
équivalences of F is of finite type.

To prove this we will freely use some elementary algebraic group theory as can
be found, for instance, in [6, §21] and [4, IV, 2.2].

Proof. First we consider the case that D has only one object and its identity
map and show, essentially following Baumslag [1, Ch. 4]: if F is a ir-kernel which
is finitely generated, nilpotent and torsion free as a group, then aut^ F is of finite
type.

We start with proving that the group aut F of group automorphisms of F is of
finite type. Let MF dénote the (uniquely divisible nilpotent) Malcev completion of
F [1, p. 50] and let LF be the finite dimensional nilpotent Lie algebra over the
field Q of the rationals associated with F [1, p. 48]. The Baker-Campbell-
Hausdorff formula gives rise to a natural set isomorphism log: MF—LF, the

group F admits a natural embedding Fc=MF, there exists [1, p. 51] at least one
lattice subgroup of MF containing F (i.e. a group Fc:F' <=MF such that log F'ci
LF is a free abelian group which spans LF as a vector space) and the intersection
F of ail such lattice subgroups is itself a lattice subgroup, which is natural in F and
contains F as a subgroup of finite index [13]. Moreover, as F and F are nilpotent,
aut F is of finite index in aut F [1, p. 61]. Furthermore aut F is isomorphic to the

subgroup of aut LF consisting of those Lie algebra automorphisms that carry log F
isomorphically onto itself (called the stabilizer in aut LF of the lattice log F). By
construction aut LF is the group of rational points of a linear algebraic group
aut LF over Q (which opérâtes on the vector space LF). By définition the
stabilizer in aut LF of the lattice log F is an arithmetic subgroup of aut LF. As [2,
§ 11] every arithfnetic subgroup of an algebraic group is of finite type, so is aut F and
therefore aut F.

Next we note that, using the Baker-Campbell-Hausdorff formula, it is not
difficult to verify that M{FI£F) is in a natural manner the group of rational points
of a unipotent algebraic group M(F/£F) over Q. Conjugation produces a

monomorphism M(F/ÇF) —» aut LF which is easily seen to lift to an algebraic

group map M(F/£F) —» aut LF. The image of this map is contained in the

unipotent radical of aut LF and is therefore a closed algebraic subgroup of aut LF,
denoted by in LF. It follows that the image of M(FIÇF) in aut LF (which we
dénote by in LF) is the group of rational points of in LF.

Finally lift the structure homomorphism t/f : tt —> out F to a function çitt-^
aut F and note that, for every élément y e ir, the function com çy : aut LF —>

aut LF given by t-*[t, L<py] gives rise to a subset (com cpy)"1^ LF) c: aut LF
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which is readily verified to be a subgroup and not to dépend on the choice of <p.

The functions com <py clearly lift to algebraic maps com <py : aut LF —> aut LF and,

using the fact that in LF is a closed algebraic subgroup of aut LF, it is not difficult
to see that each (com cpi/O'Hin LF) is a closed algebraic subgroup of aut LF. If

aut^ LF fi (com (py)"\in LF) and aut,, LF fl (com <py)~l(in LF)
yeir yeir

then it foliows that autw LF is a closed algebraic subgroup of aut LF which has

aut^ LF as its group of rational points. Moreover a straightforward calculation
yields that an élément of aut F is in aut^ F if and only if its image in aut LF is

contained in autw LF and from this it readily foliows that aut^ F is of finite type.
To prove Lemma 7.3 in gênerai, let F now be a functor as in 7.3. Then LF is a

functor from the category D to the category of Lie algebras and it is easy to check
that its group of self natural équivalences aut LF is the group of rational points of
a linear algebraic group aut LF which opérâtes on the vector space (BdeoLFd,
that aut F (the group of self natural group automorphisms) is isomorphic to a

subgroup of finite index of the stabilizer in aut LF of the lattice ©deD log Fà and

that the subgroup aut^ LF<= aut LF given by the pull back diagram

aut^ LF > aut LF

i i
fi aut^ LFd > fi aut LFd

deD

is the group of rational points of a closed algebraic subgroup aut^ LF c aut LF.
For every object deD, now identify M(FdlÇFd) with in LFd under the

obvious isomorphism, lift the structure homomorphism ij/d : tt —» out Fd to a func-
tion <pd :tt-+aut Fd and let pd : aut^ LF -» aut,, LFd dénote the projection, and,
for every map f:d-*d'eD, dénote by f* both the induced map M(Fd/ÇFd)->

and the structure map

* xoutFd aut Fd -» 7T xoutFd, aut Fd'

Then we dénote by aut^LFczaut^LF the intersection of the equalizers of the

diagrams

ut'_ LF
(comf*<pdy) pd
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where / runs through the maps of D and y runs through the éléments of tt. As the
obvious maps M(Fd/£Fd) —» in LFd are algebraic maps of unipotent groups over
O which induce isomorphisms M(Fd/ÇFd)~ in LFd on the groups of rational
points, thèse maps are isomorphisms themselves. Using this it is not difficult to
verify that aut^ LF is the group of rational points of a closed algebraic subgroup
aut^ LF c autj,. LF. Once again a straightforward calculation yields that an
élément of autF is in aut^F of and only if its image in aut LF is contained in
aut^ LF, readily implying the desired resuit.

§8. Final réduction

We now complète the proof of Theorem 1.1 by reducing Theorem 6.1 to
Lemma 7.3.

First we note that it is not difficult to verify (by obstruction theory) that the

groups 7rn haut^ C/FtB (n> 1, i> 1) are finitely generated abelian and hence of
finite type. This fact, together with 2.9, 2.10 and 6.2 readily implies that if suffices

to show that the groups (aut^ CirjB)n are of finite type for ail n > 0.

To do this make the harmless assumption that Co is free on more than one
generator. Then (7.2) B/rtB is a simplicial object over the category of 7r-kernels
and central maps between them and one can define in the obvious manner its

simplicial group of automorphisms aut^ BjFfi. Now construct a séquence of maps.

as follows (cf. §6 and [9, Ch. IV]).
(i) The map b is the homomorphism induced by the functor which (see 7.2)

assigns to every epimorphism H —» tt, its kernel as a tt-kernel and to every
"center of the kernel preserving" map between such epimorphisms, the induced
central map.

(ii) For every 1-cocycle zeZ^T^BjrfiJ, the map az'.Aln^Qrfi-^
CIFfi assigns to k-simplices peA[n] and qeCIF.B, the fc-simplex p'(zq') - qe
C/Ffi, where q' dénotes the image of q in tt and p' is the simplicial operator such

that p pfin, where ^ dénotes the non-degenerate n-simplex of A[n]. Clearly a is

a homomorphism.
(iii) Restriction of a simplex riAWQB/rfi -^B/^B ^(aut^ BirtB)n to the

simplex ^eAln] yields an automorphism r' : BjrjBn —» Bn/FtJBn. If r'*k dénotes
the extension of Bjrj3n by tt induced by r' from the given extension
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k:BjrxBn-* CjrxBn-> tt, then cr€H2(ir;ri_1JBn/riJ8n) will be the élément
which (see [9, Ch. IV]) sends the équivalence class of r^fc to that of k. It is not
difficult to verify that the map c so defined is a crossed homomorphism.

A simplifiée version of the argument that appears in the proof of 6.2 now
yields that the above séquence is exact and that thus our problem is reduced to
showing that the groups (aut^ B/rtB)n are of finite type for ail n>0.

Let cà[n] dénote the category of A[n] (i.e. cA[n] has as objects the simplices
of A[n] and has a map p —» q for every simplicial operator / such that fp q) and
let E be the functor from cA[n] to the category of Tr-kernels and central maps
which, to each k-simplex of A[n], assigns BkirtBk. Then the group autw E of self
natural équivalences of E is clearly isomorphic to (aut^ B/F,jB)n. Furthermore, let
r be an integer such that ail non-degenerate generators of C (and hence of B) are
in dimensions <r, let cn+rA[n]ci G4[n] dénote the full subcategory generated by
the simplices in dimensions <n + r and let F be the restriction of E to cn+rA[n\.
Then one readily vérifies that the restriction aut^ E —» aut,,. F is an isomorphism
and the desired resuit thus follows from 7.3.
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