Dirichlet regions in manifolds without conjugate points.

Autor(en): Ehrlich, P.E. / Im Hof, Hans-Christoph

Objekttyp: Article

Zeitschrift: Commentarii Mathematici Helvetici

Band (Jahr): 54 (1979)

PDF erstellt am:
27.05.2024

Persistenter Link: https://doi.org/10.5169/seals-41601

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

Dirichlet regions in manifolds without conjugate points

Paul E. Ehrlich ${ }^{1}$ and Hans-Christoph Im Hof ${ }^{2}$

1. Introduction

The aim of this paper is to study Dirichlet tessellations of simply connected complete riemannian manifolds without conjugate points. In particular, we will describe the geometrical and topological structure of the boundary of a single Dirichlet region. Throughout this paper M will always denote an n-dimensional, simply connected complete riemannian manifold without conjugate points. Let \langle,$\rangle denote the riemannian metric of M$ and d the distance function induced by \langle,$\rangle . Recall that M$ has no conjugate points if and only if every pair of distinct points of M can be joined by a unique geodesic segment (up to parametrization).

For a given discrete subset $D=\left\{p_{i} ; i \in I\right\}$ of M, the Dirichlet regions F_{i} are defined by

$$
F_{i}=\left\{p \in M ; d\left(p, p_{i}\right)<d\left(p, p_{k}\right) \text { for all } k \neq i\right\}
$$

and the collection $T=\left\{F_{i} ; i \in I\right\}$ is called the Dirichlet tessellation induced by D. For simplicity we state our main results for F_{0}.

THEOREM 3.6. bd F_{0} is an ($n-1$)-dimensional topological submanifold of M. Moreover, bd F_{0} admits a differential structure and is thus triangulable.

For a more detailed study of bd F_{0} we set

$$
S_{i}=\left\{p \in M ; d\left(p, p_{0}\right)=d\left(p, p_{i}\right)<d\left(p, p_{k}\right) \text { for all } k \neq 0, i\right\}
$$

and

$$
B_{i}=\left\{p \in M ; d\left(p, p_{0}\right)=d\left(p, p_{i}\right) \leqslant d\left(p, p_{k}\right) \text { for all } k \neq 0, i\right\}
$$

[^0]We call S_{i} a side of F_{0} if S_{i} is nonempty. Except for the case that $\operatorname{dim} M=2$ (cf. Eberlein [3]), the sides may fail to be connected and also cl S_{i} may be different from B_{i}. However we find

THEOREM 3.14. bd $F_{0}=\cup \mathrm{cl} \mathrm{S}$.
Often the discrete set D is given as an orbit of a discrete group of isometries of M. Then the Dirichlet regions are all congruent and provide constructable fundamental regions for the group action. As an application of our study of the sides of a Dirichlet region we obtain

THEOREM 4.7. Let $\Gamma=\left\{\psi_{i} ; i \in I\right\}$ be a discrete group of isometries of M and let F_{0} be the Dirichlet region based at p_{0} with respect to $\left\{p_{i}=\psi_{i}\left(p_{0}\right) ; i \in I\right\}$ where p_{0} is not a fixed point of Γ.
Then the set

$$
\Sigma=\left\{\psi_{i} \in \Gamma ; S_{i} \text { is a side of } F_{0}\right\}
$$

generates Γ. In particular, if F_{0} has only finitely many sides, then Γ is finitely generated.

The paper is organized as follows. Section 2 contains a summary of the properties of bisectors and half spaces needed in the sequel. In Section 3 we study the Dirichlet tessellation induced by an arbitrary discrete set $D \subset M$. First we develop along classical lines the elementary properties of Dirichlet tessellations (Prop. 3.3 and 3.4) which are well known in many particular cases. The main part of Section 3 deals with the boundary and the sides of a single Dirichlet region and contains the first two theorems stated above. Finally in Section 4 we investigate additional properties of the Dirichlet tessellation arising from the congruence of the Dirichlet regions when D is given as the orbit of a nonfixed point of a discrete group of isometries.

We would like to thank P. Eberlein for his help in connection with Theorem 3.14.

2. Bisectors and half spaces

We begin with some general properties of the bisectors and the half spaces determined by them. Throughout this section we fix three distinct points p, q, r of M.

DEFINITION 2.1.

(1) We define a function $h: M \rightarrow \mathbf{R}$ by $h(m)=d(m, p)-d(m, q)$.
(2) $M(p, q)=h^{-1}(0)$ is called the bisector of p and q.
(3) $H(p, q)=\{m \in M ; h(m)<0\}$ denotes the open half space determined by $M(p, q)$ containing p. Similarly $H(q, p)$ denotes the half space containing q.
(4) We set $M(p, q, r)=M(p, q) \cap M(p, r)$.

First we note

PROPOSITION 2.2.

(1) (Witt [12], Ozols [10], Prop. 2.4) $M(p, q)$ is an $(n-1)$-dimensional differentiable submanifold of M.
(2) (Ozols [10], Prop. 2.6) $M(p, q)$ and $M(p, r)$ intersect transversely whenever they intersect at all.
(3) $M(p, q, r)$ is either empty or is an ($n-2$)-dimensional differentiable submanifold of M.

Proof. (1) We have to show that grad h never vanishes on $M(p, q)$. Let d_{p} and d_{q} denote the distance functions given by $d_{p}(m)=d(m, p)$ and $d_{q}(m)=d(m, q)$. Now suppose $\operatorname{grad}_{m} h=0$ for some $m \in M(p, q)$. This implies $\operatorname{grad}_{m} d_{p}=\operatorname{grad}_{m} d_{q}$ and thus $p=q$.
(2) Let d_{p}, d_{q}, d_{r} be defined as in (1). We have to show that $\operatorname{grad}_{m} d_{p}-$ $\operatorname{grad}_{m} d_{q}$ and $\operatorname{grad}_{m} d_{p}-\operatorname{grad}_{m} d_{r}$ are linearly independent in $T_{m} M$, where m is any point of $M(p, q) \cap M(p, r)$. Suppose this is not the case. Then $\operatorname{grad}_{m} d_{p}$, $\operatorname{grad}_{m} d_{q}$, and $\operatorname{grad}_{m} d_{r}$ must lie on an affine line in $T_{m} M$. This is impossible for three distinct unit vectors. Clearly (2) implies (3).

A more detailed investigation (Im Hof [7], Prop. 2.6) shows that $M(p, q)$ is diffeomorphic to \mathbf{R}^{n-1}. Also, for dim $M=2$, the sets $M(p, q, r)$ are either empty or consist of a single point (Eberlein [3], Prop. 2.8, Ehrlich-Im Hof [4], Cor. 2).

In manifolds of constant sectional curvature, bisectors are totally geodesic and the half spaces determined by them are convex. These facts are widely used in the theory of fuchsian groups. However, in more general cases, the bisectors are no longer totally geodesic, nor are the half spaces they determine convex. Indeed, all bisectors $M(p, q)$ of M are totally geodesic if and only if M has constant sectional curvature (Busemann [2], Thm. 47.4, p. 331).

A property which is weaker than the convexity of the half spaces, but which is still very useful, is the starlikeness of the half spaces $H(p, q)$ with respect to p. To show that this starlikeness holds in our context (Prop. 2.6(2) below), we consider
the behavior of geodesic rays through p with respect to $M(p, q)$. Let $c_{p q}$ denote the unique geodesic with $c_{p q}(0)=p$ and $c_{p q}(d)=q$, where $d=(p, q)$.

PROPOSITION 2.3.

(1) Let $c:[0, \infty) \rightarrow M$ be a geodesic ray with $c(0)=p$. If the ray c is not contained in $c_{p q}$, then $h(c(t))$ is strictly increasing for all $t \geqslant 0$. If $c=c_{p q} \mid[0, \infty)$, then $h(c(t))$ is strictly increasing for $0 \leqslant t \leqslant d$ and $h(c(t))=d$ for $t \geqslant d$. If $\dot{c}(0)=-\dot{c}_{p q}(0)$, then $h(c(t))=-d$ for all $t \geqslant 0$.
(2) Let $c:[0, \infty) \rightarrow M$ be a geodesic ray with $c(0)=p$. Then c intersects $M(p, q)$ at most once and transversely.
(3) Let $c: \mathbf{R} \rightarrow M$ be a geodesic with $c(0)=p$. Then c intersects $M(p, q)$ at most once.

Proof. (1) We may assume $\|\dot{c}\|=1$. Consider first a geodesic ray c with $\dot{c}(0) \neq \pm \dot{c}_{p q}(0)$. Suppose $h(c(s)) \geqslant h(c(t))$ for $0 \leqslant s<t$. This implies

$$
d(q, c(t)) \geqslant d(q, c(s))+d(c(s), c(t))
$$

hence

$$
d(q, c(t))=d(q, c(s))+d(c(s), c(t))
$$

by the triangle inequality. But equality occurs only when the three points $q, c(s)$, $c(t)$ lie on a geodesic. This contradicts our assumption on c.

The behavior of h along the geodesic $c_{p q}$ is obvious.
(2) Uniqueness of the intersections of c with $M(p, q)$ immediately follows from the monotonicity of $h \circ c$ proved in (1). Now we assume that a geodesic ray c intersects $M(p, q)$ at a point $m=c(t) \in M(p, q)$ and we show transversality. Suppose the intersection is not transverse, i.e., $\left\langle\dot{c}(t), \operatorname{grad}_{m} h\right\rangle=0$. Using the same notation as in the proof of Proposition 2.2 we may write grad $h=$ $\operatorname{grad} d_{p}-\operatorname{grad} d_{p}$. Moreover, $\operatorname{grad}_{m} d_{p}=\dot{c}(t)$. Then our assumption implies $\left\langle\operatorname{grad}_{m} d_{p}, \operatorname{grad}_{m} d_{q}\right\rangle=\left\langle\operatorname{grad}_{m} d_{p}, \operatorname{grad}_{m} d_{p}\right\rangle=1$, hence $\operatorname{grad}_{m} d_{p}=\operatorname{grad}_{m} d_{q}$. This is impossible, since $m \in M(p, q)$ and $p \neq q$.
(3) Suppose $c: \mathbf{R} \rightarrow M$ is a geodesic with $c(0)=p$ intersecting $M(p, q)$ in two points $c(s)$ and $c(t)$. By (2) we may assume $s<0<t$. Then we have

$$
d(c(s), c(t))=d(c(s), p)+d(p, c(t))=d(c(s), q)+d(q, c(t))
$$

This equality is only possible if q lies on the geodesic segment between $c(s)$ and $c(t)$. This would imply $p=q$.

Remark. Uniqueness of the intersections of geodesic rays through p with $M(p, q)$ (or with bd F_{0}, see Prop. 3.3(3) below) is well known (Busemann [1], 2.12; Ozols [10], Prop. 3.2; for $n=2$, Eberlein [3], Prop. 2.6). Transversality has first been proved in Im Hof [7], Lemma 2.5.

Now we define the concept of a strictly starlike subset of M. For this purpose we set

$$
\left(m, m^{\prime}\right)=\{c(t) ; t \in(0,1)\}
$$

where $c:[0,1] \rightarrow M$ is the geodesic segment joining m and m^{\prime}.

DEFINITION 2.4. A subset F of M is strictly starlike with respect to a point $m \in F$ if for every point $m^{\prime} \in \mathrm{cl} F$ the segment (m, m^{\prime}) is contained in int F.

Knowing that a set F is strictly starlike rather than just starlike with respect to a point has implications about the topology of F. Explicitly

LEMMA 2.5. Let F and G be two subsets of M with $F \subset G$ and let m be a point of F. Suppose that for each $m^{\prime} \in G$ the segment $\left(m, m^{\prime}\right)$ is contained in F. Then $G \subset \operatorname{cl} F$ and int $G \subset F$.

Proof. Let m^{\prime} be a point of G and let U be a neighborhood of m^{\prime}. The segment (m, m^{\prime}) lies in F and contains points of U. Hence $m^{\prime} \in \operatorname{cl} F$.

Now let m^{\prime} be a point of int G and let U be a neighborhood of m^{\prime} contained in G. The segment (m, m^{\prime}) can be extended to a segment ($m, m^{\prime \prime}$) such that $m^{\prime \prime} \in U$ and $m^{\prime} \in\left(m, m^{\prime \prime}\right)$. Since $m^{\prime \prime} \in G$, the whole segment ($m, m^{\prime \prime}$) lies in F. In particular, $m^{\prime} \in F$.

We are now able to show

PROPOSITION 2.6.
(1) $\operatorname{cl} H(p, q)=H(p, q) \cup M(p, q)$,
int cl $H(p, q)=H(p, q)$,
bd $\boldsymbol{H}(p, q)=M(p, q)$.
(2) $H(p, q)$ is strictly starlike with respect to p.
(3) The half spaces $H(p, q)$ and $H(q, p)$ are the connected components of M $M(p, q)$.

Proof. Obviously $\operatorname{cl} H(p, q) \subset H(p, q) \cup M(p, q)$ and $H(p, q) \subset \operatorname{int}(H(p, q) \cup$ $M(p, q))$. By Proposition 2.3(1), the hypothesis of Lemma 2.5 is satisfied
for $H(p, q), H(p, q) \cup M(p, q)$, and p. Thus we may conclude the proof of (1). Since cl $H(p, q)=H(p, q) \cup M(p, q)$, Proposition 2.3(1) also implies (2) which then implies (3).

We now consider the set of geodesic rays through p intersecting $M(p, q)$. Denote the unit tangent sphere at p by S. For each $v \in S$ we denote by $c_{v}:[0, \infty) \rightarrow M$ the geodesic ray with $c_{v}(0)=p$ and $\dot{c}_{v}(0)=v$. Since each ray c_{v} intersects $M(p, q)$ at most once, we may define $A=\left\{v \in S ; c_{v}\right.$ intersects $\left.M(p, q)\right\}$ and two functions $\phi: A \rightarrow M(p, q)$ and $\varphi: A \rightarrow \mathbf{R}$ by $\phi(v)=c_{v}(0, \infty) \cap M(p, q)$ and $\varphi(v)=d(p, \phi(v))$. The transversality of the intersection of c_{v} with $M(p, q)$ implies

PROPOSITION 2.7.

(1) A is open in S.
(2) $\phi: A \rightarrow M(p, q)$ is a diffeomorphism.
(3) $\varphi: A \rightarrow \mathbf{R}$ is differentiable.

Proof. Let π denote the projection of $M-\{p\}$ onto S defined by $\pi(m)=v$, where $m=c_{v}(t)$ for suitable t. Since $M(p, q)$ is an $(n-1)$-dimensional submanifold transverse to the geodesic rays c_{v}, i.e., transverse to the fibers of π, the map $\pi \mid M(p, q): M(p, q) \rightarrow S$ is a local diffeomorphism. As $A=\pi(M(p, q))$, property (1) holds. Now $\phi=(\pi \mid M(p, q))^{-1}$ and $\pi \mid M(p, q): M(p, q) \rightarrow A$ is bijective. This implies (2) and (3).

3. The Dirichlet tessellation induced by a discrete set

In this section we consider an arbitrary discrete set $D \subset M$. By definition, D has no points of accumulation in M, or equivalently, D is locally finite, i.e., every compact set of M contains only finitely many points of D. In particular, D is at most countable and we may thus once and for all fix the notation

$$
D=\left\{p_{0}, p_{1}, p_{2}, \ldots\right\}=\left\{p_{i} ; i \in I\right\} \subset M,
$$

where I is a suitable set of indices.
The discrete set D may be finite or infinite, but we will always assume that it contains at least two points.

DEFINITION 3.1. Let $D=\left\{p_{i} ; i \in I\right\}$ be a discrete set of M.
(1) The Dirichlet region with basepoint p_{i} is the set

$$
F_{i}=\left\{p \in M ; d\left(p, p_{i}\right)<d\left(p, p_{k}\right) \text { for all } k \neq i\right\} .
$$

(2) The collection $T=\left\{F_{i} ; i \in I\right\}$ is called the Dirichlet tessellation induced by D.

The purpose of this section is to investigate the properties of a single Dirichlet region as well as those of the whole tessellation with respect to a given discrete set D. Whenever we deal with a single region, we may restrict our attention to F_{0}. The following notation will be used throughout this section.

DEFINITION 3.2. For $i \in I, i \neq 0$ we set
(1) $M_{i}=M\left(p_{0}, p_{i}\right)$, the bisector of p_{0} and p_{i}.
(2) $H_{i}=H\left(p_{0}, p_{i}\right)$, the half space determined by M_{i} containing p_{0}.

Using this notation we have $F_{0}=\cap H_{i}$.
The basic properties of a single Dirichlet region are summarized in
PROPOSITION 3.3. Let F_{0} be the Dirichlet region with basepoint $p_{0} \in D$. Then
(1) F_{0} is nonempty and open in M.
(2) $\mathrm{cl}_{F_{0}}=\left\{p \in M ; d\left(p, p_{0}\right) \leqslant d\left(p, p_{i}\right)\right.$ for all $\left.i \neq 0\right\}$, and int $\mathrm{cl} F_{0}=F_{0}$.
(3) F_{0} is strictly starlike with respect to p_{0}.

Proof. Obviously $F_{0} \neq \varnothing$. Now let p be any point of F_{0} and denote by d_{k} the distance $d\left(p, p_{k}\right)$. Since $p \in F_{0}$ we have $d_{0}<d_{k}$ for all $k \neq 0$. The discreteness of D implies that there exists an index $i \in I$ with $d_{0}<d_{i} \leqslant d_{k}$ for all $k \neq 0, i$. Now we choose $\varepsilon=\left(d_{i}-d_{0}\right) / 2$. By the triangle inequality the open ball $U(p, \varepsilon)=$ $\{q \in M ; d(q, p)<\varepsilon\}$ is contained in F_{0}. This proves (1).

For the proof of (2) let us write

$$
G_{0}=\left\{p \in M ; d\left(p, p_{0}\right) \leqslant d\left(p, p_{i}\right) \text { for all } i \neq 0\right\} .
$$

Clearly $F_{0} \subset G_{0}$. Since $G_{0}=\cap \mathrm{cl} H_{i}, G_{0}$ is closed in M and we have $\mathrm{cl} F_{0} \subset G_{0}$ as well as $F_{0} \subset \operatorname{int} G_{0}$. Since all the half spaces H_{i} are strictly starlike with respect to p_{0}, the segment (p_{0}, p) is contained in F_{0} for all $p \in G_{0}$. Using Lemma 2.5 we may then conclude the proof of (2).

Since $\mathrm{cl} F_{0}=G_{0}$, we also obtain (3).
We now state the fundamental property of the Dirichlet tessellation.
PROPOSITION 3.4. Let $T=\left\{F_{i} ; i \in I\right\}$ be the Dirichlet tessellation induced by the discrete set D. Then
(1) $F_{i} \cap \mathrm{cl} F_{j}=\varnothing$ for $i \neq j$.
(2) $M=\cup \mathrm{cl} F_{i}$, and the covering is locally finite.

Proof. (1) is obvious. For the proof of (2) let p be a point of M and denote by d_{k} the distance $d\left(p, p_{k}\right)$. Since D is discrete, there exists an index $i \in I$ such that $d_{i} \leqslant d_{k}$ for all $k \neq i$. This implies $p \in \mathrm{cl} F_{i}$.

Now let K be a compact set in M, e.g., the closed ball $K=B\left(p_{0}, R\right)=$ $\left\{q \in M ; d\left(q, p_{0}\right) \leqslant R\right\}$. Assume $p \in \operatorname{cl} F_{i} \cap K$. Then $d\left(p, p_{i}\right) \leqslant d\left(p, p_{0}\right) \leqslant R$ and thus $d\left(p_{0}, p_{i}\right) \leqslant d\left(p_{0}, p\right)+d\left(p, p_{i}\right) \leqslant 2 R$. This is possible only for finitely many $i \in I$.

Now we begin a more detailed study of the boundary of a single Dirichlet region. Again we restrict our attention to F_{0}. By Proposition 3.3(2) we have bd $F_{0}=\operatorname{cl} F_{0}-F_{0}=\cup B_{i}$, where

$$
B_{i}=\operatorname{cl} F_{0} \cap M_{i}=\left\{p \in M ; d\left(p, p_{0}\right)=d\left(p, p_{i}\right) \leqslant d\left(p, p_{k}\right) \text { for all } k \neq 0, i\right\}
$$

Our investigation of $\mathrm{bd} F_{0}$ is based on a study of the geodesic rays emanating from p_{0}. Let S denote the unit tangent sphere at p_{0}. For $v \in S$ let $c_{v}:[0, \infty) \rightarrow M$ be the geodesic ray with $c_{v}(0)=p_{0}$ and $\dot{c}_{v}(0)=v$. According to Proposition 3.3(3), each ray c_{v} intersects $b d F_{0}$ at most once. Thus we may define $A=\left\{v \in S ; c_{v}\right.$ intersects bd $\left.F_{0}\right\}$ and two functions $\phi: A \rightarrow \operatorname{bd} F_{0}$ and $\varphi: A \rightarrow \mathbf{R}$ by $\phi(v)=$ $c_{v}(0, \infty) \cap b d F_{0}$ and $\varphi(v)=d\left(p_{0}, \phi(v)\right)$.

PROPOSITION 3.5.

(1) A is open in S.
(2) $\varphi: A \rightarrow \mathbf{R}$ is continuous.
(3) $\phi: A \rightarrow b d F_{0}$ is a homeomorphism with respect to the induced topology on bd $F_{0} \subset M$.

Proof. First we recall the analogous construction for a single bisector. Let A_{i} be the set $\left\{v \in S ; c_{v}\right.$ intersects $\left.M_{i}\right\}$ and define $\phi_{i}: A_{i} \rightarrow M_{i}$ and $\varphi_{i}: A_{i} \rightarrow \mathbf{R}$ by $\phi_{i}(v)=c_{v}(0, \infty) \cap M_{i}$ and $\varphi_{i}(v)=d\left(p_{0}, \phi_{i}(v)\right)$. According to Proposition 2.7, A_{i} is open in S, φ_{i} is differentiable, and ϕ_{i} is a diffeomorphism.

Now consider $v \in A$. Since $\phi(v) \in b d F_{0}=\cup B_{i}$, there is some $i \in I$ such that $\phi(v) \in M_{i}$. Hence $v \in A_{i}, \phi(v)=\phi_{i}(v)$, and $\varphi(v)=\varphi_{i}(v)$. Conversely, if $v \in A_{i}$, then $\phi_{i}(v) \in M_{i}$. Thus $\phi_{i}(v) \notin F_{0}$ and so the geodesic segment from p_{0} to $\phi_{i}(v)$ must intersect bd F_{0}. Therefore $v \in A$ and $\varphi(v) \leqslant \varphi_{i}(v)$. These arguments show that $A=\cup A_{i}$ and $\varphi=\min \varphi_{i}$. This implies at once that A is open in S and that φ is upper-semicontinuous.

In order to show that φ is continuous, we choose an element $v \in A$ and a sequence $\left\{v_{\alpha}\right\} \subset A$ converging to v. Since φ is upper-semicontinuous, the sequence $\left\{\varphi\left(v_{\alpha}\right)\right\}$ is bounded. Thus we may assume that $\left\{\varphi\left(v_{\alpha}\right)\right\}$ converges to a number $d \in \mathbf{R}$. It remains to show that $\varphi(v)=d$.

Since $\phi\left(v_{\alpha}\right)=c_{v_{a}}\left(\varphi\left(v_{\alpha}\right)\right) \in \mathrm{bd} F_{0}$ and bd F_{0} is closed, the sequence $\left\{\phi\left(v_{\alpha}\right)\right\}$ converges to $c_{v}(d) \in \operatorname{bd} F_{0}$. This implies that $\phi(v)=c_{v}(d)$, hence $\varphi(v)=d$.

Using geodesic polar coordinates at p_{0}, we may regard $\phi: A \rightarrow \mathrm{bd} F_{0}$ as the graph of the continuous function φ. Therefore ϕ is a homeomorphism.

As an immediate consequence of Proposition 3.5 we have
THEOREM 3.6. bd F_{0} is an ($n-1$)-dimensional topological submanifold of M. Moreover, the homeomorphism $\phi: A \rightarrow \mathrm{bd} F_{0}$ induces a differential structure on bd F_{0}. Hence bd F_{0} is triangulable.

Recall the presentation bd $F_{0}=\cup B_{i}$. Our aim is to simplify this presentation by omitting those members of the collection $\left\{B_{i}\right\}$ which are redundant. Whenever B_{i} contains a point p which is not contained in any B_{k} for $k \neq i$, then certainly B_{i} may not be omitted. This motivates the following

DEFINITION 3.7.

(1) $S_{i}=\left\{p \in M ; d\left(p, p_{0}\right)=d\left(p, p_{i}\right)<d\left(p, p_{k}\right)\right.$ for all $\left.k \neq 0, i\right\}$.
(2) If $S_{i} \neq \varnothing$, we call S_{i} a side of F_{0}.

Remark. This definition of sides is identical with Ozols' definition of faces (cf. Ozols [10], p. 225) and essentially equivalent to Eberlein's definition of bounding sides (cf. Eberlein [3], Def. 2.2). If $\operatorname{dim} M=2$, arguments of Eberlein (loc. cit., Lemma 2.11, p. 38) show that the sides are connected. An essential ingredient in his proof is the fact noted above that for $\operatorname{dim} M=2$, the sets $M(p, q, r)$ are either empty or consist of a single point. However, examples show that the sides may fail to be connected for $\operatorname{dim} M \geqslant 3$.

The next lemma is crucial for the fitting together of neighboring Dirichlet regions.

LEMMA 3.8.
(1) If S_{i} is a side of F_{0}, then it is also a side of F_{i}.
(2) $F_{0} \cup S_{i} \cup F_{i}$ is open in M.

Proof. (1) is an obvious consequence of the definition of sides. For the proof of (2) it suffices to show that each point of S_{i} has a neighborhood contained in $F_{0} \cup S_{i} \cup F_{i}$. Let E_{i} be the Dirichlet region based at p_{0} with respect to $D-\left\{p_{i}\right\}$. Then E_{i} is open, and it is easily verified that $S_{i} \subset E_{i} \subset F_{0} \cup S_{i} \cup F_{i}$.

The following result is a topological characterization of the sides of bd F_{0}.

PROPOSITION 3.9. $S_{i}=\operatorname{int}_{\mathrm{bd} \mathrm{F}_{\mathrm{o}}} B_{i}=\operatorname{int}_{M_{i}} B_{i}$.
Proof. Recall $S_{i} \subset B_{i}=\operatorname{bd} F_{0} \cap M_{i}$. We first show that $\operatorname{int}_{\mathrm{bd} \mathrm{F}_{0}} B_{i}=\operatorname{int}_{M_{i}} B_{i}$. It suffices to prove that a set $U \subset B_{i}$ which is open in bd F_{0} is also open in M_{i}, and vice-versa. Let $\phi: A \rightarrow$ bd F_{0} and $\phi_{i}: A_{i} \rightarrow M_{i}$ be the maps studied in Proposition 3.5. Given $U \subset B_{i}$ we set $V=\phi^{-1}(U) \subset A$ and $V_{i}=\phi_{i}^{-1}(U) \subset A_{i}$. Since $U \subset B_{i}=$ bd $F_{0} \cap M_{i}$, the sets V and V_{i} coincide, and so do the maps $\phi \mid V$ and $\phi_{i} \mid V_{i}$. Now it is clear that U is open in bd F_{0} if and only if it is open in M_{i}. From now on we will write int B_{i} instead of $\operatorname{int}_{\mathrm{bd} F_{0}} B_{i}\left(\right.$ or $\operatorname{int}_{M_{i}} B_{i}$).

Next we show that $S_{i}=\operatorname{int} B_{i}$. Let p be a point of S_{i}. According to Lemma 3.8(2), there is a neighborhood U of p in M which is contained in $F_{0} \cup S_{i} \cup F_{i}$. Then $U \cap M_{i}=U \cap S_{i}$ and $V=U \cap M_{i}$ is an M_{i}-neighborhood of p contained in S_{i}. Hence p is an interior point of B_{i}.

Conversely, let p be a point of $B_{i}-S_{i}$. We claim that p cannot be an interior point of B_{i} (with respect to M_{i}). Let U be any M_{i}-neighborhood of p. We will construct a point $q \in U$ which does not belong to B_{i}. Since $p \in B_{i}-S_{i}$, there is an index $k \neq i$ such that $p \in B_{i} \cap B_{k} \subset M_{i} \cap M_{k}$. Let h_{k} denote the function defined by $h_{k}(p)=d\left(p, p_{0}\right)-d\left(p, p_{k}\right)$. Since M_{i} and M_{k} intersect transversely, $\operatorname{grad}\left(h_{k} \mid M_{i}\right)$ does not vanish on $M_{i} \cap M_{k}$. Let μ be an integral curve of $\operatorname{grad}\left(h_{k} \mid M_{i}\right)$ through p. Then for sufficiently small $\varepsilon>0$ the point $q=\mu(\varepsilon)$ lies in U, but $h_{k}(q)>0$, so q lies outside $\mathrm{cl} \boldsymbol{F}_{0}$.

As a consequence of Propositions 3.9 and 2.7(2) we have
COROLLARY 3.10. S_{i} is an open submanifold of bd F_{0} and of M_{i}. The differential structures of bd F_{0} (as given by Theorem 3.6) and of M_{i} (as a submanifold of M) coincide on S_{i}.

DEFINITION 3.11.

(1) A point $p \in \operatorname{bd} F_{0}$ is called a regular boundary point of F_{0} if it belongs to a side of F_{0}. The set of regular boundary points of F_{0} is denoted by reg bd F_{0}.
(2) The complement bd $F_{0}-$ reg bd F_{0} is called the set of singular boundary points of F_{0} and denoted by sing bd F_{0}.

PROPOSITION 3.12.
(1) sing bd F_{0} is closed in bd F_{0}.
(2) The topological dimension of sing bd F_{0} does not exceed $n-2$.

Proof. We have the presentation sing bd $F_{0}=U\left(b d F_{0} \cap M_{i} \cap M_{j}\right)$, where the union is taken over all indices i, j with $0 \neq i \neq j \neq 0$. Each of the sets bd $F_{0} \cap M_{i} \cap$ M_{j} is closed in bd F_{0}, and their union is locally finite. Thus sing bd F_{0} is closed in bd F_{0}.

By Proposition 2.2(3), $M_{i} \cap M_{j}$ is either empty or is an ($n-2$)-dimensional submanifold of M. Hence bd $F_{0} \cap M_{i} \cap M_{j}$ has topological dimension at most $n-2$ (cf. Hurewicz-Wallman [6], Thm. III.1, p. 26). As a countable union of such spaces, bd F_{0} itself has topological dimension at most $n-2$ (cf. HurewiczWallman [6], Thm. III.2, p. 30).

COROLLARY 3.13. reg bd F_{0} is open and dense in bd F_{0}.
Proof. It suffices to observe that sing bd F_{0} cannot contain an open subset of bd F_{0}, since $\operatorname{dim}\left(b d F_{0}\right)=n-1$, whereas $\operatorname{dim}\left(\right.$ sing bd $\left.F_{0}\right) \leqslant n-2$.

Remark. For Dirichlet regions induced by a discrete group acting freely and isometrically on M, Corollary 3.13 is a consequence of Sugahara [11], Theorem A. A proof for general discrete groups using the Baire Category Theorem was communicated to us by Eberlein (personal communication).

The closures of S_{i} with respect to bd F_{0}, M_{i}, or M, all coincide. In the following theorem we may therefore use the notation $\mathrm{cl} S_{i}$ without ambiguity.

THEOREM 3.14. bd $F_{0}=U \mathrm{cl} S_{i}$.
Proof. Let p be a point of bd F_{0}. If p is a regular boundary point, then $p \in S_{i}$ for some i. In general, choose a basis $\left\{U_{\alpha}\right\}$ of bd F_{0}-neighborhoods with $p \in$ $U_{\alpha+1} \subset U_{\alpha}$. According to Corollary 3.13, each U_{α} contains a regular boundary point q_{α} belonging to some side $S_{i_{\alpha}}$. The sequence $\left\{q_{\alpha}\right\}$ converges to p.

We may assume that all U_{α} lie in some compact ball $B\left(p_{0}, R\right)$. Then $q_{\alpha} \in$ $B\left(p_{0}, R\right)$ implies $p_{\mathrm{i}_{\mathrm{c}}} \in B\left(p_{0}, 2 R\right)$. Therefore only finitely many different indices can occur in the sequence $\left\{i_{\alpha}\right\}$. Hence there exists an index i that occurs infinitely many times. This determines a subsequence of $\left\{q_{\alpha}\right\}$ contained in S_{i} and converging to p. Thus $p \in \mathrm{cl} S_{i}$.

Remark. Obviously cl $S_{i} \subset B_{i}$, but examples show that $S_{i} \neq \varnothing$ and $\mathrm{cl} S_{i} \neq B_{i}$ is possible. Thus the presentation bd $F_{0}=\cup \mathrm{cl} S_{i}$ may be finer than the presentation bd $F_{0}=\cup\left\{B_{i} ; S_{i}\right.$ is a side of $\left.F_{0}\right\}$. The latter was obtained by Eberlein (personal communication) for Dirichlet regions induced by a discrete group (see Section 4) using the density of reg bd F_{0} in $\operatorname{bd} F_{0}$. For $\operatorname{dim} M=2$, see also Eberlein [3], Proposition 2.9.

So far we have only considered the boundary of a single Dirichlet region, but it is clear that the classification into regular and singular boundary points applies to all regions of the Dirichlet tessellation. More precisely, we have

LEMMA 3.15. Let $N(p)$ denote the cardinality of the set $\left\{i \in I ; p \in \mathrm{cl} F_{i}\right\}$. Then $1 \leqslant N(p)<\infty$ and the following hold:
(1) $N(p)=1$ if and only if p belongs to F_{i} for some $i \in I$.
(2) $N(p)=2$ if and only if p belongs to a side of some F_{i}.
(3) $N(p) \geqslant 3$ if and only if p is a singular boundary point of some F_{i}.

Now we define
DEFINITION 3.16.
(1) $\operatorname{reg} T=\{p \in M ; N(p) \leqslant 2\}$,
(2) $\operatorname{sing} T=\{p \in M ; N(p) \geqslant 3\}$.

PROPOSITION 3.17.

(1) $\operatorname{sing} T$ is closed in M.
(2) The topological dimension of sing T does not exceed $n-2$.

Proof. We have the presentation sing $T=U\left(\mathrm{cl}_{i} \cap \mathrm{cl} F_{j} \cap \mathrm{cl} F_{k}\right)$, where the union is taken over all triples of pairwise distinct indices. Since this union is locally finite and countable, the rest of the proof is similar to that of Proposition 3.12.

COROLLARY 3.18.

(1) reg T is open in M.
(2) reg T is connected.

Proof. It suffices to observe that a subspace of topological dimension at most $n-2$ cannot disconnect M (cf. Hurewicz-Wallman [6], Thm. IV.4, p. 48).

Remark. The properties of the sets $\{p \in M ; N(p)=1\}$ and $\{p \in M ; N(p)=2\}$, which by Lemma 3.15 follow from our study of F_{0} and its sides, might suggest that a stratification of M could be obtained using $\{p \in M ; N(p)=k\}$ as strata. However, these sets are not necessarily manifolds if $k \geqslant 3$, because intersections of the form $M(p, q, r) \cap M(p, s)$ need not be transverse.

4. The Dirichlet tessellation induced by a discrete group

In this section we come to the most important application of the Dirichlet tessellation. Here we no longer begin with an arbitrary discrete set $D \subset M$, but with a particular discrete set obtained from the action of a discrete group of isometries of M.

Let $I(M)$ be the full group of isometries of M. A subgroup Γ of $I(M)$ is called discrete if it is a discrete subset of $I(M)$ with respect to the compact-open topology of $I(M)$.

Throughout this section we consider a fixed discrete subgroup Γ of $I(M)$. The fact that we are dealing with isometries of a riemannian manifold has some important consequences.

LEMMA 4.1. Let Γ be a discrete subgroup of $I(M)$.
(1) For all $p \in M$ the isotropy group $\Gamma_{p}=\{\psi \in \Gamma ; \psi(p)=p\}$ is finite. Denote its order by $i(p)$.
(2) For all $p \in M$ the orbit $\Gamma(p)=\{\psi(p) \in M ; \psi \in \Gamma\}$ is a discrete subset of M.
(3) The canonical map from Γ to $\Gamma(p)$ given by $\psi \mapsto \psi(p)$ is $i(p)$-to-one.
(4) Γ is countable.

Proof. (1) The full isotropy group $I_{p}(M)=\{\psi \in I(M) ; \psi(p)=p\}$ is compact (Kobayashi-Nomizu [9], vol. I, p. 239), and hence $\Gamma_{p}=\Gamma \cap I_{p}(M)$ is finite.
(2) Suppose that $\Gamma(p)$ is not discrete. Then there exists a sequence $\left\{\psi_{\alpha}(p)\right\} \subset$ $\Gamma(p)$ of pairwise distinct points converging to some point of M. This implies the existence of a subsequence of $\left\{\psi_{\alpha}\right\} \subset \Gamma$ which converges to an element of $I(M)$ (Kobayashi-Nomizu [9], vol. I, p. 47-48). Since the elements of $\left\{\psi_{\alpha}\right\}$ are pairwise distinct, this contradicts the discreteness of Γ.
(3) By definition the canonical map $\Gamma \rightarrow \Gamma(p)$ is $i(p)$-to-one at the point $p \in \Gamma(p)$. For any other point $\psi(p) \in \Gamma(p)$ it suffices to observe that $\Gamma_{\psi(p)}=$ $\psi \circ \Gamma_{p} \circ \psi^{-1}$, hence $i(\psi(p))=i(p)$.
(4) Since $\Gamma(p)$ is discrete in M, it is countable. Together with (3) this implies that Γ is countable.

Remark. By the same type of arguments as above one shows that the following properties are equivalent.
(1) Γ is a discrete subgroup of $I(M)$.
(2) Γ acts discontinuously at a point of M.
(3) Γ acts discontinuously on M.
(4) Γ acts properly discontinuously on M.

Hence we will not use the concepts of discontinuity.
Since Γ is countable we may once and for all fix the notation

$$
\Gamma=\left\{\psi_{0}, \psi_{1}, \psi_{2}, \ldots\right\}=\left\{\psi_{i} ; i \in I\right\} \subset I(M),
$$

where I is a suitable set of nonnegative indices. We will also use the notation $\psi_{0}=\mathrm{id} \in \Gamma$ and $\psi_{-i}=\psi_{i}^{-1}$ for $i \neq 0$.

LEMMA 4.2. Let $\operatorname{Fix}(\Gamma)$ denote the set $\left\{p \in M ; \psi_{i}(p)=p\right.$ for some $\left.i \neq 0\right\}$. Then M-Fix (Γ) is dense in M.

Proof. Recall that $\operatorname{Fix}\left(\psi_{i}\right)=\left\{p \in M ; \psi_{i}(p)=p\right\}$ is a submanifold of dimension at most $n-1$ (Kobayashi [8], p. 59). As Fix $(\Gamma)=\cup$ Fix $\left(\psi_{i}\right)$, the topological dimension of Fix (Γ) is at most $n-1$. Therefore $M-\operatorname{Fix}(\Gamma)$ is dense in M.

Now we choose a point $p_{0} \notin \operatorname{Fix}(\Gamma)$. According to Lemma 4.1, the orbit $\Gamma\left(p_{0}\right)$ is a discrete set of M, and since $p_{0} \notin \operatorname{Fix}(\Gamma)$, the canonical map from Γ to $\Gamma\left(p_{0}\right)$ is one-to-one. In particular, the points $p_{i}=\psi_{i}\left(p_{0}\right)$ are pairwise distinct and $\Gamma\left(p_{0}\right)$ is given as $\left\{p_{i} ; i \in I\right\}$. We will fix this notation for the rest of this section.

In the preceeding section the Dirichlet tessellation has been defined with respect to an arbitrary discrete set. Now we apply this construction to the orbit $\Gamma\left(p_{0}\right)$. Let us denote by F_{i} the Dirichlet region based at $p_{i}=\psi_{i}\left(p_{0}\right)$ with respect to $\Gamma\left(p_{0}\right)$ and by $T=\left\{F_{i} ; i \in I\right\}$ the Dirichlet tessellation so obtained. Clearly all the results of Section 3 apply to the present situation. Here we consider the additional properties of T which result from taking the discrete set to be the orbit of a nonfixed point of a discrete group of isometries. The most important new property is the congruence of all of the regions F_{i}. More precisely,

LEMMA 4.3. Consider the Dirichlet tessellation $T=\left\{F_{i} ; i \in I\right\}$ with respect to $\Gamma\left(p_{0}\right)$. Then $F_{i}=\psi_{i}\left(F_{0}\right)$, and a similar statement holds for cl F_{i}, bd F_{i}, reg bd F_{i}, sing bd F_{i}, respectively. In particular, if S is a side of F_{0}, then $\psi_{i}(S)$ is a side of F_{i}.

Proof. We only prove $F_{i}=\psi_{i}\left(F_{0}\right)$. Assume $p \in F_{0}$. Then $d\left(\psi_{i}(p), p_{i}\right)=d\left(p, p_{0}\right)<$ $d\left(p, p_{k}\right)=d\left(\psi_{i}(p), \psi_{i}\left(p_{k}\right)\right)$ for all $k \neq 0$. Now observe that if k runs over all indices different from 0 , then $\psi_{i} \circ \psi_{k}$ runs over all elements of Γ different from ψ_{i}. Thus $\psi_{i}\left(p_{k}\right)=\psi_{i} \circ \psi_{k}\left(p_{0}\right)$ runs over all points of $\Gamma\left(p_{0}\right)$ different from p_{i}. Therefore the inequalities for $\psi_{i}(p)$ imply that $\psi_{i}(p) \in F_{i}$.

Conversely, if $q \in F_{i}$, then the same argument shows that $\psi_{-i}(q) \in F_{0}$, hence $q \in \psi_{i}\left(F_{0}\right)$.

Together with Lemma 4.3, the basic property of the Dirichlet tessellation (Proposition 3.4) translates into the well known fact that any single Dirichlet region provides a fundamental region for the action of Γ on M.

In Lemma 3.15 we have classified the points of M with respect to a discrete set by the number

$$
N(p)=\#\left\{i \in I ; p \in \mathrm{cl} F_{i}\right\} .
$$

Here we may equivalently define

$$
N(p)=\#\left\{i \in I ; \psi_{i}(p) \in \mathrm{cl} F_{0}\right\} .
$$

Let us define in addition $n(p)=\#\left(\Gamma(p) \cap \mathrm{cl} F_{0}\right)$. Then Lemma 4.1(3) implies $N(p)=i(p) \cdot n(p)$, where $i(p)$ is the order of the isotropy group Γ_{p}.

PROPOSITION 4.4. Let p be a point of M.
(1) If $N(p)=1$, then $p \in F_{i}$ for some i, p is not a point of $\operatorname{Fix}(\Gamma)$, and p has no point equivalent under Γ in $\mathrm{cl} F_{i}$.
(2) If $N(p)=2$, then $p \in \operatorname{reg}$ bd F_{i} for some i, and one of the following holds.
(a) $p \notin \operatorname{Fix}(\Gamma)$, and p has exactly one point equivalent under Γ in cl_{i} (actually in reg bd F_{i}).
(b) p is a fixed point of an isometry $\psi \in \Gamma$ with $\psi^{2}=\mathrm{id}$, and p has no point equivalent under Γ in $\mathrm{cl} F_{i}$.
(3) $N(p) \geq 3$, then $p \in \operatorname{sing}$ bd F_{i} for some i.

Proof. Recall Lemma 3.15. For the additional assertions, if suffices to observe that $N(p)=1$ implies $i(p)=n(p)=1$, whereas $N(p)=2$ implies either $i(p)=1$ and $n(p)=2$, or $i(p)=2$ and $n(p)=1$.

Now we turn our attention to the sides of a given Dirichlet region.
DEFINITION 4.5. Two sides S_{i} and S_{j} of F_{0} are called conjugate sides if there is an element $\psi \in \Gamma, \psi \neq \mathrm{id}$, with the property $\psi\left(S_{i}\right)=S_{j}$. Such an isometry is called a conjugating isometry.

PROPOSITION 4.6. Let S_{i} be a side of F_{0}. Then there exists a unique conjugate side, namely $S_{-i}=\psi_{-i}\left(S_{i}\right)$, and the conjugating isometry ψ_{-i} is uniquely determined. Moreover, if S_{i} is self-conjugate, then $\psi_{i}^{2}=\mathrm{id}$.

Proof. Let S_{i} be a side of F_{0}. Then S_{i} is also a side of F_{i} by Lemma 3.8 (1). Thus $S_{-i}=\psi_{-i}\left(S_{i}\right)$ is a side of $\psi_{-i}\left(F_{i}\right)=F_{0}$ (cf. Lemma 4.3). Therefore S_{-i} is a conjugate side of S_{i} with conjugating isometry ψ_{-i}.

Set $\Sigma_{i}=\left\{\psi \in \Gamma ; \psi\left(S_{i}\right) \subset \operatorname{cl} F_{0}\right\}$. Since

$$
\left\{\psi_{0}, \psi_{-i}\right\} \subset \Sigma_{i} \subset\left\{\psi \in \Gamma ; \psi(p) \in \operatorname{cl} F_{0}\right\}
$$

for any $p \in S_{i}$ and $N(p)=2$ for all $p \in S_{i}$, we have $\Sigma_{i}=\left\{\psi_{0}, \psi_{-i}\right\}$. This proves both uniqueness assertions.

If $\psi_{-i}\left(S_{i}\right)=S_{i}$, then $\psi_{-i}^{2}\left(S_{i}\right)=S_{i}$. Hence $\psi_{-i}^{2} \in \Sigma_{i}$. Since $\psi_{-i} \neq \mathrm{id}$, this implies $\psi_{-i}^{2}=$ id. Hence $\psi_{i}^{2}=$ id.

We now come to the main result of Section 4.

THEOREM 4.7. Let Γ be a discrete subgroup of $I(M)$ and let F_{0} be the Dirichlet region based at $p_{0} \notin \operatorname{Fix}(\Gamma)$ with respect to $\Gamma\left(p_{0}\right)$. Denote by Σ the set of isometries

$$
\Sigma=\left\{\psi_{i} \in \Gamma ; S_{i} \text { is a side of } F_{0}\right\}
$$

Then Σ generates Γ. In particular, if F_{0} has only finitely many sides, then Γ is finitely generated.

Proof. Let ψ_{j} be an arbitrary element of Γ. By Corollary 3.18 (2), we may join p_{0} and p_{j} by a path $c:[0,1] \rightarrow$ reg T. The compact set $c([0,1])$ meets only finitely many members of the tessellation $T=\left\{F_{i} ; i \in I\right\}$.

Set $t_{0}=\sup \left\{t \in[0,1] ; c(t) \in \operatorname{cl} F_{0}\right\}$. Since $\operatorname{cl} F_{0}$ is closed, we actually have $c\left(t_{0}\right) \in \mathrm{cl} F_{0}$. If $t_{0}=1$, then $\psi_{j}=\mathrm{id}$ and there is nothing to prove. On the other hand, $t_{0}>0$, because $c(0)=p_{0}$ lies in the open set F_{0}. By our choice of the path c and the definition of t_{0}, the point $c\left(t_{0}\right)$ is a regular boundary point of F_{0}. Hence there is a well defined index $i_{1} \in I$ such that $c\left(t_{0}\right) \in S_{i_{1}} \subset \operatorname{cl} F_{0} \cap \psi_{i_{1}}\left(\mathrm{cl} F_{0}\right)$. By definition of Σ the isometry $\psi_{i_{1}}$ is contained in Σ.

Now we set $t_{1}=\sup \left\{t \in[0,1] ; c(t) \in \operatorname{cl} F_{i_{1}}\right\}$. If $t_{1}=1$ the process stops and $\psi_{j}=\psi_{i_{1}}$. Otherwise $t_{1}<1$. We claim that $t_{1}>t_{0}$. It is clear that $t_{1} \geqslant t_{0}$. According to Lemma 3.8(2), there is a neighborhood of $c\left(t_{0}\right)$ which is contained in $F_{0} \cup S_{i_{1}} \cup F_{i_{1}}$, and since c must leave $\mathrm{cl} F_{0}$ for $t>t_{0}$, it has to stay in $F_{i_{1}}$ for some $t>t_{0}$. This implies that $t_{1}>t_{0}$.

Again $c\left(t_{1}\right)$ is a regular boundary point and there is a well defined $i_{2} \in I$ such that $c\left(t_{1}\right) \in \mathrm{cl} F_{i_{1}} \cap \mathrm{cl} F_{i_{2}}$. Moreover, $i_{2} \neq 0, i_{1}$. Since $F_{i_{1}}$ and $F_{i_{2}}$ have a common side, the isometry $\psi_{i_{2}} \circ \psi_{-i_{1}}$ belongs to Σ. Therefore $\psi_{i_{2}}$ can be written as a product of elements of Σ.

After finitely many steps this process ends with $\psi_{i_{k}}=\psi_{j}$. Thus ψ_{j} can be written as

$$
\psi_{j}=\left(\psi_{i_{k}} \circ \psi_{-i_{k-1}}\right) \circ \cdots \circ\left(\psi_{i_{2}} \circ \psi_{-i_{1}}\right) \circ \psi_{i_{1}} .
$$

Remarks. (1) The proof of Theorem 4.7 follows the classical scheme (cf. Busemann [1], Thm. 2.10 for general spaces). The new ingredient is Corollary 3.18, which enables us to choose a path in reg T. Thus we get $\Sigma=\left\{\psi_{i} \in \Gamma\right.$; S_{i} is a side of $\left.F_{0}\right\}$ as a set of generators, rather than the larger set $\left\{\psi_{i} \in \Gamma\right.$; $\left.\mathrm{cl} F_{0} \cap \psi_{i}\left(\mathrm{cl} F_{0}\right) \neq \varnothing\right\}$.
(2) As has been noted by L. Danzer, the group generated by the translations $z \mapsto z+1$ and $z \mapsto z+e^{i \pi / 3}, z \in \mathbf{C}$, shows that the set of generators given by Theorem 4.7 is not necessarily minimal.
(3) For $n=2$ and Γ acting freely, Eberlein has proved that Γ is finitely
generated if and only if one (and hence all) Dirichlet regions have finitely many sides (Eberlein [3], Thm. A). For $n \geqslant 3$ this is no longer true (cf. Greenberg [5], Thm. 2).

REFERENCES

[1] Busemann, H., Spaces with non-positive curvature, Acta Math. 80 (1948), 259-310.
[2] - The geometry of geodesics, Pure and Applied Mathematics, No. VI, Academic Press, New York, 1955.
[3] Eberlein, P., The cut locus of noncompact finitely connected surfaces without conjugate points, Comment. Math. Helvetici 51 (1976), 23-41.
[4] Ehrlich, P. E. and Im Hof, H. C., Metric circles and bisectors, Math. Z. 159 (1978), 101-105.
[5] Greenberg, L., Fundamental polyhedra for kleinian groups, Ann. of Math. 84 (1966), 433-441.
[6]. Hurewicz, W. and Wallman, H., Dimension theory, Princeton Mathematical Series, No. 4, Princeton University Press, Princeton, 1948.
[7] Im Hof, H. C., The family of horospheres through two points, Math. Ann. 240 (1979), 1-11.
[8] Kobayashi, S., Transformation groups in differential geometry, Ergebnisse der Mathematik und ihrer Grenzgebiete, Bd. 70, Springer, Berlin, 1972.
[9] - and Nomizu, K., Foundations of differential geometry, Interscience Tracts in Pure and Applied Mathematics, No. 15, Interscience, New York, 1963/69.
[10] Ozols, V., Cut loci in riemannian manifolds, Tôhoku Math. J. 26 (1974), 219-227.
[11] Sugahara, K., On the cut locus and the topology of riemannian manifolds, J. Math. Kyoto Univ. 14 (1974), 391-411.
[12] WrTt, E., Über die Konstruktion von Fundamentalbereichen, Ann. di Mat. (4) 36 (1954), 215-221.
P.E.E.: Universität Bonn/University of Missouri-Columbia current address:
Department of Mathematics
University of Missouri-Columbia
Columbia, Missouri 65201. U.S.A.
H.C.I.: University of California-Berkeley/Universität Bonn current address:
Mathematisches Institut der Universität Bonn
Wegelerstrasse 10
5300 Bonn, Federal Republic of Germany

Received July 11, 1978

[^0]: ${ }^{1}$ Supported partly by the Sonderforschungsbereich "Theoretische Mathematik" at the University of Bonn and partly by a grant from the Research Council of the Graduate School, University of Missouri-Columbia.
 ${ }^{2}$ Supported by the Swiss National Science Foundation and the Sonderforschungsbereich "Theoretische Mathematik" at the University of Bonn.

