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Permutation modules and projective resolutions

James Howie(1) and Hans Rudolf Schneebeli

1. Introduction

We adopt the convention of [2] that a group-pair (G, S) consists of a group G
and an indexed family ^{S,}! of subgroups of G (possibly with répétitions). For
the most part no explicit indexing is referred to; we then write S as a shorthand
for {SJj. We let ZG/S dénote the left ZG-module ©jZG/S,. Any module of the
form ZG/S is called a permutation module.

We study projective resolutions ^-*Z and we deal with spécial splittings of
the kernels of the boundary map in some dimension n. We focus attention on such

splittings where a Z G -permutation module appears as a direct summand. The
motivation for this set-up stems from our investigation [6], where a group is

termed of fînite quasi-projective dimension in case for some ZG-projective
resolution 0>-»Z and some integer n>l, the kernel of dn splits into a ZG-
projective and a ZG-permutation module. Some conclusions in [6] only dépend
on the existence of a direct permutation module summand. We justify the more
gênerai set-up taken up hère by constructing examples of groups of infinité
quasi-projective dimension to which our structure results still apply.

For finite groups, Gruenberg and Roggenkamp [4], [5] investigated non-
projective décompositions of the augmentation idéal or of relation modules.
Under a more spécial hypothesis on the décomposition, we avoid the restriction to
finite groups and to low dimensions. Dealing with finite groups later on, similarity
with results of [5] turns up.

We now introduce another pièce of notation. Let % :•••->
Cn —^ Cn_! -^ Cn_2 -» • * * be a chain complex. Then we dénote the kernel of
ôn_! : Cn_x -+ Cn_2 by

In Section 2 we assume that for some projective resolution 0>-»Z and some n,
there is a splitting Kn(^) M©ZG/S. We show that each group in the family S is

finite. The Tate cohomology of any non-trivial group in S has a divisor of n as its

period. Our key resuit is a variation of a theorem attributed to Serre in [7].

1Partly supported by a William Gordon Seggie Brown Fellowship.
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448 J HOWIE AND H R SCHNEEBELI

THEOREM 5. Suppose (G, S) is a group-pair and q, r are positive integers such

that for every ZG-module M the group H* {G, M) has a direct summand isomor-
phic to lierHr(St, M). Suppose also that i, jeland geG are such that Sx HgSjg"1
is not torsion-free. Then i=j and geSt.

This resuit leads to a chain of corollaries some of which state facts proved
earlier for groups of finite quasi-projective dimension in [6]. In particular, the

hypothèses of Theorem 5 are satisfied for a pair (G, S) if for some ZG-projective
resolution 0> —» Z and some n>0, the module ZG/S is a direct summand of the
kernel Kn(&). The foliowing statement already shows that our investigation
extends beyond the class of groups of finite quasi-projective dimension.

We term a pair of groups (G, S) a Frobenius pair, if G is a Frobenius group
and S a Frobenius complément of G.

COROLLARY 5.4. Suppose G is a finite group and ZG/S is isomorphic to a
direct summand of Kn(&) for some ZG-projective resolution & —> Z and some

n > 0. Then either S 1, S G or (G, S) is a Frobenius-pair.

The objective of Section 3 is a discussion of Frobenius groups from the point
of view of homological algebra.

THEOREM 7. Let (G, S) be a Frobenius pair. Then ZG/S is a ZG-direct
summand of Z©ZG.

The relationship between splitting of Z©ZG and of the augmentation idéal

IG ker (ZG -* Z) is investigated in [4], [5].

THEOREM 9. Let (G, S) be a Frobenius pair and let n dénote the period of the

Tate cohomology of S. Then there exists a finitely generated ZG-free resolution
such that ZG/S is a ZG-direct summand of Kn(9>).

In a différent direction, we use relative (co)-homology of a Frobenius pair
(G, S) to compute the (co)-homology of G. We obtain results similar to [1, 55.1]
in a rather elementary way from the long exact (co)-homology séquences of the

pair (G, S). We refer to the Appendix for the discussion of some spécial

properties of the restriction-corestriction maps in relative cohomology.

COROLLARY 7.2. Let (G, S) be a Frobenius pair and dénote by N the kernel

of the projection G-*S. Then there exist natural isomorphisms of functors on
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ZG-modules for any r> 1 as follows:
(i) H'(G;-)
(ii) H'(G,S;
(iii) For ail reZ, there are natural isomorphisms

of functors on ZG -modules.

For any finite group H let tth dénote the set of primes dividing \H\. Then the

décomposition (i) is a functorial splitting of Hr(G,-) into tts- and ttn-parts

In Section 4, we présent some explicit computations related to examples. We
first deal with Frobenius pairs of the type (G, Z/fcZ). In this context, we observe
décompositions of the relation modules occurring in the Lyndon resolution
derived from a finite présentation of G. This is an opportunity to make explicit
some connection with results of Gruenberg and Roggenkamp [5]. The easiest

non-trivial example of this case is the symmetric group S3

In analogy with [6, Theorem 5] we use graph products to construct infinité
groups G for which permutation modules occur as a direct summand of some
Kn(9>). Of spécial interest is the group S3*S3, where C Z/2Z, since this group

c
has infinité quasi-projective dimension and it cannot be constructed with the help
of graph products along the lines of [6, Theorem 5].

We finally remark that our working hypothesis is based on ZG-projective
resolutions. A natural source for such resolutions is free G-actions on acyclic
spaces. It would be désirable to know the topological circumstances under which
actions produce the phenomena discussed hère since they lead from géométrie
considérations to structure results in group theory.

2. Projective résolutions

2.1. Preliminaries and gênerai facts

Suppose (G, S) is a group pair, where G is a subgroup of a group H. Then
there is a ZH-isomorphism ZH®GZG/S ZH/S.

Suppose (G, S) is a group pair, and U is a subgroup of G. If we restrict the
ZG-action on ZG/S to a Zl/-action, we obtain a permutation module ZI//T,
where the family T can be constructed as follows. Let I be the index set of the
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family S {Sl}f. For each iel, choose a set {t0; |3e Jt} of représentatives of the
double cosets UgSt, and for each p in Jt define Tl0 Unt^Sj^1. Then T is the

family {Tl3; iel, &eJt}. This construction also appears in [2,p. 305]. We call
(U, T) the pair induced from (G, S) by U.

We now consider a ZG-projective resolution $>-? A of some ZG-module A,
and suppose that ZG/S is isomorphic to a submodule of Kn(0>) for some positive
integer n. Then, by restricting the ZG-action, we obtain a Z l/-projective resolution

&-* A, and a Z [/-submodule of Kn(0>) isomorphic to ZI//T, where (17, T) is

the induced pair.
In particular, if we take 1/ S, for some i € I, then one subgroup in the family

T is just S, Pi S, =S,, so that the ZSt-projective Pn_x contains a ZS,-submodule
isomorphic to ZSJSt sZ. This is possible only if St is a finite group. We hâve thus

proved the following.

PROPOSITION 1. Suppose &-»A is a ZG-projective resolution, and ZG/S is

a submodule of some Kn{&). Then S is a family of finite subgroups.

Note that any projective resolution 9 can be modified so that Kn(&) contains a

free direct summand. Hence only the non-trivial subgroups in S are of interest.
Next we observe that, if ZG/S is isomorphic to a direct summand of Kn(0>) for

some projective resolution ^-»A, then, modulo a slight adjustment, the same is

true for any other projective resolution of A. In particular, 0> may always be
assumed to be free.

PROPOSITION 2. Suppose A is a ZG-module, &-»A and 2L-»A are ZG-
projective resolutions, and ZG/S is isomorphic to a direct summand of Kn{9>). Then

one can form a ZG-projective resolution â'-» A by adding a free ZG-module F to

& in dimensions n and n — \, such that ZG/S is isomorphic to a direct summand of
Kn(â'). Furthermore, if the index set I of the family S is finite, then F may be chosen

of finite rank.

Proof. By Schanuel's lemma, there are ZG-projectives P and Q such that
Kn(&)(BP Kn(&)(BQ. The first part of the proposition follows by choosing F
large enough to contain Q as a direct summand, and noting that Kn(â')

Now suppose I is finite. then ZG/S is finitely generated. Hence, for any choice
of basis for F, only finitely many basis éléments are involved in the images of
éléments of ZG/S in Kn(2l)(&F. We may therefore replace F in the construction
of â' by a suitable free direct summand of finite rank.
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2.2. Resolutions of Z

From now on we restrict our attention to ZG-projective resolutions 0>-»Z.
Our next observation is that an integer n for which ZG/S is a direct summand of
Kn(&) for some 0> is by no means unique. In fact, if there is one such integer,
there are infinitely many.

PROPOSITION 3. Suppose 0>-»Z is a ZG-projective resolution such that
ZG/S is isomorphic to a direct summand of Kn(0>). Then there exists, for each

positive integer r, a ZG-projective resolution 0>(r)-»Z, such that ZG/S is isomorphic
to a direct summand of Km(0>(r)).

Proof. We define 0>(1) 0>, and 0>(r) (r^2) inductively as follows. Suppose
0>(f-1) has been defined, and K(r_1)n(^(r-1)) ZG/S0A. Let 2L-+A be any ZG-
projective resolution, and define 0>(r)-»Z to be

X
eZG®sZ)

\iel ' / 0A.

For each iel, Kn(9>) contains ZG/S,, and so Z, as a ZSt-direct summand.
Hence Km(0>) contains ©jZG®sZ ZG/S as a Z G-direct summand, as

claimed.
The next proposition is a straightforward calculation of cohomology, and we

omit the proof.

PROPOSITION 4. Suppose 0>-»Z is a ZG-projective resolution and Kn(&)
ZG/S©A. Then there are, for each q>0, natural isomorphisms

(fi (A; -)

Hn+q(G; -)= WÎ°
COROLLARY 4.1. Suppose ®-*Z is a ZG-projective resolution such that

ZG/S is isomorphic to a direct summand of Kn(9>). Then either n is even or S

consists entirely of copies of {1}.
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Proof. Suppose n is odd and, for some iel,
By Proposition 1, S, is finite. Choose a subgroup C of S, of prime order. Then,

regarded as a ZC-module, Kn(&) has a direct summand isomorphic to Z, say
Kn(0>) Z©A'. Apply Proposition 4 to C with q 1. Since n is odd, we have

0 Hn+1(C; Z) a Ht(C; Z)©Tor?c (A'; Z) ^ 0.

This is a contradiction, so the proof is complète.

The importance of Proposition 4 is that it may be used together with our next
resuit to deduce certain group-theoretic properties of the pair (G, S). This resuit is

a partial généralisation of a theorem of Serre [7].

THEOREM 5. Suppose (G, S) is a group-pair and q, r are positive integers such

that, for every ZG-module M, the group Hq(G;M) has a direct summand

isomorphic to \[ieIHr(St; M). Suppose also that i,JeI, geG are such that
St ftgSjg'1 is not torsion-free. Then i =j and geSv

Proof. Choose a cyclic subgroup Cf 1 of finite order in S, ngSjg"1. Then we
have, for any ZC-module M, an isomorphism Hq(C;M)
Hq(G; Homzc (ZG;M)). By hypothesis, therefore, Hq(C;M) has a direct
summand isomorphic to

11 Hr(St;Homzc (ZG; M)) ExtZG(ZG/S; Homzc (ZG; M))
iel

Extzc(ZG/S;M).

Choose M Z or M IC (the augmentation idéal of ZC) according as r is

even or odd. Then Hq(C;M) is either cyclic of order \C\ or zéro, according as

(q-r) is even or odd. In any case Hq(C;M), and so also Extzc(ZG/S; M), is

cyclic. But Ext^cCZG/S; M) contains a direct summand isomorphic to Z/|C|Z for
each point of the C-set Ui <=iGISt fixed by C. Hence there is at most one such

point, so the fixed points 1 • S, and g • S, coincide. In other words, i j and g g Sr

COROLLARY 5.1. Suppose XG/S is isomorphic to a direct summand of
Kn(&) for some XG-projective resolution &-*Z and some positive integer n.

Suppose also that i, je J, geG are such that St HgSjg"1 ^ 1. Then i j and ge Sr
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Proof. Follows from Propositions 1 and 4, and Theorem 5.

COROLLARY 5.2. Suppose ZG/S is isomorphic to a direct summand of
Kn(&) for some ZG-projective resolution 9>-»Z, and some positive integer n. Then
either S 1 or S is its own normaliser in G.

COROLLARY 5.3. Suppose G is an infinité group wiih non-trivial centre, and
ZG/S is isomorphic to a direct summand of Kn(0>) for some ZG-projective
resolution 0>-*Z and some positive integer n. Then S 1.

COROLLARY 5.4. Suppose G is a finite group and ZG/S is isomorphic to a
direct summand of Kn(&) for some ZG-projective resolution ^-^Z and some

positive integer n. Then either S 1, S G, or (G, S) is a Frobenius pair.

COROLLARY 5.5. Suppose &-»Z and 2L-+Z are ZG-projective resolutions

and m and n are positive integers, such that ZG/S is a direct summand of Km(9>),

and ZG/T is a direct summand of Kn(Sl). Suppose also that geG is such that
U SCigTg~1 is non-trivial Then either U=S or (S, 17) is a Frobenius pair.

Proof. Follows from Corollary 5.4 by regarding â as a ZS-resolution.

Remarks. Serre's Theorem states that, under a hypothesis somewhat stronger
than that of Theorem 5, any finite subgroup is contained in precisely one
conjugate of precisely one of the subgroups Sl. Under this stronger hypothesis, the
third possibility in Corollary 5.4, that (G, S) is a Frobenius pair, would be ruled
out. Under our weaker hypothesis, however, we cannot rule the possibility out.
Indeed, the permutation modules ZG/S, where (G, S) is a Frobenius pair, ail
occur as direct summands of kernels in projective resolutions of Z. We will prove
this, and other facts about Frobenius groups, in the next section.

Of course, it is well known that any Frobenius complément has periodic Tate
cohomology. Our next resuit states that, if ZG/S is isomorphic to a direct
summand of some Kn(0>), then S has periodic Tate cohomology.

PROPOSITION 6. Suppose S is a non-trivial subgroup of G, and ZG/S is

isomorphic to a direct summand of Kn(9>) for some ZG-projective resolution 0>-»Z
and some positive integer n. Then S has periodic Tate cohomology, with period

dividing n.

Proof. By Proposition 1, S is finite. Also, regarded as a ZS-module, Kn(9>) has
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a direct summand isomorphic to Z. Since n^ 1 by Corollary 4.1, we may apply
Proposition 2 to find a finitely-generated free ZS-resolution ^F-»Z with F0 ZS
and Kn(9) Z®A for some ZS-module A.

Form a complète ZS-resolution

from 9 in the usual way by means of the dual ^* and the norm-map v.

From the exact séquences

0 -> l^.^)* -* F*_a -> XnW* -> Ext£s (Z; ZS) 0

(see for example [3, p. 90, Theorem 6.1]), we deduce that (*) is exact and

Coker 6*_1 iCn(^)* Z© A*. We use this to obtain natural isomorphisms.

where H dénotes Tate cohomology.
For any ZS-module M and any q ^ 1, we hâve, from the above and Proposition

4, that Hq(S;M) and HQ+n(S;M) are direct summands of one another. It
follows that Hq(S;-) and Hq+n(S;~) agrée on finitely generated modules (and
hence on ail modules, since Hq(S; -) commutes with direct limits).

Thus the Tate cohomology of S is periodic, of period dividing n, as claimed.

3. Frobenius groups

THEOREM 7. Let (G, S) be a Frobenius pair. Then ZG/S is a direct
summand of Z©ZG.

Remark. This resuit should be compared with [5,Lemma 4.1], which expresses

the augmentation idéal of a Frobenius group as a direct sum of factors

corresponding to the Frobenius complément and kernel respectively. As is shown

in [5], there is a close correspondence between direct sum décompositions of
Z©ZG and of the augmentation idéal of G.

Proof. By the définition of Frobenius pair, G acts transitively on a set X such

that no élément of G\l fixes more than one élément of X, and S is the stabiliser
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of some élément x0 of X. By Frobenius' Theorem, G is a semi-direct product
N3S, where N acts freely and transitively on the G-orbit X of x0. Hence X is

the N-orbit of x0, and there is an identification between éléments of X and of N
such that the action of S on X corresponds to the S-action by conjugation on N,
and such that xoeX is identified with leN, It follows that S acts freely by
conjugation on N\l. Let (lu..., Qt dénote the orbits of the S-action on N\l,
and choose orbit représentatives gr g Qr for 1 ^ r ^ t.

We define ZG-morphisms <f> : ZG/S --* Z©ZG and ^ : Z©ZG -» ZG/S by

*:1-S«(l,tls
N r-lseS

geN

^IzG • 1^-1 'S.

Then we hâve

s)=Ig-s-tls&'S: (i)
geN r l seS

Since S acts freely on N\l we hâve, for l

Isgr-S=S(sgrs-1)-S= I g-S.
seS seS gefir

Summing over ail r and substituting in (1), we deduce that

Hence <Ao<^ 1zg/s and so ZG/S is isomorphic to ZG-direct summand of
Z©ZG, as claimed.

COROLLARY 7.1. Le* (G, S) be a Frobenius pair and r^2 an integer. Then
there are natural isomorphisms

Hr(G; -) Hr(S; -)®Hr(G, S; -)
Hr(G; -) Hr(S; -)@Hr(G, S; -).

Proof. We dénote by A the complément of ZG/S in Z©ZG. The following
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commutative diagram has exact rows and columns

0 0

0-
0 —

i
-? A

I
-»ZG

A -i\ -

1

0

1

> ZG/S >

i
>ZG0Z >

i

i
0

z
II

z

For r^lwe read off the natural isomophism

Hr(G; -) Ext^G (ZG0Z); -)sExt£o (ZG/S; -)©ExtiG (A ; -).

By Shapiro's Lemma,

ExtiG(ZG/S;-)-Hr(S;-),

and from the long exact séquence induced by the first column we get, for

(A; -^Extio1 (A; ~) H'(G, S; -).

This establishes the first of the stated natural isomorphisms. The second is

proved in an analogous way.

COROLLARY 7.2. Let (G, S) be a Frobenius pair and dénote by N the kernel

of the projection G-*S. For any finite group H let tth dénote the set of primes

dividing \H\. Then the following hold:
(i) The décompositions in Corollary 7.1 are functorial splittings of Hr(G;-),

resp. Hr(G;^-), into tts- and irN-parts (r^2).
(ii) For ail r^2, there are natural isomorphisms of functors on ZG-modules

(iii) For ail reZ, there are natural isomorphisms of functors on ZG-modules
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Proof. Statement (i) foliows from the fact that \S\ annihilâtes Hr(S;—) and
|N| \G : S\ annihilâtes Hr(G, S; -) (because (G, S) is Frobenius-see Appendix).
Statements (ii) and (iii) resuit from (i) when one compares the splitting of
Hr(G;A) in Corollary 7.1 with that given by the restriction-inflation séquence for
the normal Hall subgroup N [1, p. 191, 55.1]. For (iii) one uses the periodicity of
S to eliminate the lower bound on the dimension r.

Remark. For the particular coefficient module ZG/S and for r 0, statement
(iii) of Corollary 7.2 takes the form

H°(S; Z) H°(S; ZG/S). (2)

Conversely, if (G, S) is a group-pair with G finite and l^S^G, such that (2)

holds, then (G, S) is a Frobenius pair. For the module ZG/S considered as a

ZS-module has the form

zg/s=z©(© zsis)

and hence

H°(S;Z) H°(S;ZG/S) (by (2))

H°(S;Z)©(© H°(Si;

Thus ail the St are trivial and S acts freely on the set (G/S)\(l • S). Essentially
the same computation gives the following converse of Theorem 7.

PROPOSITION 8. Let (G, S) be a group pair, with G finite, such that ZG/S is

a ZS-direct summand of Z©M, where M is a ZS-module satisfying H°(S; M) 0.

Then (G, S) is a Frobenius pair.

THEOREM 9. Let (G, S) be a Frobenius pair, and let n dénote the period of the

Tate cohomology of S. Then there exists a finitely-gênerated ZG-free resolution

d>^»Z such that ZG/S is a ZG-direct summand of Kn(&).

Proof. Since S has cohomological period n, one can construct, using the
methods of [8, section 2], a flnitely-generated ZS-free résolution SF-&Z such that
Kn($0 Z©Q for some projective ZS-module Q.

By Theorem 7, there exists a ZG-module A such that Z©ZG A ©ZG/S as
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ZG-modules. Let &'-»A be any finitely-generated ZG-free resolution. Then
^r ^©(ZG®s^) is a finitely-generated ZG-free resolution of A©ZG/S
Z©ZG. Furthermore, ZG/S is a ZG-direct summand of Kn(&').

We use the epimorphism e : Pq-»Z©ZG to produce a splitting Pq Q'©ZG,
where Q' is the full preimage of Z under e. Since Q' contains the kernel of e, we

may define a finitely-generated ZG-free resolution

0> : > P2 >P[ > Q' > Z' > 0

© ©
ZG >ZG

such that Kn(0>) (Kn(0>') has a ZG-direct summand isomorphic to ZG/S.

4. Examples

4.1. Frobenius pairs

Suppose (G, S) is a Frobenius pair, and S has cohomological period n. Then
Theorem 9 tells us that ZG/S is a direct summand of Kn(&) for some ZG-free
resolution ^-»Z. The proof of Theorem 9 relies on the décomposition Z©ZG
ZG/S ©A to construct a suitable resolution 9. It does not help us to décide
whether, for any given resolution ^-»Z, the module ZG/S appears as a direct
summand of Kn{SF).

We examine this situation more closely in the spécial case where n 2 (that is,
S is cyclic) and ^-^Z is the Lyndon resolution arising from a finite présentation
of G. In this case, K2{3") is the relation module of the présentation.

Gruenberg and Roggenkamp [5, Propositions 5(i), 6] hâve shown that, in this

situation, any relation module décomposes as the direct sum of two non-
projective factors. In fact, following the argument in [5] reveals that one of the
factors is isomorphic to ZG/S.

Explicitly, there is an isomorphism [5, Lemma 4.1]

Kt(F) IG=ZG ®s IS&IN,

where N is the kernel of the projection G^S; the modules IG, IS, IN are the

augmentation ideals in ZG, ZS, ZN respectively, and the N-action on IN is

extended to a G-action by letting S act by conjugation on éléments of N.
Given a free présentation <f> : <P -> G of finite rank, one chooses a basis

{xl5 ...,xn} of 0 such that g1 <f>(x1)€S and gl <f>(xl)€N for 2^i^n. This
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allows one to décompose the exact séquence

0 -*-* K2(9) > (ZG)n > Kxm IG > 0

as the direct sum of two terms:

0 >ZGIS >ZG >ZG®SIS
a-gi)

and

0 B » (ZG)""1 > IN » 0

EXAMPLE 1. Let G be the symmetric group of degree 3, ^-»Z the Lyndon
resolution associated to the présentation

and S the subgroup of order 2 generated by x.

Then, dx : (ZG)2 -> ZG is given by the matrix

/1-xN
\l-y/

and K2(&) Ker dx has a direct summand isomorphic to ZG/S. This is embedded
in Fx (ZG)2 as the cyclic submodule generated by the élément (1 + x, 0).

4.2. Infinité groups

Using Theorem 5, Corollary 5.4 and Theorem 9, we can completely classify
those group pairs (G, S), with G fînite, for which ZG/S occurs as a direct
summand of some Kn(9>). They are pairs (G, {S, 1,1,...}) such that either

(a) (G, S) is a Frobenius pair;
(b) S G, a group with periodic cohomology; or
(c) S 1, in which case ZG/S is free, and no further information about G can

be deduced.
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For group pairs (G, S) with G infinité, the position is less clear, and a complète
classification would appear to be impossible to find. A restricted insight into the

complexity of the class of groups considered may be obtained from looking at
constructions under which the class is closed. In this light, the foliowing proposition

and examples give some idea of how complicated the situation is.

PROPOSITION 10. Suppose F is a graph of groups whose edge groups Ge

satisfy cd Ge ^ n0 for some fixed integer n0. Suppose we are given, for each vertex v,
a (possibly empty) family Sv of subgroups of the vertex group Gv, and a ZG-
projective resolution &V-»Z such that for some n(v)^n0, ZGJSV is a direct
summand of Kn(v)(0>v). Let S dénote the union \JV Sv, regarded as a family of
subgroups of the fundamental group G tt(F). Then there exists a ZG-projective
resolution 0>-»Z, and an integer r, such that ZG/S is a direct summand of Kr{9>).

Proposition 10 is a direct généralisation of [6, Theorem 5], and is proved in an

analogous way, using mapping cônes. We omit the détails.

Proposition 10 allows us to construct a large class of examples, beginning with
those we already know, such as Frobenius groups, and groups of finite quasi-
projective dimension. Our next example does not arise in this way. That is, the

group concerned is infinité, has infinité quasi-projective dimension, and cannot be

properly expressed as the fundamental group of a graph of groups whose edge

groups are torsion-free.

EXAMPLE 2. Define G A* B, where A and B are isomorphic copies of
s

the symmetric group of degree 3, and S (x) is a common subgroup of order 2.

If we apply the exact functor ZG®A - to the ZA-resolution in Example 1, we
obtain an exact séquence

0 >ZG/S0MA >(ZG)2 >ZG >ZG/A >Q

in which ZG/S is identified with the cyclic submodule of (ZG)2 generated by the
élément (1 + x, 0). Hence there is a commutative diagram with exact rows

0 > ZG/S > ZG (1~x)
> ZG > ZG/S > 0

0 > ZG/S0MA > {ZG)2 » ZG > ZG/A > 0

in which eA is the augmentation map, and ÀA is the canonical inclusion corres-
ponding to the direct sum décomposition.
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Replacing A by B in the above gives rise to another, similar diagram. From
the two diagrams one can obtain a new commutative diagram

0 > ZG/S > ZG > ZG

1,0,-1,0)

0—?(ZG/S0MA)e(ZG/S0MB)—>(ZG)4—>(ZG)2—> ZG/A0ZG/B—>0

in which the rows are exact and the vertical maps are ail injective. It follows that
the induced séquence of cokernels is also exact. This has the form

0 >ZG/S0(MA0MB) >(ZG)3 >ZG >Z >0.

Hence ZG/S is a direct summand of K2(3F) for some ZG-free resolution

Remark. The group G of Example 2 is expressed as an amalgamated free
product with finite amalgamated subgroup, a construction which does not satisfy
the hypothèses of Proposition 10. This suggests that it may be possible to weaken
the restriction on edge groups in Proposition 10. However, it does not seem easy
to find a gênerai condition under which the conclusion of the proposition
continues to hold. That some restriction on edge groups is necessary is shown by
the foliowing example.

EXAMPLE 3. G SL2(Z) (Z/4Z) * (Z/6Z)
(Z/2Z)

is an infinité group with non-trivial torsion and non-trivial centre. By Corollary
5.3, there is no non-trivial subgroup S such that ZG/S occurs as a direct
summand in any Kn(0>).

Appendix on relative cohomology

Suppose G is a finite group of order r. Then the ordinary (co)-homology
functors of G with arbitrary ZG-module coefficients are annihilated by r.

Now let G be a cyclic group of order 2n and S the subgroup of order n. Then
G/S C Z/2Z. We shall compute the group H2(G, S;ZC). In the sequel, we
foliow the notation of [2].

Consider the exact séquence A >^ZG/S-»Z, where ZG/S =ZG Then A =Z,
the Z G-module Z with nontrivial G-action. In terms of a generator g for G we
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can write down a free ZG-resolution

i+g Ik=ox(-i)V 1+r
ZG > ZG > ZG » ZG > Z > 0.

Now the complex HomZG (#,ZC) is of the form

l-Hc n(l-c) 1+c
ZC » ZC » ZC > ZC » HomZG (Z, ZC)

where c gS is a generator for C. In view of the définitions in [2], we may use 2F'

to compute

H2(G,S;ZC) ExtZG(Z;ZC) Z/nZ.

Thus, in gênerai, H2(G, S; -) is not annihilated by the index of S in G. However,
our investigation will lead to the following resuit:

COROLLARY 2. Suppose (G, S) is a Frobenius pair and S has index k in G.

Then k annihilâtes the relative cohomology functors Hq(G, S; —) for ail q^l.

The proof of this resuit involves a slight digression.
If U is a subgroup of G, and M is a ZG-module, let e :ZG®uM-* M

dénote the "évaluation" map, e(g®m) g* m. Let a dénote the natural
isomorphism

Then we will refer to the natural transformation

res o-og* : Ext|G (M; -) > Extzu (M; -)

as restriction, since in the spécial case M Z, it is the usual restriction

Similarly, if U has finite index k in G and {g1?..., gk} is a left transversal, we
can define a map

k

tj : M ?ZG^uM by Tj(m)= 2



Permutation modules and projective resolutions 463

Transfer or corestriction is then defined to be the natural transformation

cor t^oot-1 : Ext|a(M; -) > Ext|G (M; -).

Just as in the usual case M Z, we now hâve the following resuit.

PROPOSITION. Let G be a group and U a subgroup of finite index k in G.
Then for any pair of XG-modules M, A and any integer q^O, the composite

corores : Ext|G (M; A) > ExtJu (M, A) > Ext|G (M, A)

is just multiplication by the integer k.

Proof. One checks that e°r] is multiplication by k on M.
Now let (G, S) be a group pair and U a subgroup of G. As in Section 2, we can

define a family T of subgroups of U such that there is a Z ^/-module isomorphism
ZG/S Zl//T. (See also [2, pp. 305-306]). As above, we dénote by A the kernel
of the augmentation ZG/S -» Z and define Hk(G, S; -) Extk"1 (A, -) following
[2]. Specializing the above to M A, we obtain natural transformations

res : H*(G;S; -) >H*(l/, T; -)

and, provided U has finite index in G,

cor : H*(l/, T; -) > H*(G, S; -).

The Proposition now yields the following conséquence:

COROLLARY 1. Let (G, S) and (U,T) be pairs of groups as above and

suppose U has finite index k in G. Then for any integer q^l, the natural

transformation

corores : Hq(G,S' -) >Hq(U, T; -) >Hq(G,S; -)

is just multiplication by k.

If (G, S) is a Frobenius pair, we set U S in Corollary 1. Then the family T
consists of one copy of S together with (k -1) copies of the trivial group. Since

Hq(S, {S, 1,..., 1}; -) Hq(S, S; -) 0 for q ^ 1, Corollary 2 follows because

multiplication by k factors through 0.
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