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Groups of finite quasi-projective dimension

James Howie and Hans Rudolf Schneebeli

1. Introduction

1.1. Lyndon's Identity Theorem [11] may be interpreted as a description of
the structure of the relation module arising from a one-relator présentation - or,
more generally, from a staggered présentation - of a group G. For such présentations,

the relation module is the direct sum of the cyclic submodules generated by
the images of the defining relators. Furthermore, each such submodule has the
form ZG/C, where C is the finite cyclic subgroup of G generated by the image of
the root of the corresponding defining relator.

We say that a présentation has the Identity Property if its relation module has

the above form. This is équivalent to the condition (1.1) of Lyndon and Schupp
([13], p. 158). We say that a group G has the Identity Property if some
présentation of G has the Identity Property. In this paper, we consider a property
which is weaker than the Identity Property in the following respect. Instead of
considering a relation module, we look at the kernel of the nth boundary map in
an KG-projective resolution of R, where JR is a commutative ring with 1, and we
allow this kernel to be a direct sum of cyclic modules of the form RGIS, where S

is an arbitrary subgroup of G.

1.2 Let R be a commutative ring with unit and let G be a group. An exact

séquence of left RG -modules

of finite length n>0 is called an RG-quasi-projective resolution of A if the
modules P, Pn_1,...,P0 are JRG-projective and there exists an indexed set {Ga}r
of subgroups of G such that

The set {Ga}r can be chosen such that no RG/G^ is JRG-projective. We then say
that the set {GŒ}i is associated to the resolution St. We make the convention that
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616 JAMES HOWIE AND HANS RUDOLF SCHNEEBELI

the séquence 0-»A—»A—>0 is an jRG-quasi-projective resolution of length 0 if
and only if A is RG-projective.

We define the RG-quasi-projective dimension of A to be the shortest possible
length of an i?G-quasi-projective resolution 2, -» A. If no such resolution exists,
the quasi-projective dimension is said to be infinité. In particular qpdR G dénotes
the KG-quasi-projective dimension of the trivial module R. We write qpdz G as

qpd G. Our convention for length 0 is necessary to exclude the séquence 0—>jR—»

R-»0, if R is not JRG-projective.
Our notation, using KG-, might suggest that the above définitions dépend only

on the ring JRG. It is, however important to recognize the explicit group-ring
structure of RG. For example, even if RG SH as rings, an KG-quasi-projective
resolution need not be an SH-quasi-projective resolution.

EXAMPLES
1. For ail groups G, the inequality qpdR G^cdR G holds.
2. Suppose G is a group with the Identity Property, then qpdR G ^ 2.

Particular instances of such groups are:

- one relator groups,
- groups with staggered présentations,
-certain small cancellation groups [12],
-groups with an "aspherical" présentation in the sensé of Lyndon and Schupp
[13].

3. If G is a finite group, and there exists a periodic RG-projective resolution
of finite period k over R, then qpdR G is at most fc.

1.3 We now describe the structure of the article and discuss our main results.
In Section 2 we deal with some gênerai conséquences of our définition for

qpdR G. The similarity between cdR and qpdR is a basic thème.
Theorem 1 states a fundamental subgroup property for groups of finite qpd

over R. Suppose S is a subgroup of G and qpdRG<°o. Then any JRG-quasi-
projective resolution may be interpreted as an RS-quasi-projective resolution and

an associated set of subgroups of S may be defined in terms of a given associated
set of subgroups of G. In particular, we hâve qpdR S ^qpdR G whenever S ci G.

It follows from Theorem 1 that any set of subgroups of G associated to some
quasi-projective resolution consists of finite groups. Hence, for ail K-torsion-free
groups G, qpdRG cdRG. In particular qpdQG cdQG for ail groups G.

Another conséquence of Theorem 1 is the following: Suppose R is torsion-free as

a Z-module and qpdR G is odd, then G is R -torsion-free.
Suppose G is a fundamental group of a graph of groups whose vertex groups

hâve bounded qpd over R and whose edge groups are JR-torsion-free. Theorem 5
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says that qpdR G is finite. This is an analogue for qpdR of a resuit of Chiswell for
cdR (cf. [5], p. 70).

The résulte of Section 3 give information about the finite subgroups in groups
of finite qpd. Our central resuit is the following.

THEOREM 6. Suppose Sïl is a finite R-torsion subgroup of G, and {G^ is

a set of subgroups associated to some RG-quasi-projective resolution of R of finite
length. Then there exist a unique aeland a unique left coset gGa of Ga in G, such

that S is contained in gGag'1.

In the case R Z, it follows from Theorem 6 that the associated set of
subgroups {Ga}j is a full représentative set of conjugacy classes of maximal finite
subgroups. Hence, up to conjugacy, the groups Ga are determined by G indepen-
dently of the particular choice of a ZG-quasi-projective resolution.

Theorem 6 is reminiscent of a theorem of Serre [9] and of resuite of Wall
([16], Lemma 7, Proposition 8). In fact, if JR=Z in our situation, then the

hypothèses of Serre's theorem hold, but we cannot prove this without the help of
Theorems 6 and 7. Our proof of Theorem 6 is partly based on Wall's arguments.

In the spécial case where G is a one-relator group, Theorem 6 recovers a

resuit of Karrass, Magnus and Solitar [10].
Further restrictions on the finite subgroups dérive from Theorem 7. In the case

R =Z, it states that a finite group S satisfies qpd S n if and only if its Tate

cohomology has period n. In particular, if qpd G 2, then any finite subgroup of
G is cyclic. Hence G has a relation module which is a direct sum of cyclic
modules of the form ZG/C, where C is a finite cyclic subgroup of G. Note the
formai resemblance with the module-theoretic interprétation of the Identity
Property.

As stated in 1.2, if G has the Identity Property, then qpd G ^2. We make no

attempt to answer the question of whether the converse also holds. For torsion-
free groups, this reduces to the question of whether cohomological and géométrie
dimensions always coincide (Eilenberg-Ganea problem).

The topics of Section 4 may be motivated by gênerai properties of one-relator

groups.
Let G be a one-relator group with torsion. Then either G is finite cyclic or the

centre of G is trivial. We show in Corollary 8.1 that any group G of finite qpd
with torsion either is finite or has trivial centre. It is known that a one-relator

group has only finitely many conjugacy classes of finite subgroups. Proposition 9

gives necessary and sufficient conditions for a group of finite qpd to hâve only
finitely many conjugacy classes of finite subgroups. This is of interest in connection

with Wall's question F7 in [17].



618 JAMES HOWBE AND HANS RUDOLF SCHNEEBELI

Recall [14] that a group G is virtually torsion-free if one of its subgroups of
finite index is torsion-free. The virtual cohomological dimension vcdG of a

virtually torsion-free group G is defined by vcd G cd S, when S is a torsion-free
subgroup of finite index. If G is not virtually torsion-free, then by définition
vcd G oo.

Like qpd, the invariant vcd assumes finite values on certain classes of groups
with torsion. If G is virtually torsion-free, vcd G ^ qpd G holds. Our examples
show that this is the most one can say in gênerai about the relationship between
vcd and qpd.

Of particular interest are groups G with vcd G ^ qpd G<oo. In this case, the
Farrell-Tate cohomology of G is periodic and is completely determined by the

cohomology of the maximal finite subgroups of G.

Two of our examples make it clear that certain gênerai properties of one-
relator groups do not follow from the Identity Property. Thèse examples concern
the inequality vcd G^qpd G and the structure of the subgroup generated by the
torsion éléments.

The methods of this paper are algebraic. We hâve left open the question of a
suitable géométrie interprétation of the property of having finite qpd. By analogy
with cohomological dimension, one might expect to obtain sufficient criteria for
finite qpd via such an interprétation.

Both authors hâve profitted from the excellent working conditions at the

Forschungsinstitut fur Mathematik der ETH. We would like to thank its director,
Professor B. Eckmann, for his support. We would also like to thank Ralph Strebel
for some useful suggestions. The first-named author was supported by a European
Science Exchange Program fellowship of the Royal Society of London.

2. Groups of finite qpd over a ring R

2.1 Restriction to subgroups

THEOREM 1. Suppose SI -^ A is an RG-quasi-projective resolution of A of
length n, and {Ga}x is an associated set of subgroups. Let Sbe a subgroup of G. For
each a g I, choose a set {t3 ; fi e Ja} of représentatives of the double cosets SgGa (g e
G). For each PeJa, define S<x^ SntfiGj&~1. Then £-» A is an RS-quasi-
projective resolution, and there is an associated set of subgroups consisting of those

S*p for which RS/Sap is not RS-projective.

COROLLARY 1.1. If S is a subgroup of G, then qpdRS=^qpdR G.

Proof of Theorem 1. Suppose â-» A has the form 0~+Q®P->Pn_1-» >

Po-*A-»0, where P is an RG-projective, and Q^^RG/G^. Now Q is the free
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JR-module on a left G-set T, whose décomposition into G-orbits has the form
T=UIG/Ga.

The S-orbit décomposition of T has the form T=UI (UJa S/S^), so as left
RS-module

Define / {(a, j3); ael, PeJa, RS/S^ is not RS-projective}. Then Q has an
RS-direct sum décomposition Q^Pf®Qf, where P' is RS-projective and Q'
U7J

COROLLARY 1.2. In the situation of Theorem 1, the subgroups Ga are ail
finite.

Proof. Fix ael and let S Ga in the proof of Theorem 1. Then some Saj3

coincides with S, so Q contains the trivial module R as an .RS-direct summand.
Hence the JRS-projective Pn-X contains R as a trivial RS-submodule. This is

possible only if S is finite.

COROLLARY 1.3. If G is R-torsion-free, then qpdRG cdRG.

Proof. It is sufficient to show that cdR G^qpdR G and we may assume that
qpdRG n<°°. For every finite subgroup S of G, the order |S| |S|1gJR is a

unit of R. Thus the canonical epimorphism jRG-» RG/S splits via an jRG-
homomorphism cr:JRG/S~>RG, where

1 HeS

and so RG/S is RG-projective.
It follows that any RG-quasi-projective resolution is an RG-projective resolution.

COROLLARY 1.4. If S is an R-torsion-free subgroup of G, then cdRS^
qpdR G.

COROLLARY 1.5. Suppose G is virtually R-torsion-free, then vcdRG^
qpdR G.

2.2 Quasi-projective and projective resolutions

Let O-^QSP-^Pn-x-» ?Po-»A-»0 be an RG-quasi-projective resolution

of A and let 0-+K-*Mn_1-+ >M0-+A-+0 be an exact séquence of
RG-modules with ail the M{ RG-projective. By Schanuel's lemma ([1], [15]) there
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exist £G-projectives M' and P' such that (Q © P) © P' K © M'. Hence the exact

séquence

© ©

is an 1?G-quasi-projective resolution of A.
If 0-*(©IJRG/GJ©P--»Pn_1-* *Po-*A-*0 is a quasi-projective resolution

of A and {Ga}j is an associated set of subgroups, then an RG-projective
resolution can be obtained by the following construction. For each a e I, choose

an JRGa-projective resolution of R, Ma-+RGol-+R-*0. The functor RG®Ga-
applied to this resolution gives an RG-projective resolution of RG/Ga. We thus
obtain an RG-projective resolution of A of the form

We use the resolution (*) for jR to calculate the homology and cohomology of
G in high dimensions.

PROPOSITION 2. Suppose {G^j is a set of subgroups associated to sortie RG-
quasi-projective resolution of R of Length n. Then for each q>n, there are natural
isomorphisms

of functors from RG-modules to R-modules.

PROPOSITION 3. IfR admits an RG-quasi-projective resolution of length n,
then Hn(G; R) embeds into a free R-module.

COROLLARY 3.1. If R is a PID and R admits an RG-quasi-projective
resolution of length n, then Hn(G; R) is R-free.

Proof of Proposition 3. We use the spécial resolution (*) to calculate

Hn(G;R). For each ael, the ath direct summand RG ®RGaM" is mapped
under 5n+1 into the augmentation idéal of the ath direct summand RG
RG ®RGa RGa. It follows that 1R <g>RG dn+1 0, and so Hn(G;R)
ker(lR®RGdn) is isomorphic to a submodule of the !?-projective (©jJR)©
(R®RGP) and hence also of some free jR-module.
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COROLLARY 3.2. Suppose R is torsion-free as an abelian group. If qpdRG=
2fc + 1 is odd, then G is R-torsion-free, and so cdRG 2fc + l.

Proof. Suppose C is a finite cyclic subgroup of G of order m > 1. By Theorem
1, R admits an RC-quasi-projective resolution of length 2fc +1. By Proposition 3,

H2k+1(C, R) embeds into a free R -module and thus is Z-torsion-free. On the
other hand, R/mR H2k+1(C, R) has obvious Z-torsion unless m • 1 is a unit in R
and RlmR 0.

If G is R-torsion-free, then Proposition 3 is relevant only for n cdRG.
However if G has non-trivial information about Ht(G,R) for infinitely many
i ^ qpdR G as shown by the next resuit.

PROPOSITION 4. Suppose there exists an RG-quasi-projective resolution of R
of length i, let {Ga}j be its associated set of subgroups, and suppose, for each ael,
there exists an RGa-quasi-projective resolution of R of length fc. Then there exists

an RG-quasi-projective resolution of R of length fc + i.

Proof. In case G is K-torsion-free, there exist RG-projective resolutions of jR

of arbitrary length l^cdRG. Otherwise, the set {G^ is non-empty. Using the
idea of the construction of the resolution (*), but replacing each RGa-projective
resolution Ma-*RGa^>R-+0 by an RGa-quasi-projective resolution of length fc,

we obtain an KG-quasi-projective resolution of length fc + i by an analogous
procédure. Hère the following fact is used: Let [JcVcG be subgroups, then

RG®VRV/U
Remark. Inductive arguments based on Proposition 4 lead to the following:
(i) In the circumstances of Proposition 4, there exist RG-quasi-projective

resolutions of R of length m • fc 4- i for arbitrary integers m ^ 0.

(ii) If qpdR G n, then there are RG-quasi-projective resolutions of R of
length m-n for ail integers m>0.

2.3. Graphs of groups of finite qpd

THEOREM 5. Let T be a graph of groups, {Gv}v its set of vertex groups, {Ge}B
its set of edge groups and G its fundamental group. Suppose there is an integer j such

that qpdR Gv <j for ail veV and that ail the groups Ge are R-torsion-free, then

qpdRG<oo.

Proof. Associated to the graph F there is an exact séquence of RG-modules
A >+ B-» R where A 0E RGIGe and B ®VRG/GV (cf. [5]). Let 9e -*> R
be an KGc-projective resolution, then RG <8>RGe0>€-> RG/Ge is an RG-
projective resolution. Similarly RG ®RGo &v ""* RG/GV is an RG-quasi-
projective resolution, provided 2,u -» R is RGV -quasi-projective. We thus get an
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RG-projective resolution $>—»»A of length p^j, and, using the remark after
Proposition 4, an RG-quasi-projective resolution â-^B of length q>p. The
monomorphism A >+B lifts to an RG-morphism of complexes F:^—»& The
mapping cône construction described by Bass ([1] p. 30) yields an RG-quasi-
projective resolution MC(F)-*> R of length q.

3. Finite subgroups in groups of finite qpd

3.1. Conjugacy classes of finite subgroups

THEOREM 6. Suppose S* 1 is a finite R-torsion suhgroup of G, and {G^h is

a set of subgroups associated to some RG-quasi-projective resolution of R of finite
length. Then there exist a unique aeland a unique left coset gGa of Ga in G, such
that S is contained in gGag'1.

The proof is split into three parts.
(a) The conclusion of the theorem holds if p \S\ is prime.
Let J dénote the set of ail pairs (a, j3) with ael and 0 gGa e G/Ga such that

S«3 S H gG^g"19e 1. Since p is not invertible in R, it follows from Theorem 1

that {S^j is a set of subgroups associated to some RS-quasi-projective resolution
of finite length n, say. Now Sa3 S for ail (a, |3) € / and so applying Proposition 2

twice, we get R-isomorphisms

Comparing the ranks of the free R/pR-modules RJpR and (Bj(BjRlpR, we find
that / is a singleton, as required.

(b) If a,a'el, geG are such that G^HgGag'1 is not R-torsion-free, then
a =a' and geGa.

Otherwise, choose an R-torsion subgroup S of G^CïgG^"1 of prime order,
and apply (a).

(c) The gênerai case follows by induction on the order of S. For the inductive
step, we apply an argument of Wall ([16], Proposition 8). Hère (a) is the initial
case of the induction and (b) plays the rôle of Wall's Lemma 7. Note that if S is

an R-torsion group, so is any subgroup of S.

COROLLARY 6.1. Suppose R =Z and G, {Ga}x are as in Theorem 6. Then

(i) The set {Ga}r is a complète set of représentatives of conjugacy classes of
maximal finite subgroups of G.

(ii) If G & 1 is finite, then I is a singleton, say I {0}, and Gq^G.

Thus, in the particular case R Z, the subgroups Ga are determined up to
conjugacy by G itself independently of the choice of a ZG-quasi-projective
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resolution. In this sensé we may speak about "a set of subgroups {Ga}r associated

to G."
In the case R Z(p), the localisation of Z at a prime p, a weaker form of

Corollary 6.1 holds. We state it as a second corollary, since we refer to it in the

proof of the next theorem.

COROLLARY 6.2. Suppose R Z(p) and G, {G^ are as in Theorem 6. For
each ael, choose a p-Sylow subgroup Sa in Ga. Then

(i) The set {Sa} is a complète set of représentatives of conjugacy classes of
maximal finite p-subgroups of G.

(ii) If G is finite and not p-torsion-free, then lis a singleton, say I {0}, and So

is a p-Sylow subgroup of G.

3.2. Periodicity
Recall ([4] Ch. XII) that a finite group G has p-period fc>0 if the p-

component of its Tate cohomology satisfies Hi(G,-)(p) JFr+k(G,-)(p) and fc is

minimal with this property. This is équivalent to H*(G,—) having period fc on the

category of Z(p)G-modules.
If tr is a non-empty set of primes, then G is tr-periodic if and only if it is

p-periodic for each p e ir. The tt-period of G is the least common multiple of the
the p-periods for ail p € ir.

THEOREM 7. Suppose R Z(1T), where ir is a set of primes. Let G be a finite
group which is not R-torsion-free. Then G has ir-period k if and only if qpdR G
fc.

Proof. Suppose that G has finite 7r-period fc. By a theorem of Swan [15], there
exists an KG-quasi-projective resolution of the form

Therefore, qpdR G ^ fc.

Conversely, suppose qpdR G fc <<» and let p e ir. K G is p-torsion-free, then
G has p-period 1< fc, so we may assume that G has p-torsion.

Choose an RG-quasi-projective resolution 21 -» JR of length fc and apply
the exact functor Z(p)<8>R-to â to obtain a Z(p)G-quasi-projective resolution
&(P)-» Z(p) of length fc.

Since G has p-torsion, it follows from Corollary 6.2. that any set of subgroups
associated to &(p) consists of a single subgroup Go whose index in G is prime to p.

By Proposition 2, we hâve natural isomorphisms

(1) H2k+1(G;-)^Hk+1(G0;-) (2)
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By Theorem 1 and Corollary 6.2, the set {Go} is also associated to 2,(p)

regarded as a Z(p)G0-quasi-projective resolution. By another application of
Proposition 2, we hâve a natural isomorphism

(3) Hk+1(G0;-) H1(G0;-)

Combining (1), (2) and (3) and interpreting the resuit as Tate cohomology, we
hâve a natural isomorphism

Now dimension shifts may be used to establish, for ail i e Z, the natural isomorph-
isms

of functors on Z(p)G-modules. Hence the p-period of G divides k for ail p e tt.

COROLLARY 7.1. If G ^2, then every finite subgroup of G is cyclic.

Proof. Let F be a finite subgroup of G. Then F has period 1 or 2 and hence

F^-H^F, Z) H°(F, Z)=Z/|F|Z

COROLLARY 7.2. Suppose qpd G<<» and {Ga}j is a full set of représentatives

of conjugacy classes of maximal finite subgroups of G. Then for ail q >qpd G,
there are natural isomorphisms

i
of functors from %G-modules to X-modules.

COROLLARY 7.3. Suppose G, {GJ are as in Corollary 7.2. Then for each

ael, qpd Ga divides qpd G.

4. Applications, Examples and Comments

4.1. Groups of finite qpd with torsion

Our theory provides some insight into the structure of groups with non-trivial
torsion and finite qpd. The following results include some known facts about
one-relator groups with torsion. No new results about torsion-free groups are to
be expected, since in this case qpd G cd G.
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PROPOSITION 8. Suppose qpdG<oo and N is the normaliser in G of a
non-trivial finite subgroup. Then N is finite.

Proof. By hypothesis, N contains a non-trivial finite normal subgroup S. By
Corollary 1.1, qpd N<o°. Let {N^j be set of subgroups of N associated to some

ZN-quasi-projective resolution of Z. By Theorem 6, there exist a unique ael
and a unique left coset nNa of Na in N such that S <= nNjt"1. Since S is normal in
N, we hâve S c xiS^x"1 for ail x in N. It follows that N Na9 so by Corollary 1.2,

N is finite.

COROLLARY 8.1. Suppose qpdG<oo and G has non-trivial torsion. Then
either G is finite or G has trivial centre.

COROLLARY 8.2. Let G be an abelian group satisfying the hypothèses of
Corollary 8.1. Then G is finite cyclic.

Proof. Since H2n (Z/pZxZ/pZ;Z) has non-trivial torsion, it follows from
Corollary 3.1 that qpd (Z/pZ xZ/pZ) <». Hence any finite abelian group of finite
qpd is cyclic. (cf. [4], p. 262).

COROLLARY 8.3. Suppose G HxK with HïlïK and G satisfies the

hypothèses of Corollary 8.1. Then H and K are finite of coprime order.

4.2. Conjugacy classes of finite subgroups

PROPOSITION 9. Suppose qpd G n <oo. Then the following are équivalent:
(i) There are only finitely many conjugacy classes of finite subgroups in G.

(ii) There exists an integer j such that for ail i > j the groups H1 (G, Z) are finite.
(iii) H2n(G,Z) is finite.

Proof. Use Theorems 6, 7 and Corollary 7.1 together with the isomorphisms

Remark. Proposition 9 is a partial answer to Wall's question F7 in [17]. It
implies, for example, that a group of type FP» and of finite qpd admits only
finitely many conjugacy classes of finite subgroups.

4.3. Virtually torsion-free groups of finite qpd

(a) Virtual cohomological dimension

PROPOSITION 10. Let G be a one-relator group and R a ring. Then
(i) vcdRG^2.
(ii) For any R-torsion-free subgroup H of G, cdRH^2 holds.
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Proof. Corollary 1.5 applies since G is virtually torsion-free [7]. Hence
vcdR G ^qpdR G ^ 2. Statement (ii) follows from Corollary 1.4. A proof based on
combinatorial arguments is given in ([2], Theorem 7.7).

The inequality vcdR G^qpdR G holds whenever vcdR G is finite. In the case

R Z, this is the most one can say about the relationship between vcd G and

qpd G. We refer to the examples 1,2 below and also Example 3 in 4.4.

EXAMPLE 1. Let G and H be finite groups. Then vcd (G* H) =1 and

qpd (G * H) equals the least common multiple of qpd G and qpd H.

EXAMPLE 2. The matrix group SL(2, Z) is infinité, has torsion and non-
trivial centre. Hence qpd SL(2, Z) <» by Corollary 8.1. However vcd (SL(2, Z))
1.

There is a décomposition for SL(2, Z):

SL(2,Z)=Z/4Z * Z/6Z
Z/2Z

This shows that some care is needed if one wishes to weaken the hypothesis of
Theorem 5. However, the condition set there on the edge-groups is probably
stronger than is necessary for the conclusions to hold.

(b) Farrell-Tate cohomolgy

Recall that the Farrell-Tate cohomology H* is defined in [6] for any group of
finite vcd. Now suppose that G is virtually torsion-free and qpd G is finite, then
by Corollary 1.5 we hâve vcd G ^ qpd G. Since any finite subgroup of G has

periodic Tate cohomology, the Farrell-Tate functors H*(G9 — are periodic
([3], § 14). For ail q > vcd G, there are natural isomorphisms HQ(G, -
Hq(G9-). Hence the next proposition is a conséquence of our results in §3.

PROPOSITION 11. Suppose G is virtually torsion-free, qpd G<<» and {Ga}j
is a set of associated subgroups of G. Let k be the least common multiple of
{qpd Ga}j and m the least common multiple of {|Gj}j. Then

(i) The Farrell-Tate cohomology H*(G,-) has period k dividing qpd G.

(ii) For any XG-module M, the groups H*(G, M) are annihilated by m.

Remarks. (1) Part (ii) of Proposition 11 answers a question of ([3], § 11) in the
spécial case of groups of finite qpd.

(2) The group SL(2, Z) has periodic Farrell-Tate cohomology with period 2,
but qpdSL(2,Z) <».
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4.4 Groups mth the Identity Property
Subgroups of one-relator groups hâve certain properties not shared by groups

of finite qpd in gênerai. We give two examples of groups of finite qpd, each of
which violâtes a gênerai property of subgroups of one-relator groups. In each

case, the group in question has the Identity Property.

EXAMPLE 3. Let H dénote Higman's group

<a,b,c,d|a2 ab, b2 6c, c2 cd, d2 da),

and let S dénote the one-relator group

Choose non-trivial éléments h,h'eH and define

G H* S * H

The two canonical embeddings of H into G extend to an epimorphism of H * H
onto G. Since H has no proper subgroups of finite index [8], neither has G. But
the élément x-1y of G has finite order r> 1, so G is not virtually torsion-free and
vcd G ».

However cd H 2 ([2], p. 167) and qpd S 2 since S is a one-relator group.
Now the proof of Theorem 5 gives a ZG-quasi-projective resolution of Z of
length 2, so qpd G 2.

EXAMPLE 4. Let D dénote the infinité dihedral group Z/2Z * Z/2Z and let
C dénote the infinité cyclic subgroup of index 2 in D. Define G — D *CD> Then

qpd G is finite, by Theorem 5. In fact, the mapping cône construction in the proof
of Theorem 5 yields a ZG-quasi-projective resolution of Z of length 2. It has four
associated subgroups, each of order 2, and together they generate G. By Corollary
6.1, thèse four subgroups of order 2 form a complète set of représentatives of
conjugacy classes of finite subgroups.

Now suppose G is isomorphic to a free product *tGa of finite groups Ga^l
(ael). From the above discussion, we must hâve card (I) 4 and, for each ael,
|GJ 2. In other words, G^*4Z/2Z, and so Gab ©4Z/2Z. However, it
follows from the décomposition G^D*CD that Gab^®3Z/2Z. Thus we hâve
obtained a contradiction, and so G cannot be expressed as a free product of finite

groups.
This example contrasts with the following gênerai fact about one-relator

groups. Let H be a one-relator group and let N be the subgroup of H generated
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by ail the torsion éléments of H. Then N is a free product of finite cyclic
subgroups of H. ([7], Theorem 1). More generally, if S is any subgroup of H,
generated by torsion éléments, then S^N. Applying the Kurosh subgroup
theorem, we deduce that S is a free product of finite cyclic groups.
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