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Characterization of unbounded spectral operators with spectrum in
a half-line

SumueL KanTorovrrz??

Abstract. Let T be a possibly unbounded linear operator in the Banach space X such that R(t)=
(t+T)7! is defined on R*. Let S = TR(I-TR) and let B(.,.) denote the Beta function.

THEOREM 1.1. T is a scalar-type spectral operator with spectrum in [0, ) if and only if
sup {B(k, kr*L *sk@O)x] doit; Ixll<1, IeHl<1, k= 1}<w.
A “local” version of this result is formulated in Theorem 2.2.

Introduction

A problem of fundamental importance in Mathematical Physics consists of the
discovery of ‘“‘practical” criteria for the self-adjointness of symmetric operators.
Extensive work done in this general direction is efficiently summarized in Reed
and Simon [6]. Selfadjointness has found a proper generalization to Banach space
in the concept of scalar-type spectrality invented by N. Dunford in the early
1950’s and developed since then by his students and followers. The monograph of
N. Dunford and J. T. Schwartz [1; Part III] contains a detailed exposition of the
subject and an updated bibliography up to 1968. We shall freely use the
terminology of [1].

Let T be a possibly unbounded linear operator with domain D(T) in a Banach
space X. Suppose there exists a (strongly) countably additive spectral measure E
on the Borel o-field B(R) such that

D(T)= {x € X| strong lim I sE(ds)x exists}

! Research partially done while the author was a visiting member at the Forschungsinstitut fir
Mathematik, ETH, Ziirich.

Research supported by the Israel Academy of Science and Bar-Ilan University Research
Authority.
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164 SHMUEL KANTOROVITZ

and

Tx =1lim J sE(ds)x, x € D(T).

n

One then says that T is a (real) scalar-type spectral operator, with resolution of
the identity E.

In [1, Chapters XIX and XX], the (scalar-type) spectrality of various perturba-
tions T=S+ P is studied, and many deep results providing sufficient conditions
are obtained, when S is either a relatively simple differential operator, or a
selfadjoint operator in Hilbert space, or a multiplication operator. Accordingly,
the methods are very specialized and have to overcome many technical difficulties.
Even the statements of the theorems involve heavily technical assumptions (see
for example Theorems XIX.4.16; XX.1.12, 2.21, 2.22, 4.9, etc. . . .). Methods run
from direct efforts toward the construction of the resolution of the identity, to the
Friedrichs method of similar operators, to the Kato-Kuroda method of wave
operators and similarity. The authors remark that the material in their exposition
is still somewhat ‘‘fragmentary’’, ‘“‘and is presented in the hope that it may
stimulate research in the topics treated”.

Motivated by the fact that the selfadjointness analysis for semibounded sym-
metric operators in Hilbert space is enormously simpler than the general case, we
consider in this paper the construction of a (scalar-type) spectrality criterion for
operators whose resolvent set contains a half-line. Our main result (Theorem 1.1)
provides a criterion in terms of the asymptotic behavior of adequate functions of
the resolvent operator. We also obtain a ‘“‘localized version” of this result
(Theorem 2.2), in the spirit of [4]. Also in the spirit of previous work of ours
[2,3,4, 5], we shall use transform methods - in this case, naturally, the Stieltjes
transform. The following classical result of Widder’s is the key to our analysis. Let
M and D denote respectively the formal operators of multiplication

M f(1) — tf(1)

and differentiation D:f — f'.
The Widder (formal) differential operators L, are given by

Lk = CkMk—lDzk_.le k= 1, 2, .o

where ¢; =1 and ¢, =(—1D)* " [k!(k—2)!] for k=2.
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The STR (Stieltjes Transform Representation) Theorem.
Let f be a C* complex function on R"=(0, ) such that

—-supJ; | L f(t)| dt <. (*)

Then there exists a unique complex regular Borel measure u. on R* such that

fl6)= L (t+5) " u(ds)
var u <K'’

where K'=2K +|A| and A = lim,_,, tf(t). A (*).

In [7; Theorem 16, p. 361], the STR theorem is stated (in more classical
terminology) for real f. The complex ease is a trivial consequence, and the
estimate for var u follows easily from the proof in the cited reference. Note that
the existence of the limit A follows from Condition ().

We conclude this introduction with a list of notation. The (normed) dual space
of the Banach space X is denoted by X*. The norm-closed unit balls of X and X*
are X, and X¥ respectively. B(X) denotes the Banach algebra of all bounded
linear operators in X. For s,t>0, B(s, t) stands for the Beta function

B(s,t)=L(s)[()['(s+1t)"*

B(R™") is the Borel o-field of R*, and || - ||; denotes the L'(R™, dt/t)-norm (atten-
tion! the measure is dt/t!). Strong limits mean limits in the given norm of X.

1. Operators with spectrum in a half-line

Since spectrality is preserved by the map T — al+BT (a, B€C), we may
restrict our discussion, without loss of generality, to the case where the half-line of
the title is [0, ).

Let R denote the resolvent of —T, that is R(t)=(t+ T)"*. Thus, R is defined
on R*, and so is the B(X)-valued function

S=TR({I—-TR). (1.1)
For any weakly measurable function F:R"— B(X), we let

IIE || =sup {Ix*F()xlli; x € X,, x*e XT}. (1.2)
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Clearly, ||| - ||| is a semi-norm on the vector space % (under pointwise operations)
of all such functions F with |||F||<c, and

lloc* FC)xlly < IF el x| (1.3)
for all Fe®, xe€ X and x*e X*.

Since S(t)=tR(t)[I—tR(t)], the functions S* (k=1,2,...) are of class C* on
R*; in particular, |||S*||| is well-defined (finite or infinite). We are now prepared to

state our spectrality criterion for T, which bears some analogy with the Hille-
Yosida criterion for semi-group generation.

THEOREM 1.1 Let T be a possibly unbounded operator in the reflexive
Banach space X, whose resolvent set contains the half-line (—»,0). Then T is
spectral of scalar type with spectrum in [0, ) if and only if

Is“li<MB(k, k)  k=1,2,... (1.4)

for some constant M.

Proof. Necessity. Since TR(t)=I—tR(t) for t¢ o(T), therefore
S(t) =t[I-tR(t)]R(t)=tTR(t)>. (1.5)

Let T be spectral of scalar type with spectrum in [0, ©), and let E denote its
resolution of the identity. By (1.5), we have for t>0 and k=1,2,...

S =t*T*(t+T) % = t"L s(t+5)2*E(ds) = L (s/t)* (1 + s/t)"2*E(ds).
Therefore, for all x € X; and x*e X*,
x*S*xlj, < L L (s/)*(1+s/t)"% |x*E(ds)x| di/t.

If we interchange the order of integration and substitute u =s/t in the inner
integral, the right hand side becomes

Lw ‘[:ou"(l +u)"%* dufu |x*E(ds)x| = B(k, k) var (x*Ex)<B(k, k) var E <o,
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Applying Tonelli’s theorem, we conclude that
lIS“|l<var E - B(k,k)  k=1,2,.... (1.6)

Observe that the reflexivity assumption on X is not needed for the necessity part
of the theorem.

Sufficiency. Let L, (k=1,2,...) be the Widder formal differential operators
mentioned in the introduction. A straightforward calculation using Leibnitz’ rule
shows that

k
Lo=c} Y I'(k+ j)—l(;‘)Mk*f-le*f*‘ (1.7)
i=0

where ¢/=1and ¢, =(—-1)*"'B(k—1, k+1) for k=2. Fix x € X and x*e X*, and
consider the C” function on R*

f(©)=x*R(t)x teR".
Since
Dk+j—1f — (_1)k+j—lr(k +j)x*R"+jx,

we have
_ & (k ~ _
L f(t) = cit 'x*(tR)* ). (_)(-—tR)'x =cit 'x*S*(t)x (1.8)

i=0

where ¢{=1and ¢{=B(k—1,k+1)7" for k=2.
Therefore, by (1.3) and (1.4),

fw«n dt = ¢ Jx*S*xl < L 11SH I I 1)
(1.9
<Ml k=12.....
since c{||Sll<M and for k=2
cr lHS"I"SI\/IB(k, k)/B(k—1,k+1)=M(k—-1)/k<M.

By the STR theorem, it follows that there exists a unique complex regular Borel
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measure = (-] x, x*) on R* such that
x*R(t)x = L (t+s) 'w(ds | x, x*), (>0, xe X, x*e X*). (1.10)

In particular,

2]

sup [x*tR(t)x|=sup| | t(t+s) u(ds|x, x*)|<var p <.

t>0 t>0
By the Uniform Boundedness Theorem, it follows that

H =sup [|tR(1)|| <. (1.11)

t>0

Hence, for our function f, |tf(t)|=<H |x| |x*|| for all t>d, and therefore |A|<
Hl|x|| llx*|| (with notation as in the STR theorem). We conclude that

var (- | x, x*) <M’ [lx||[|x*| (1.12)

where M'=2M + H.

The uniqueness of the representation (1.10) implies that for each fixed
SeBMR"), u(8].,.) is a bilinear form on X x X*. By (1.12), the form is bounded
(with bound M’), and since X is reflexive, there exists a unique function
E:B(R") — B(X) such that

p(|x, x*)=x*E(-)x (1.13)

for all xe X and x*e X*.

We shall now verify that E is a spectral measure on B(R"). By (1.13) and
(1.12), E is weakly, hence strongly countably additive, and ||[E(8)||<M’ for all
5 eBRY).

Let Ue B(X) be such that UD(T)< D(T) and TUx = UTx for all xe D(T)
(i.e., TU o UT, which is the usual definition of commutativity with an unbounded
operator T). Equivalently, UR(t)= R(t)U for all t>0. By (1.10), for all t>0,
xe X and x*e X*,

Iw(t+ $) 'u(ds | x, U*x™) =[U*x*]R(t)x =x*R(t)Ux = Jm(t+ s) 'w(ds | Ux, x™).
0

0
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By the uniqueness statement of the STR theorem, it follows that
p(d|x, U*x*) = u(8 | Ux, x*)

for all 6 e BR™Y), x e X and x*e X*.
Hence, by (1.13),

UE(8)=E(6)U S BRY). (1.14)

Taking in particular U = R(u) (u>0), we obtain that E(8)D(T)< D(T) for all
e B(R™). For t>u>0, we have by the First Resolvent Equation

tRORw)=t(t—u) 'Ru)—[tR®OJ(t—u)"".

Fixing u and letting t — oo, it follows from (1.11) that tR(t)R(u) — R(u) in the
uniform operator topology. By (1.10) and the Lebesgue dominated convergence
theorem, we have for all u>0, x e X, and x*e X*

x*R(u)x =lim x*tR(t)R(u)x

t—»00

=lim oot(t+s)“lpb(ds | R(u)x, x™*)

t—>»

=R | R(w)x, x*)=x*ER")R (u)x.

Hence, by (1.14) with U = R(u), R(u)E(R") = R(u). Applying u+ T to both sides
(on the left), we conclude that E(R")=1. For t, u>0, t# u, the First Resolvent
Equation implies that

Lm(t+s)“1y,(ds | R(u)x, x*)=x*R()R(u)x
== [ T+ = 049 Duds | x5
- f(r+s>—l(u+ ) (ds | x, x¥).
The uniqueness claim in the STR theorem gives
u(5 | R(u)x, x*) = Lm(u +5) e (S)as(ds | x, x*) (1.15)

for all u>0, §eBRY), etc. ...
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On the other hand, by (1.13), (1.14) with S =R(u), and (1.10),
w(8 | R(u)x, x*)=x*R(u)E(6)x

= L (u+s)""u(ds | E(8)x, x*). (1.16)
Comparing the two relations, we obtain (again by uniqueness!)
u(o | E(8)x, x*)= L X ()xs () (ds | x, x*) = p(o N8| x, x*)

for all o, 6 e B(R™), etc. ..., that is, by (1.13),
E(o)E(8)=E(0N )

for all o, 8 e B(RY).

In conclusion, E is a (strongly) countably additive spectral measure on B(R™),
which sends D(T) into itself and commutes with every U € B(X) which commutes
with t. By (1.13), we may rewrite (1.10) in the form

R(t)= Lw(t+s)_1E(ds) (t>0) (1.17)

where the integral makes sense in B(X) as described for example in [1, Part II;
pp. 891-892].

From (1.17) and {1, Part III; Theorems XVIII.2.17 and XVIIL.2.11(h)] we
may easily conclude that T is spectral of scalar type with resolution of the identity
E and spectrum in [0, ).

However the presentation can be made direct and selfcontained with only a
small additional effort.

By (1.17), for all t>0,

st(t +5) 'E(ds) = Lm[l —t(t+s) JE(ds)
=] —tR(t)= TR(t). (1.18)

For all n>0, ye X, and x*e X*, we have by (1.13) and (1.16)
x*L sE(ds)R(t)y = L su(ds | R(1)y, x*)

= Lns(t +5) 'u(dsly, x*) = x*LnS(t +5) 'E(ds)y
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Therefore, by (1.15),

LnsE(ds)R(t)y =j

0

nsR(t)E(ds)y = Lns(H— s) 'E(ds)y (1.19)

for all n,t>0 and ye X.

Suppose now that x € D(T). Then x = R(t)y for ¢t >0 fixed and suitable y e X.
By (1.19),

L"SE(ds)x = Lns(t+s)"lE(ds)y — st(t+s)”‘E(ds)y

(strong convergence).
By (1.18), the above limit equals TR(t)y = Tx, that is

Tx = strong lim L sE(ds)x, x e D(T). (1.20)

On the other hand, if x € X is such that the limit on the right of (1.20) exists, then
denoting this limit by z, we have for any t >0

R(t)z =strong lim | sR(t)E(ds)x

n—sw 4

rn

=strong lim | s(t+s)'E(ds)x = L s(t+s) 'E(ds)x

n—»oo d[]

=x —tR(t)x,

where we used (1.19) and (1.18). Hence x = R(t)[z + tx]€ D(T). This shows that

n

D(T)= {x € X |strong lim | sE(ds)x exists},

n—»o0

and together with (1.20), this completes the proof of the scalar-type spectrality of
T. Since the (uniquely determined) resolution of the identity E is supported by
[0, ), the spectrum of T is necessarily contained in [0,%). Q.E.D.

2. Local spectral analysis

As in the preceding section, T is a possibly unbounded operator in the
reflexive Banach space X, whose resolvent set contains a half-line, which we
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assume to be (—o, 0) without loss of generality. We shall use the function
S:R" — B(X) in order to obtain a so-called ‘“local”’ spectral analysis for any such
operator T (cf. [4] for an analogous treatment of bounded operators).

For any x € X, we let

lidllo=sup {B(k, k)" lx*S*x|l;; x*e XT, k=1,2,.. .},

llll|=max {lix, llxilo}, (2.1)

and
Z={x e X;|||xl|<oo}. (2.2)
The functional ||| - || is a norm on the linear manifold Z, and in fact |||x|||=||x|| on

Z. An easy calculation shows for example that if x e D(T) is an eigenvector of T
corresponding to an eigenvalue A e R, then |||xl|=||x||, so that Z contains all such
eigenvectors.

If U e B(X) commutes with T (that is UT < TU), then Z is U-invariant, and
for all xe Z

UAl<IT il (2.3)

It is also clear that
ll* S xlly <llx*{| lllxlll B(k, k) (2.4)
forall xeZ, x*eX* and k=1,2,....

PROPOSITION 2.1. (Z,||| - Il is a Banach space.

Proof. Let {x,} < Z be ||| - ||-Cauchy. Since ||| - ||=|| - ||, {x.} converges to some
xe X in the given norm. For each k=0 and x*e X¥, x*S*(:)x, — x*S*()x
pointwise as n — o, and by (2.4),

B(k, k) Ix*S*x, s <llxl<K.  (for all n).

By Fatou’s lemma, it follows that |||x]||<K, i.e., x € Z. Now, given £ >0, let n, be
such that [|x, — x,.l| <& for n>m > n,. Since x*S*(x — x,,) = lim,,_,.. x*S*(x,, — x,,)
pointwise, we have again by Fatou’s lemma and (2.4) B(k, k)" |lx*S*(x — x|, <
e for all k=1, x*e XT, and m >n,, that is, [|x —x.[|<e for m>n,. W

For teR*, the linear manifold R(t)Z = Z, is contained in ZND(T) (since
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R(t) commutes with T), and is independent of t. Indeed, for s, t>0 and z € Z, we
have by the first resolvent equation

R(t)z=R)[(s—t)R(t)z+z]e R(s)Z,

hence R(t)Z < R(s)Z, and the equality follows by symmetry.

We denote by T(Z) the set of all (linear) operators with domain Z and range
contained Z. For the usual operations, T(Z) is an algebra with the identity I | Z.
We are now ready to state our local version of Theorem 1.1.

THEOREM 2.2. There exists an algebra homomorphism E of BR") (as a
Boolean algebra) into T(Z) with the following properties (1)—(4):

(1) ER")=1I|2Z, and for each x € Z, E(*)x is a countably additive measure on
B(R™) (necessarily bounded and strongly countably additive):

(2) E(8) commutes with every Ue B(X) which commutes with T (for each
8 € BR"));

(3) Z,={x € Z|strong lim,_,.. {3 SE(ds)x exists and belongs to Z};

(4) Tx =strong lim,,_,, §§ SE(ds)x for all x € Z,.

Proof. Fix x € Z and x*e X™, and let f be as in Section 1. By (1.8) and (2.4),
[ 1ol de <t elietB e, k)<l el
0

for all k=1. By the STR theorem, there exists a unique complex regular Borel
measure p(- | x, x*) such that (1.10) is valid for all x € Z and x*e X*. As before,
we obtain that for each xe Z,

H, =sup |[tR(t)x|| <o, (2.5)
t>0
and
var w(: |x, x*) <M, ||x*¥| (xeZ, x*e X*) (2.6)

where M, =2 |[|x||+ H..

As before, the uniqueness of the representation (1.10) and the reflexivity of X
imply the existence of a unique function E(-)x :®B(R") — X (for each fixed x € Z)
such that w(8 | x, x*)=x*E(8)x for all § e B(R") and x*e X*. Clearly, E(8) is a
linear operator with domain Z, and ||[E(8)x||< M, for all 6 e B(R") and x € Z. For
fixed x € Z, E(-)x is weakly, hence strongly countably additive.



174 SHMUEL KANTOROVITZ

If UeB(X) commutes with T, we already observed that UZ < Z, and the
commutativity UE(8) < E(8)U is verified as (1.14) (6eB(R™")). Fix u>0. For
each x€ Z and x*e X*,

x*RUWEMR)x=x*ER")R(u)x = u(R* | R(u)x, x*)

=lim wt(t +5) 'u(ds | R(u)x, x*)

t—>»00

=lim x*tR(t)R(u)x = x*R(u)x,

where we used the first resolvent equation and (2.5). Since R(u) is one-to-one, we
conclude that ER")=1|Z.
We prove now that for all § e B(R") and x€ Z,

NE®)x|ll=M.. (2.7)

In particular, E(8) € T(Z) for each 8 € B(R").
Clearly, (1.15) is valid for all variables as before and x varying in Z. Briefly

p(ds | R(w)x, x*)=(u+s)""u(ds | x, x*) (2.8)
(u>0, xe Z, x*e X*), and inductively

w(ds | R(w)“x, x*) = (u+s) " u(ds | x, x*),
for k=0,1,2,.... Hence

w(ds | p(R(u))x, x*) = p((u+s) Hu(ds | x, x*)
for any polynomial p. In particular

p(ds | S*w)x, x*) = u*(u+s) ™ [1—u(u+s)""Fulds | x, x*)
= (us)*(u+s)"*u(ds | x, x*) (2.9)

(u>0, xeZ, x*eX*: k=1,2,...).
Since S*(u) commutes with R(t) (that is, with T), it commutes with E(8), and
therefore, by (2.9)

x*S*(WE(8)x = x*E(8)S*(u)x = (8 | S*(w)x, x*)

= L (us)*(u+s) " u(ds | x, x*).
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Hence, by Tonelli’s theorem and (2.6)
st @ E@x, < | L (us)* (u+ 5) 2 dufu || (ds | x, x*)

= j ‘[:Otk(l+ H)72kdt/t |u| (ds | x, x*)
= B(k, k) |u| (8| x, x*) < B(k, k)M, [|x*|.

Therefore ||E(8)x||<M.,.

Using (1.15) and (1.16) (with x e Z), we obtain that for all o, 8 B(R"),
E(0)E(8)=E(ocN§) in T(Z).

We verify finally Properties (3) and (4). Denote the set on the right of (3) by
Z,. Let xe Z,, that is x = R(u)y for u >0 and suitable y e Z. By (2.8),

LnsE(ds)x o= LnsE(ds)R(u)y = Lns(u +5) 'E(ds)y

oo

— | s(u+s)'E(ds)y (strongly)

n-—»00

= Lx[l —u(u+s)'JE(ds)y =[I-uR(u)ly (eZ)

= TR(u)y = Tx.

Thus Z,< Z, and (4) is valid for x € Z,. On the other hand, if x € Z,, denote the
limit in (3) by z € Z. As in the proof of Theorem 1.1., we obtain that for any ¢t >0,

x=R({)[z+ix]le R()Z = Z,.

Therefore Z,=Z, and the proof is complete.

Remarks. 1. One has
Zy={xeD(T)NZ|TxeZ}. (2.10)

Indeed, if xeZ,, then x =R(t)z for t>0 and suitable z € Z; therefore xe
D(T)NZ and Tx = TR(t)z =[I—-tR(t)]z € Z. On the other hand, if xe D(T)NZ
and Txe€ Z, then x =R(t)y with y=tx+Tx e Z, i.e., x€ Z,. By (2.10), Z, is the
natural domain of the restriction T | Z.

2. Let B(R") denote the Banach algebra of all bounded Borel functions on
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R", with pointwise operations and supremum norm. For x€ Z and heB(R"),
h(T)x =[gh(s)E(ds)x belongs to Z by (2.9). Hence h(T)eT(Z) for each he
B(R"). Using the density of simple Borel functions in B(R"), (2.7), (2.6), and the
relation E(o)E(8)=E(ocN3J) (in T(Z)), one deduces easily that the map h —
h(T) is an algebra homomorphism of B(R") into T(Z), which is continuous in the
following sense: if h, — h in B(R"), then for each xe€ Z, h,(T)x — h(T)x with
respect to the ||| :||-norm. This ‘“‘operational calculus” may then be extended to
unbounded Borel functions h in the “usual’” way.
Let h, =h if |h|<n and h, =0 otherwise. Define

D(h(T))={x e Z | strong lim h,(T)x exists and belongs to Z} (2.11)

n—»co

and

h(T)x =strong lim h, (T)x, x € D(h(T)). (2.12)
By Theorem 2.2 and Remark 1 above, h(T)= T | Z for h(s) = s. The details of the
analysis of this operational calculus will be omitted. One point however should be
stressed. If p is any polynomial of degree k, and p(T) has the usual meaning, the
“natural” domain of p(T) | Z is the set

D(p(D|2)={xeD(T*)| T'xe Z,0<j<k}.

As in Remark 1, one verifies easily that this domain coincides with R(t)“Z
(for any t>0).

Let xeD(p(T)|Z), that is x=R(t)*z for some zeZ Then, since
p(s)(t+s) ™ eB(R"),

¢ OO

p.(Tx=| p.(s)(t+s) " E(ds)z —> (strongly)
0 n—so

e OO

p(s)(t+s)  E(ds)z e Z,

70

i.e. xe D(p(T)) in the sense of (2.11). Also, writing p(s)=Y|_, o;s’, the last
integral is equal to

k
Z L[s(t+s) Y(t+s)"*PE(ds)z

= Z a,-L [1—t(t+5s) F(t+s) " PE(ds)z

k

= Y o[I-tR()FR(1)* 7z = ZaT'R(t)k
=0 i=

]._

= p(T)x (the “classical” meaning of p(T)),
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where we used the multiplicativity of the operational calculus with bounded

functions. Thus the definition of p(T) according to (2.11) and (2.12) coincides
with the usual definition on D(p(T)| Z).

3. Some corollaries

If T is an operator with real spectrum, we may apply Theorem 1.1 to T?, since
a(T?) < [0, »). Let

S)=tR)[I-tR(1)], t>0
where
R(t)=@+T>H".

COROLLARY 3.1. Let T be a possibly unbounded linear operator with real
spectrum. Then T has a scalar-type spectral square if and only if

sup B(k, k) [|S* Il <o~ (3.1)
k=1

An equivalent formulation is given below.

COROLLARY 3.2. Let T be a possibly unbounded linear operator with real
spectrum. Then there exists a scalar-type spectral operator |T| with o(|T]) <[0, )
such that |T|> = T? if and only if Condition (3.1) is valid.

Proof. The necessity of Condition (3.1) is a trivial consequence of Corollary
3.1, since the square of a scalar-type spectral (s.t.s) operator is s.t.s. Conversely,
Condition (3.1) implies that T? is s.t.s. with spectrum in [0, ).

If E denotes its resolution of the identity, define |T| as the operator corres-
ponding to the function f(s)=s"? on R* in the operational calculus (o.c.)
associated with E (cf. [1; Definition 10, p. 2238]).

By Theorem 17 in [1; p. 2244], |T| is s.t.s. with spectrum in [0, ), and
|T|> <= T? by [1; Theorem 11(f), p. 2238]. However, if x e D(T?), then x = R(t)y
for t>0 and suitable y. Hence

]'n sY2E(ds)x = L s”z(t+s)’lE(dS)Y—‘“’L sY2(t+ ) E(ds)y,

0

since the integrand is bounded on R*. Therefore x € D(|T|) and |T|x is given by
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the above limit. Next, by the multiplicativity of the o.c. with bounded functions,

en2

Ln s'?E(ds) |Tlx = s”zE(ds)[osl’z(t+s)‘1E(ds)y

0

rPn2

= s(t+s)"E(ds)y—::Lms(t+8)_lE(dS))’,

0

that is |T|x € D(|T|), showing that x € D(|T}?). Hence |T|>*=T%. Q.E.D.
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