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Characterization of unbounded spectral operators wîth spectrum in
a half-line

Shmuel Kantorovitz(1)

Abstract. Let T be a possibly unbounded linear operator in the Banach space X such that R(t)
(t + T)~l is defined on R+. Let S TR(I-TR) and let B(.,.) dénote the Beta fonction.

THEOREM 1.1. T is a scalar-type spectral operator with spectrum in [O,«0 if and only if

sup JB(fc, fc)"1 [ \x*Sk(t)x\dt/t; ||x||<l, flxl^l, k^l]<oo.

A "local" version of this resuit is formulated in Theorem 2.2.

Introduction

A problem of fundamental importance in Mathematical Physics consists of the

discovery of "practical" criteria for the self-adjointness of symmetric operators.
Extensive work done in this gênerai direction is efficiently summarized in Reed
and Simon [6]. Selfadjointness has found a proper generalization to Banach space
in the concept of scalar-type spectrality invented by N. Dunford in the early
1950's and developed since then by his students and followers. The monograph of
N. Dunford and J. T. Schwartz [1; Part III] contains a detailed exposition of the

subject and an updated bibliography up to 1968. We shall freely use the

terminology of [1].
Let T be a possibly unbounded linear operator with domain D(T) in a Banach

space X. Suppose there exists a (strongly) countably additive spectral measure E
on the Borel cr-field 83(R) such that

D(T) | x e X\ strong lim J sE(ds)x exists

1 Research partially done while the author was a visiting member at the Forschungsinstitut fur
Mathematik, ETH, Zurich.

Research supported by the Israël Academy of Science and Bar-Ilan University Research

Authority.
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164 SHMUEL KANTOROVITZ

and

: hml
n J-n

sE(ds)x, xeD(T).

One then says that T is a (real) scalar-type spectral operator, with resolution of
the identity E.

In [1, Chapters XIX and XX], the (scalar-type) spectrality of various perturbations

T S + P is studied, and many deep results providing sufficient conditions
are obtained, when S is either a relatively simple differential operator, or a

selfadjoint operator in Hilbert space, or a multiplication operator. Accordingly,
the methods are very specialized and hâve to overcome many technical difficultés.
Even the statements of the theorems involve heavily technical assumptions (see

for example Theorems XIX.4.16; XX.1.12, 2.21, 2.22, 4.9, etc....). Methods run
from direct efforts toward the construction of the resolution of the identity, to the
Friedrichs method of similar operators, to the Kato-Kuroda method of wave
operators and similarity. The authors remark that the material in their exposition
is still somewhat "fragmentary", "and is presented in the hope that it may
stimulate research in the topics treated".

Motivated by the fact that the selfadjointness analysis for semibounded sym-
metric operators in Hilbert space is enormously simpler than the gênerai case, we
consider in this paper the construction of a (scalar-type) spectrality criterion for
operators whose résolvent set contains a half-line. Our main resuit (Theorem 1.1)

provides a criterion in terms of the asymptotic behavior of adéquate functions of
the résolvent operator. We also obtain a "localized version" of this resuit
(Theorem 2.2), in the spirit of [4]. Also in the spirit of previous work of ours
[2, 3,4, 5], we shall use transform methods - in this case, naturally, the Stieltjes
transform. The following classical resuit of Widder's is the key to our analysis. Let
M and D dénote respectively the formai operators of multiplication

M:f(t)-+tf(t)

and difïerentiation D:f->f.
The Widder (formai) differential operators Lk are given by

Lk ckMk~1D2k-1Mk k 1, 2,...

where Cl l and ck=(-l)k~1lk\(k-2)lT1 for fc^2.
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The STR (Stieltjes Transform Représentation) Theorem.

Let f be a C°° complex function on R+ (0, o°) such that

K sup f \LJ(t)\dt«». (*)

TTien there exists a unique complex regular Borel measure fx on R+ such that

var ijl ^K'
where K' 2K + |A| and A limt_0+ r/(f). A (*).

In [7; Theorem 16, p. 361], the STR theorem is stated (in more classical

terminology) for real f. The complex ease is a trivial conséquence, and the
estimate for var jx follows easily from the proof in the cited référence. Note that
the existence of the limit A follows from Condition (*).

We conclude this introduction with a list of notation. The (normed) dual space
of the Banach space X is denoted by X*. The norm-closed unit balls of X and X*
are Xx and X* respectively. B(X) dénotes the Banach algebra of ail bounded
linear operators in X. For s, f >0, B(s, t) stands for the Beta function

83(R+) is the Borel cr-field of R+, and || • ||i dénotes the I^OR"1", df/0-norm (atten-
tionl the measure is dt/t\). Strong limits mean limits in the given norm of X.

1. Operators with spectrum in a half-line

Since spectrality is preserved by the map T—?a/+|3T (a, j3€C), we may
restrict our discussion, without loss of generality, to the case where the half-line of
the title is [0, oo).

Let R dénote the résolvent of -T, that is R(t) (t + T)~1. Thus, R is defined

on R+, and so is the B(X)-valued function

S TR(I-TR). (1.1)

For any weakly measurable function F:R+—»B(X), we let

|||F|||=sup{||x*F(-)x||1;x€X1,x*€X*}. (1.2)
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Clearly, ||| • ||| is a semi-norm on the vector space S (under pointwise opérations)
of ail such functions Fwith ||lF|||<oo, and

(1.3)

for ail Fe%, xeX and x*€X*.
Since S(t) tR(t)[I- tR(t)], the functions Sk (fc 1, 2,...) are of class C°° on

R+; in particular, HIS^H is well-defined (finite or infinité). We are now prepared to
state our spectrality criterion for T, which bears some analogy with the Hille-
Yosida criterion for semi-group génération.

THEOREM 1.1 Let T be a possibly unbounded operator in the reftexive
Banach space X, whose résolvent set contains the half-line (-o°, 0). Then T is

spectral of scalar type with spectrum in [0, o°) if and only if

IIISil^MBCfc, k) fc l,2,... (1.4)

for some constant M
Proof. Necessity. Since TR(t) I- tR(t) for f£cr(T), therefore

S(t) t[I- tR(t)]R(t) tTR(t)2. (1.5)

Let T be spectral of scalar type with spectrum in [(),<»), and let E dénote its
resolution of the identity. By (1.5), we hâve for f >0 and fc 1, 2,...

f

Therefore, for ail xeXx and x*eXf,

||x*Skx|)1^ [ f (slt)k(l + sltT2k\x*E(ds)x\dtlL

If we interchange the order of intégration and substitute u s/t in the inner
intégral, the right hand side becomes

rr- (1 + u)~2k dulu |x*E(ds)x| B(fc, fc) var (x*Ex)^ B(fc, fc) var E <».
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Applying Tonelli's theorem, we conclude that

MSii^var E • B(k, k) k 1,2,.... (1.6)

Observe that the reflexivity assumption on X is not needed for the necessity part
of the theorem.

Sufficiency. Let Lk (k - 1, 2,...) be the Widder formai difïerential operators
mentioned in the introduction. A straightforward calculation using Leibnitz' rule
shows that

Lk =4 f m+jy'l^M^'-'D^-1 (1.7)

where c\ 1 and c'k (- l)k~1B(k -1, k -h 1) for fc 2* 2. Fix x g X and x* e X*, and
consider the C°° function on R+

reR+

Since

we hâve

k t (/cVrKyx c^r1x*sk(Ox (1.8)
j=0

where cï l and cJ B(fc-l, fc + 1)"1 for
Therefore, by (1.3) and (1.4),

df cl ||x*Skx||1 ^ cî I

(1.9)

since cï|||S|HM and for fc2*2

cl |||Sk||HMB(k, fc)/B(fc » 1, k +1) M(fc - l)/fc ^M.

By the STR theorem, it follows that there exists a unique complex regular Borel
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measure /x /x( • | x, x*) on R+ such that

x*R(r)x f (r + s)"V(ds|x,x*),(r>0,x€X,x*6X*). (1.10)

In particular,

supjx*rK(f)x| sup| t(f + s)~V(ds|x, x*)|=^var/x<oo.
t>0 t>0 4o

By the Uniform Boundedness Theorem, it follows that

||| (1.11)

Hence, for our function /, |r/(0|^H||x||||x*|| for ail f>0, and therefore |A|*£
W||x||||x*|| (with notation as in the STR theorem). We conclude that

varnt(-|x,x*)^MMW|||x*|| (1.12)

where M' 2M + H.
The uniqueness of the représentation (1.10) implies that for each fixed

8 e33(R+), fx(Ô |.,.) is a bilinear form on XxX*. By (1.12), the form is bounded

(with bound M'), and since X is reflexive, there exists a unique function
E :93(IT) -> B(X) such that

^(•|x,x*) x*E(-)x (1.13)

for ail xeXandx*eX*.
We shall now verify that E is a spectral measure on 93 (R+). By (1.13) and

(1.12), E is weakly, hence strongly countably additive, and ||E(8)||^M' for ail

Let UeB(X) be such that UD(T)czD(T) and TUx UTx for ail xeD(T)
(Le., TU 3 UT, which is the usual définition of commutativity with an unbounded

operator T). Equivalently, UR(t) R(t)U for ail f>0. By (1.10), for ail t>0,
xeXandx*eX*,
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By the uniqueness statement of the STR theorem, it follows that

for ail Se93(R+), xeX and x*eX*.
Hence, by (1.13),

UE(Ô) E(Ô)U 8 €93(R+). (1.14)

Taking in particular U R(u) (u>0), we obtain that E(ô)D(T)c:D(T) for ail

ôg93(R+). For f>u>0, we have by the First Résolvent Equation

tR(t)R(u) t(t-u)-1R(u)-[tR(t)](t-u)-\

Fixing u and letting r—»oo, it follows from (1.11) that tR(t)R(u)-* R(u) in the
uniform operator topology. By (1.10) and the Lebesgue dominated convergence
theorem, we have for ail u>0, xeX, and x*eX*

x*JR(u)x lim x*tR(t)R(u)x

+ | R(u)x, x*) x*E(R+)R(u)x.

Hence, by (1.14) with U R(u), R(u)E(R+) R(u). Applying u -h T to both sides

(on the left), we conclude that E(R+) I For t, u>0, t^u, the First Résolvent

Equation implies that

f (r + s)~lii(ds | JR(u)x, x*) x*R(t)R(u)x

f

The uniqueness claim in the STR theorem gives

ti(8 | R(u)x, x*) f (u + sr^sMds | x, x*) (1.15)

for ail u>0, ôg93(R+), etc.
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On the other hand, by (1.13), (1.14) with S jR(u), and (1.10),

fx(ô | R(u)x, x*) x*R(u)E(8)x

[ (u^sr1ii(ds\E(8)x9x% (1.16)

Comparing the two relations, we obtain (again by uniqueness!)

ft(<71 E(8)x, x*) f Xtr(s)Xs(s)n(ds | x, x*) n(<r n 5 | x, x*)

for ail a, Se93(R+), etc. that is, by (1.13),

E(o-n fi)

for ail cr,Ô€93(R+).
In conclusion, E is a (strongly) countably additive spectral measure on 93(R+),

which sends D(T) into itself and commutes with every UeB(X) which commutes
with t. By (1.13), we may rewrite (1.10) in the form

R(t)= f (t + s^EWs) (r>0) (1.17)

where the intégral makes sensé in B(X) as described for example in [1, Part II;
pp. 891-892].

From (1.17) and [1, Part III; Theorems XVIII.2.17 and XVIII.2.11(h)] we

may easily condude that T is spectral of scalar type with resolution of the identity
E and spectrum in [0, <»).

However the présentation can be made direct and selfcontained with only a

small additional effort.
By (1.17), for ail f>0,

(1.18)

For ail n>0, yeX, and x*eX*, we hâve by (1.13) and (1.16)

x*VsE(ds)R(t)y [ sn(ds | R(t)y, x*)

f s(ï + sy^ids | y, x*) x* f s(f + s)-1E(ds)y
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Therefore, by (1.15),

f sE(ds)R(t)y=\ sR(t)E(ds)y= f s(t + s)-1E(ds)y (1.19)
Jo Jo A)

for ail n, t > 0 and y € X.
Suppose now that x e D(T). Then x R(t)y for t > 0 fixed and suitable y g X.

By (1.19),

sE(ds)x f s(t^s)-1E(ds)y—-» f s(f + sr1

(strong convergence).
By (1.18), the above limit equals TR(t)y Tx, that is

fn
Tx= strong lim sE(ds)x, xeD(T). (1.20)

"-*°° Jb

On the other hand, if x g X is such that the limit on the right of (1.20) exists, then
denoting this limit by z, we hâve for any t > 0

R(t)z= strong lim [ sR(t)E(ds)x
n-+<x> Jq

strong lim s(t + s)~1E(ds)x s(r + s)~1E(ds)x

x-rl?(r)x,

where we used (1.19) and (1.18). Hence x R(t)[z + rx]<= D(T). This shows that

D(T) |xgX| strong lim f sE(ds)x existsk

and together with (1.20), this complètes the proof of the scalar-type spectrality of
T. Since the (uniquely determined) resolution of the identity E is supported by
[0, oo)? the spectrum of T is necessarily contained in [0, °°). Q.E.D.

2. Local spectral analysis

As in the preceding section, T is a possibly unbounded operator in the
reflexive Banach space X, whose résolvent set contains a half-line, which we
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assume to be (—00,0) without loss of generality. We shall use the function
S :R+ —> B(X) in order to obtain a so-called "local" spectral analysis for any such

operator T (cf. [4] for an analogous treatment of bounded operators).
For any x € X, we let

|0=sup{B(k, krl ||x*Sfcx||i; x*eX*, k 1,2,...},
(2.1)

and

Z={x€X;|W|«x>}. (2.2)

The functional ||| • ||| is a norm on the linear manifold Z, and in fact |||x|||^||x|| on
Z. An easy calculation shows for example that if xsD(T) is an eigenvector of T
corresponding to an eigenvalue À eR, then |||x|||=||x||, so that Z contains ail such

eigenvectors.
If UeB(X) commutes with T (that is UT a TU), then Z is [/-invariant, and

for ail x g Z

(2.3)

It is also clear that

«x*Skx«^|x1|H|B(k,k) (2.4)

for ail xeZ, x*eX*, and k 1,2,....

PROPOSITION 2.1. (Z, III • III) is a Banach space.

Proof. Let {xjc: Z be ||| • |||-Cauchy. Since ||| • |||^|| • ||, {xn} converges to some

xgX in the given norm. For each k^O and x*eXf, x*Sk(-)xn -»x*Sk(-)x
pointwise as n —» oo, and by (2.4),

B(k, k)~l ||x*Skxtt||1^||WII^K. (for ail n).

By Fatou's lemma, it follows that |||x|||^K, i.e., xeZ. Now, given e>0, let n0 be

such that|||xn-xm|||<e for n>m>n0. Since x*Sk(x-xm) limn_wx*Sk(xn-xm)
pointwise, we hâve again by Fatou's lemma and (2.4) B(k, k)~~l ||x*Sk(x -xm)||1 ^
e for ail k^l, x*eXf, and m>n0, that is, |||x-xm|||^e for m>nQ. ¦

For teR+, the linear manifold R(f)Z Z0 is contained in ZDD(T) (since
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R(t) commutes with T), and is independent of t. Indeed, for s, t >0 and z g Z, we
hâve by the first résolvent équation

R(t)z R(s)[(s - t)R(t)z + z]eR(s)Z,

hence R(t)Z<^ R(s)Z, and the equality follows by symmetry.
We dénote by T(Z) the set of ail (linear) operators with domain Z and range

contained Z. For the usual opérations, T(Z) is an algebra with the identity I \ Z.
We are now ready to state our local version of Theorem 1.1.

THEOREM 2.2. There exists an algebra homomorphism E of 83(R+) (as a
Boolean algebra) into T(Z) with the following properties (l)-(4):

(1) jE(R+) 11 Z, and for each xeZ, E(-)x is a countably additive measure on
93(R+) (necessarily bounded and strongly countably additive):

(2) E(8) commutes with every UeB(X) which commutes with T (for each

ôg93(R+));
(3) Z0 {x g Z | strong limn_l.oo J£ sE(ds)x exists and belongs to Z};
(4) Tx strong limn_*oo j£ sE(ds)x for ail x g Zo.

Proof. Fix x g Z and x* g X*, and let / be as in Section 1. By (1.8) and (2.4),

r\Lj(t)\di*\\x*w\M

for ail k^l. By the STR theorem, there exists a unique complex regular Borel
measure fx(- \ x, x*) such that (1.10) is valid for ail x g Z and x*e X*. As before,
we obtain that for each x e Z,

Hx=sup||tR(t)x||<oo, (2.5)
t>0

and

var jx(- |x, x*)^Mx ||x*|| (x g Z, x*gX*) (2.6)

whereMx=2|||x||| + Hx.
As before, the uniqueness of the représentation (1.10) and the reflexivity of X

imply the existence of a unique function E(-)x :93(R+) -> X (for each fixed xeZ)
such that jul(ô |x,x*) x*E(5)x for ail ôg93(R+) and x*gX*. Clearly, E(ô) is a

linear operator with domain Z, and ||E(ô)x||^Mx for ail 8 g93(R+) and xeZ. For
fixed xeZ, E(-)x is weakly, hence strongly countably additive.
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If UeB(X) commutes with T, we already observed that UZc=Z, and the

commutativity l/E(8)cE(8)U is verified as (1.14) (Ôe93(R+)). Fix w>0. For
each xeZ and x*eX*,

x*R(u)E(R+)x x*E(R+)i?(u)x ja(R+ I «(«)*, x*)

lim f
f-»OO JQ

limx*

where we used the first résolvent équation and (2.5). Since R(u) is one-to-one, we
conclude that E(R+) J | Z.

We prove now that for ail 8 e 93 (R+) and x € Z,

|||E(5)x|||<Mx. (2.7)

In particular, E(S)eT(Z) for each Ôe93(R+).

Clearly, (1.15) is valid for ail variables as before and x varying in Z. Briefly

ix(ds | JR(u)x, x*) (u + sr^ids | x, x*) (2.8)

(w>0, x€Z, x*eX*), and inductively

/LL(ds | R(u)kx, x*) (ii + s)-V(* I x, x*),

for k= 0,1,2, Hence

^(ds | p(R(u))x, x*) p((u + s)"1)^^ | x, x*)

for any polynomial p. In particular

| Sk(u)x, x*) uk(u + srk[l-u(u + s)-1]V(ds | x, x*)

(us)k(u 4-sT2kii(ds | x, x*) (2.9)

(w>0,
Since Sk(u) commutes with R(t) (that is, with T), it commutes with E(ô), and

therefore, by (2.9)

x*Sk(w)E(ô)x x*E(ô)Sk(w)x
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Hence, by Tonelli's theorem and (2.6)

(us)k(u + s)~2kdulu \tx\ (ds\x,x*)||1^ f f

| f

B(k, k) |fi| (6 | x, x*)^B(k, k)Mx

Therefore
Using (1.15) and (1.16) (with xeZ), we obtain that for ail o-,ôe93(R+),

E(cr)E(«) E(crnô) in T(Z).
We verify finally Properties (3) and (4). Dénote the set on the right of (3) by

Zj. Let xeZ0, that is x JR(u)y for u>0 and suitable yeZ. By (2.8),

f sE(ds)x f sE(ds)R(u)y f s(u + s)-lE(ds)y

-^> I s(u-hs)~1E(ds)y (strongly)

f tl-u(u + s)-1]E(dS)y=[I-uR(u)]y (eZ)

Thus Zoc: Zt and (4) is valid for x e Zo. On the other hand, if x € Zl5 dénote the
limit in (3) by z e Z. As in the proof of Theorem 1.1., we obtain that for any t >0,

Therefore Zo Zx and the proof is complète.

Remarks. 1. One has

Z0 {xeD(T)nZ|Tx€Z}. (2.10)

Indeed, if x€Z0, then x R(t)z for f>0 and suitable zeZ; therefore xe
D{T) H Z and Tx TR(t)z [I- «(f)]z 6 Z. On the other hand, if x € D(T) D Z
and TxeZ, then x K(r)y with y tx + TxeZ, i.e., x€Z0. By (2.10), Zo is the
natural domain of the restriction T | Z.

2. Let B(R+) dénote the Banach algebra of ail bounded Borel functions on
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R+, with pointwise opérations and supremum norm. For xeZ and heB(RT),
h(T)x=^h(s)E(ds)x belongs to Z by (2.9). Hence h(T)eT(Z) for each he
B(R*). Using the density of simple Borel fonctions in B(R+), (2.7), (2.6), and the
relation E(a)E(8) E(anô) (in T(Z)), one deduces easily that the map h -?
h(T) is an algebra homomorphism of B(R+) into T(Z), which is continuous in the
following sensé: if hn-*h in B(R+), then for each xgZ, MT)x -» h(T)x with
respect to the ||| • |||-norm. This "operational calculus" may then be extended to
unbounded Borel fonctions h in the "usual" way.

Let hn h if |h|^n and hn 0 otherwise. Define

D(h(T)) {xeZ\strong lim hn(T)x exists and belongs to Z} (2.11)
n—x»

and

h(T)jc strong lim hn(T)x, xeD(h(T)). (2.12)

By Theorem 2.2 and Remark 1 above, h(T) T | Z for fi(s) «• The détails of the

analysis of this operational calculus will be omitted. One point however should be

stressed. If p is any polynomial of degree fc, and p(T) has the usual meaning, the

"naturar domain of p(T) | Z is the set

As in Remark 1, one vérifies easily that this domain coincides with R(t)kZ
(for any t>0).

Let xeD(p(T)|Z), that is x=R(t)kz for some zeZ. Then, since

pn(T)x= f pn(s)(t + s)-kE(ds)z >(strongly)

s)-kE(ds)zeZ,r
i.e. xeD(p(T)) in the sensé of (2.11). Also, writing p(s) Sjc=oaJsJ, the last

intégral is equal to

k r

Z «, [1 - f(î + s)"1! (t + sr(k"j)£(ds)z
j=0 •*)

p(T)x (the "classical" meaning of p(T)),
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where we used the multiplicativity of the operational calculus with bounded
fonctions. Thus the définition of p(T) according to (2.11) and (2.12) coincides
with the usual définition on D(p(T) \ Z).

3. Some corollaries

If T is an operator with real spectrum, we may apply Theorem 1.1 to T2, since

o-(T2)c[0,oo). Let

S(t) tR(t)[I-tR(t)l t>0

where

COROLLARY 3.1. Let T be a possibly unbounded linear operator with real

spectrum. Then T has a scalar-type spectral square if and only if

supB(fc,fcr1|||Sk|||<°°. (3.1)

An équivalent formulation is given below.

COROLLARY 3.2. Let T be a possibly unbounded linear operator with real

spectrum. Then there exists a scalar-type spectral operator \T\ with o-(|T|)c[0, <*>)

such that \T\2 T2 if and only if Condition (3.1) is valid.

Proof. The necessity of Condition (3.1) is a trivial conséquence of Corollary
3.1, since the square of a scalar-type spectral (s.t.s) operator is s.t.s. Conversely,
Condition (3.1) implies that T2 is s.t.s. with spectrum in [0, <*>).

If E dénotes its resolution of the identity, define \T\ as the operator corres-
ponding to the function f(s) s1/2 on R+ in the operational calculus (o.c.)
associated with E (cf. [1; Définition 10, p. 2238]).

By Theorem 17 in [1; p. 2244], \T\ is s.t.s. with spectrum in [0, <*>), and
|T|2cT2 by [1; Theorem ll(f), p. 2238]. However, if xeD(T2), then x R(t)y
for t > 0 and suitable y. Hence

V\ll2E{ds)x= f s1/2(r + sr1E(ds)y—> f sll2{t + s

since the integrand is bounded on R+. Therefore xeD(\T\) and \T\x is given by
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the above limit. Next, by the multiplicativity of the o.c. with bounded fonctions,

s1/2E(ds)|T(x= f s1/2E(ds)[slf2(t + s)-l

f s(r + sr1E(ds)y-—> f

that is \T\x e D(\T\\ showing that x e D(|T|2). Hence \T\2 T2. Q.E.D.
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