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Boundary regularity and the uniform convergence of
quasiconformal mappings

Raimo Nàkki(1) and Bruce Palka(2)

1. Introduction

Let D be a proper subdomain ot Rn and let (£) be a séquence of quasiconfor-
mal mappings of D into .Rn with uniformly bounded maximal dilatations. Assume
that (/,) converges pointwise in D to a homeomorphism /. Then / is itself a

quasiconformal mapping and (fi) converges to / uniformly on compact subsets of
D. Under what circumstances can it be inferred that this séquence is, in fact,
uniformly convergent on ail of D? Such information can be useful, among other
places, in the study of extremal problems. In this paper we study the above

question in two distinct situations. In Section 3 we treat the case where D is an

arbitrary domain but where each of the mappings /, is assumed to admit a

continuous extension to the closure of D. We show that (fi) converges uniformly
on D if and only if the séquence of boundary mappings converges uniformly on
the boundary of D. In Section 4 the assumption that such boundary mappings
exist is removed, but it is replaced by the requirement that the domain D be

quasiconformally équivalent to a "smoothly bounded" domain. In this case the
uniform convergence of (fi) is characterized in terms of a metric regularity
condition on the séquence of image domains ft(D). This approach involves the use

of a distortion function first introduced by Warschawski [13] to study conformai
mappings in the plane and leads to generalizations of results of Gaier [2]. The

paper concludes with some comments regarding the boundary regularity of the
limit domain /(D), under the assumption that (ft) converges to / uniformly on D.

2. Preliminaries

Unless otherwise stipulated, the notation and terminology in this paper will
conform to the relatively standard notation and terminology employed in the

œPart of this research was done at the University of Michigan in 1974-75. The research was
supportée by the Academy of Finland.

(2)This research was partially supported by NSF Grant MCS 76-06563.
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Boundary regularity 459

book of Vâisâlà [12]. In the absence of a statement to the contrary, any set
considered is assumed to be a subset of extended euclidean n-space JRn

Rn U{°°}, n>2. Ail topological considérations refer to the usual topology on Rn,
that is, to the metric topology associated with the chordal metrie q on Rn.*For x
in JRn and for r>0 we use Bn(x, r) to dénote the open (euclidean) bail of radius r
centered at x, we let Sn~1(x, r) dénote the boundary sphère of Bn(x, r) and we
abbreviate

Bn(r) Bn(0, r), Sn~\r) Sn-\0, r), Bn Bn(l), S"'1 Sn'\l).

By a path in a set G we understand a continuous mapping of an interval on
the real Une into G. A path is termed closed (respectively, open) if its domain is a

closed (respectively, an open) interval. For sets E, F and G the notation 4 (JE, F:
G) indicates the family of ail closed paths which join E to F through G. The
corresponding family of epen paths will be denoted by A0(E, F: G). (See [12, pp.
21-23] for the précise description of thèse path families.) The notation M(A)
désignâtes the conformai modulus of a family A of paths. A homeomorphism /
mapping a domain D into Rn is said to be K-quasiconformal, 1 <K<o°, provided
that

K-1M(A)^M[f(à)]^KM(A) (1)

is satisfied for each family A of paths in D. A mapping / is quasiconformal if it is

K-quasiconformal for some K. The smallest such K is referred to as the maximal
dilatation of / and is denoted by K(f). The terminology chordal isometry is used

to describe a 1-quasiconformal mapping / of Rn onto itself such that

for ail points x, y of JRn.

A family 9 of continuous mappings of a set A into Rn is said to be

equicontinuous at a point x in A it, corresponding to each e > 0, there is a 8 > 0

such that

q[f(x),f(y)-]<e

for every / in 9 and for every y in A satisfying q(x, y)<8. The family 9 is

equicontinuous if it is equicontinuous at each point of A. Ascoli's Theorem asserts

that 9 is equicontinuous if and only if 9 is a normal family, that is, if and only if
each séquence in 9 contains a subsequence which converges uniformly on
compact subsets of A.
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If (/,) is a séquence of K-quasiconformal mappings of a domain D into Rn and
if (ft) converges pointwise in D to a mapping /, then one of the following must
hold: (1) the mapping / is a constant mapping; (2) the mapping / assumes
precisely two values; (3) the mapping / is a K-quasiconformal mapping of D onto
some component of the open set ker,^, Dl9

kerD,= U :[H,Lj=i J

where we hâve written Dt =/l(D). Furthermore, in case (3) it can be shown that
£ —» / uniformly on compact subsets of D. For a detailed discussion of thèse

results the reader is advised to consult the work of Gehring [3], Srebro [11] and

Vâisâlâ [12, §21].

3. Unifonn convergence and boundary mappings

To what extent is the uniform convergence of a séquence of quasiconformal
mappings with uniformly bounded maximal dilatations controlled by the uniform
convergence of associated boundary correspondences? For a pointwise convergent
séquence whose limit is a homeomorphism the answer to this question is provided
by the following theorem.

THEOREM 3.1. Let D be a proper subdomain ofRn and let (ft) be a séquence
of quasiconformal mappings of D with uniformly bounded maximal dilatations
which converges pointwise in D to a homeomorphism. Assume that each ft admits

an extension to a continuous mapping fx ofD. Then (ft) converges uniformly on D if
and only if (ft) converges uniformly on dD.

Proof Dénote by / the limit of the séquence (ft). The necessary part in the
theorem is évident. For the sufficiency it is enough to verify that the séquence
$* (fi) of extended mappings forms an equicontinuous family. (See, for example,
[12, Theorem 20.3].) Since /, -» / uniformly on compact subsets of D, it is clear
that 3* is equicontinuous at points of D. We need only demonstrate the equicon-
tinuity of SF at points of dD. Fix a point b in dD. Because (/j) converges uniformly
on dD, we note that the family 2F \ dD of boundary mappings is equicontinuous at
b. Now assume that 9 fails to be equicontinuous at b. After possible passage to
subsequences and relabeling we may assume that there is a séquence (bt) of points
in D converging to b such that

(2)
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Applying preliminary chordal isometries, we may further assume that b, b' and b"

are finite points and that f(D) contains the point oo. In order to dérive a

contradiction we divide the argument into two parts, depending on the "thick-
ness" of dD near b. To be précise, let U be the set of r in the open interval (0,1)
such that S""1^, r) does not intersect dD. Clearly U is an open subset of (0,1).
As a rough indicator of the thickness of dD near b we make use of the intégral

-Jf
u

Two cases arise.

Case 1. I oo. In this case choose a continuum A' which is contained in f(D)
and which contains oo as an interior point. Set A =/~1(A') and let

qo lmin{q(b\b"\q(A% (3)

where we write q(A') for the chordal diameter of A'. There exists a ô>0 such

that

(4)

whenever T is a topological (n-l)-sphere in Rn such that both components of
Rn\T hâve chordal diameter no smaller than q0. (See [14].) Now let S S""1^, r)
be a sphère which is contained in D and which séparâtes A from b. For large
values of î, S séparâtes A from bx as well. For such i, ft(S) is a topological
(n - l)-sphere and one component of Rn\ft(S) contains ft(b) and /,(b,), while the
other component contains the set /t(A). We infer using (2) and (3) - together with
the fact that /, -» / uniformly on A - that, for sufficiently large i, each component
of JRn\/,(S) has chordal diameter at least q0. Utilizing (4) we conclude that

for sufficiently large i. Since ft->f uniformly on S, this implies that

^6 (5)

for each such sphère S.

Fix ro>0 so that Bn(b,rQ) is disjoint from A and set l/0= t/n(0, ro).

Obviously,

f dr
— oo. (6)

For r in Uo the sphère Sr Sn 1(b9 r) is contained in D and séparâtes A from b.

From (5) we obtain

max |/(x)-/(y)| osc(/, r),
x,yeSr
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whenever r belongs to l/0. It is then a conséquence of (6) that

L [osc(/,r)]n» œ. (7)

On the other hand, Uo is a non-empty open set of real numbers. As such, Uo is a

finite or countably infinité union of disjoint open intervais (rp s,). Each of the

spherical rings Ap

is contained in D. Since the mapping / is K-quasiconformal - hère we set

K suplK(/l)-the n-dimensional version of a lemma due to Gehring [3, p. 18]
implies that

L [ose (/, r)]" -< CI m,,[f(A,)]s OnB(R"\A') < «,

where mn dénotes Lebesgue measure on Rn and where C is a positive constant
depending only on K and n. Recalling (7), we see that in Case 1 we hâve arrived
at the desired contradiction.

Case 2. I«». In this case $v(dr/r) oo? where V (0,1)\[/. Let f>0 and
N>0 be given and write B Bn(b, t). We observe that there exists an s in (0, t)
such that

MWo(F, B H dD : D)] > N, (8)

whenever F is a connected set in D meeting both Sn~1(b, s) and Sn~1(6, f). To see

this choose s in (0, t) such that

Jvo r ~"cn'
(9)

where Vo= VC\(s, t) and where cn is the constant in the "cap inequality." (We
are referring hère to [12, Theorem 10.9].) Let F be a connected set in D which
meets both Sn~1(b, s) and Sn~1(b, t) and let p be an admissible density for the
path family A0(F9 BHdD: D). For each r in Vo, the path family A(F,BCidD: Sr),

where Sr Sn~\b9 r), is minorized by the path family A0(F, Br\dD:DH Sr). The
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"cap inequality" allows us to conclude that

for each r in Vo. Hère mn_! dénotes (n - l)-dimensional Hausdorff measure on
jRn. In light of (9) we obtain

pn dmn >

for each such p. Consequently, M[A0(F, BCidD: D)]>N, establishing (8).
Now fix a point x0 in D such that /(x0) is finite and fix open euclidean balls B',

B" and Bo centered at b\ b" and f(x0), with the property that thèse balls hâve

pairwise disjoint closures. We may assume that

Ub)eB\ £00 eB", fl(x0)eB0

hold for each i. Let a be a closed Jordan arc joining dB0 to dB" in Rn\Bf and

choose, for each i, a closed Jordan arc a, in the set L aUB0UB" which joins
fx(x0) to /î(fri)- Designate by ft the component of c^H/^D) which contains the
point ^(bj. Also, set

M M[A0(L,B':Rn)]<oo. (10)

Next, utilizing the equicontinuity of the family êF \ dD at b, choose a bail
B =Bn(b, t) such that B does not contain the point x0 and such that

Â(BnaD)cB' (il)

is valid for each i. If ft a,, then f^ifr) is a closed Jordan arc joining x0 and 6r If
P,^^, then ft is a Jordan arc with an endpoint in the boundary of ft(D) and,

therefore, /^(ft) has an accumulation point in dD, In view of (11), any such

accumulation point must lie in dD\B. In either case /^(ft) is a connected set in D
which contains bx and which intersects D\B. Because bt-+b we can apply (8) with
N (M+1)K and fix an index i such that M(â)>MK, where, as earlier,
K supt K(ft) and where 4=40(/r1(ft),BfiaD:D). Since /, is K-
quasiconformal we infer from (1) that M[ft(A)]>M. However, /t(4)c:
A0(L,È':Rn). Consequently, by (10), M[/t(4)]<M. Again, in Case 2, a
contradiction has been obtained.
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We are now able to conclude that 9 is equicontinuous at b, as desired. The

proof of Theorem 3.1 is complète.
As a conséquence of Theorem 3.1 we obtain the following normal family

theorem.

THEOREM 3.2. Let D be a proper subdomain of Rn and let & be a family of
continuous mappings of D into Rn such that each member of 9 maps D quasicon-
formally into Rn with uniformly bounded maximal dilatation. Assume that 9
contains no séquence which converges pointwise in D to a constant mapping. Then

9 is a normal family if and only if each of the restricted families 9 \ dD and 9 \ D
is a normal family.

Proof. Only the sufiiciency requires proof. Let </,) be a séquence in 9. By
assumption, {fx) contains a subsequence which converges uniformly on dD and

uniformly on compact subsets of D to a limit mapping /. Making use of [12,
Theorem 21.1], we infer that / is not a mapping which assumes only two values in
D and, by hypothesis, / is not a constant mapping in D. Therefore / is a

quasiconformal homeomorphism in D. Using Theorem 3.1, we conclude that (ft>

has a subsequence which converges uniformly on D, hence uniformly on D. Thus

9 is a normal family.
It is not difficult to exhibit examples which show that, in gênerai, neither the

normality of 9 \ dD nor that of 9 \ D is by itself sufficient to insure the normality
of SF in Theorem 3.2. However, we note the following companion to Theorem
3.2.

THEOREM 3.3. Let D be a proper subdomain of Rn and let & be a family of
continuous mappings of D into Rn such that each member of 3* maps D quasicon-
formally into Rn with uniformly bounded maximal dilatation. Assume that 3*

contains no séquence which converges pointwise in D to either a constant mapping
or a mapping assuming only two values. Then 3? is a normal family if and only if
the restricted family 3* \ dD is a normal family.

Proof. This resuit will follow from Theorem 3.2 if it can be demonstrated that
91 D is a normal family. Suppose that this is not the case. By Ascoli's Theorem,
9 must fail to be equicontinuous at some point x0 in D. This implies the existence

of an e >0, a séquence (xl) in D converging to x0 and a séquence (ft) in 9 such

that, for each i,

,(Xo)]^c. (12)

If x is a point of D\{x0} and if U is a neighborhood of x contained in D whose
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closure does not contain x0, then, for large i, ft does not assume the values
and fXx0) in 17. By (12) and by [12, Theorem 19.2], the séquence <£> is

equicontinuous in U. Therefore (ft) is equicontinuous in D\{x0}. Using Ascoli's
Theorem, we may pass to a subsequence and assume that (ft) converges uniformly
on compact subsets of D\{x0}. We may further assume that </,(x0)) converges, that
is, we may assume that (ft) converges pointwise in D to a mapping /. In view of
the hypothèses, / must be a quasiconformal homeomorphism in D. It then follows
that £ —> / uniformly on compact subsets of D. This, in turn, implies that
q[/i(X)> /i(*o)] -* 0> contradicting (12). We conclude that 3* \ D is a normal family,
as desired.

Theorems 3.1, 3.2 and 3.3 generalize results in [8] and [9], where only suitably
"regular" domains D were considered. (For related ideas see [1] and the paper of
Martio [4].) It must be emphasized that the uniform boundedness of the maximal
dilatations is crucial in thèse theorems. This fact is demonstrated by the example
in [9, p. 291].

4. Uniform convergence and boundary regularity

The remainder of this paper is concerned primarily with quasiconformal
mappings of "smoothly bounded" domains, namely, with domains which are
quasiconformally collared. We will see that the uniform convergence of a séquence

(ft) of K-quasiconformal mappings of a collared domain D is intimately
related to the boundary regularity of the image domains ft(D) and to the manner
in which thèse domains "fit together."

Quasiconformally collared domains. A proper subdomain D of JRn is said to
be quasiconformally collared, or briefly, collared, provided that each boundary
point of D has arbitrarily small neighborhoods U such that 17 H D can be mapped
quasiconformally onto Bn. A collared domain has only finitely many boundary
components, each of which is a compact (n — l)-dimensional manifold. Con-
versely, if D is a domain in jRn with only finitely many boundary components,
each of which is an (n - l)-dimensional C1-submanifold of Rn, then D is collared.
A plane domain is collared if and only if its boundary consists of a finite number
of disjoint Jordan curves. For amplification of the above comments see [5] and
[12, §17].

Finite connectedness. A domain D is said to be finitely connected on the

boundary if each boundary point of D has arbitrarily small neighborhoods U such

that UDD has only finitely many components.
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Uniform domains. A domain D is called a uniform domain if, to each t > 0,
there corresponds a 8 > 0 such that M[A(F, F* : D)] > 8 for each pair of connected

sets F and F* in D with q(F)^t and q(F*)>f. (See [6], [10].) Every collared
domain is a uniform domain and every uniform domain is finitely connected on
the boundary. The converse statements are, in gênerai, false. However, if a

domain D is quasiconformally équivalent to a collared domain, then D is a

uniform domain if and only if D is finitely connected on the boundary. A plane
domain with only finitely many boundary components is a uniform domain if and

only if it is finitely connected on the boundary.

The fonction r\ (r, D). A connected set S in a domain D is termed a cross-set of
D if S is closed in D, if S intersects dD and if D\S has precisely two components,
both of which hâve boundaries which intersect dD. Given such a cross-set S, let
D*(S) be the component of D\S of smaller chordal diameter. Should both
components hâve the same chordal diameter either of the two can be designated
D*(S). For 0<r<l we define

The function tî(*,D) is clearly nondecreasing on (0,1]. Furthermore, Tj(r, D)
17 (r,/(D)) for every chordal isometry /. Roughly speaking tj(-,D) provides a

gauge for measuring "bulges" in D. As such, it is a convenient device for
translating certain qualitative information pertaining to the boundary regularity of
D into quantitative terms. The function tj(-,D) was introduced in dimension
n 2 by Warschawski [13], who used it to study the boundary behavior of
conformai mappings.

Given a séquence (Dt) of domains we will make use of the functions

i|*(r) Ti*(r,<D.» limsup r,(r, Dt)

and

î?*(r) T?*(r, <Dt» lim inf ^(r, D,),
i—*»

defined for r in (0,1].

LEMMA 4.1. Let D be a domain which is quasiconformally équivalent to a
collared domain. Then

limi7(r,D) 0 (13)
r-*O+

if and only if D is finitely connected on the boundary.
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Proof. Suppose first that D is finitely connectée! on the boundary but that (13)
is false. Then there is a d>0 and a séquence (St) of cross-sets of D such that
q(St)—»0, while each component of D\St has chordal diameter at least d. Fix a

continuum F in D. Since S, meets dD, F is contained in one of the components of
D\St, provided that i is sufficiently large. For such i let F, dénote the other
component of D\St. The minorizing principle for the modulus allows us to
conclude that M[A(F, F, : D)]<M[A(F, S, : D)] -> 0, as i -* ». This contradicts the
fact, noted earlier, that D is a uniform domain. Therefore (13) must hold.

The reverse implication in Lemma 4.1 is a spécial case of the following resuit.

LEMMA 4.2. Let D be a domain which is quasiconformally équivalent to a
collared domain and let (ft) be a séquence of quasiconformal mappings of D with
uniformly bounded maximal dilatations which converges pointwise in D to a
homeomorphism f. Assume that

limr,*(r) 0, (14)

where r\* corresponds to the séquence </t(D)) of image domains. Then f(D) is

finitely connected on the boundary.

Proof By composing the mappings f and / with some fixed quasiconformal
mapping of a collared domain onto D, we can reduce the proof to the situation in
which D is itself collared. We assume this to be the case. After the application of
a chordal isometry we may also assume that f(D) contains a continuum E which
has oo as an interior point. Finally, we may assume that E is contained in
Dt =ft(D) for each i. Since D is collared, results in [5] imply that the conclusion
of the theorem will follow, if it can be established that / has a continuous
extension to D.

If no such extension exists, there is a point b in dD and there are séquences
(bk) and (b£) of points in D converging to b such that

(15)

for each k. Let

Ô=min(|q(E)j. (16)

By hypothesis there is an ro>0 such that

Tî*(ro)<8. (17)
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Thus there exist arbitrarily large indices i with

rî(r0,Dl)<ô. (18)

This fact, in conjunction with (15), will lead to a contradiction.
Since D is collared, there is a neighborhood U of b and a homeomorphism h

ofUnD onto {x (xl9 ...,xn)eBn:xn>0} such that h(b) 0 and such that h is

quasiconformal in UHD [5]. We may choose U so small that Ùnf~1(E) <j>.

Because j\1—>f~1 uniformly on E [12, §21] we may, in fact, assume that

ûnf;\E) <f> (19)

for each i. Let K0 KK', where K snplK(fl) and K' K(h \ UHD). A lemma
due to Gehring [3, p. 18] implies that, given p in (0,1) and given a Ko-
quasiconformal mapping g of B+ {xeBn: xn>0} into Rn\E, there exists t in
(p2, p) such that

where S+~1(t) Sn~1(t)nB+ and where Co is a positive constant depending only
on n and Ko. Fix p in (0,1) so that the right-hand side of (20) is smaller than r0

and choose a neighborhood Uo <= U of b so that

p2). (21)

Finally, fix an index k for which bk and b^ belong to U0C\D.
Choose an index i for which (18) is satisfied and for which

q[f(K), ft(bk)]<, |
We apply (20) and choose t in (p2,p) such that q(S)<r0, where S

(/,oh~1)[S!T1(0], a cross-set of DX. By (19) and (21), one component of D\S
contains JE, while the other component contains the points £(6^) and fx(b'k). Using
(16), (15) and (22), we infer that each component of Dt\S has chordal diameter
no smaller than S and conclude that î|(r0, Dt)>8, contradicting (18). Therefore
the mapping / extends to a continuous mapping of D, as desired, and the proof of
Lemma 4.2 is complète.
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The next lemma begins to reveal the relevance of fonctions such as t)* to
questions concerning uniform convergence.

LEMMA 4.3. Under the other hypothèses of Lemma 4.2, assume that (14)
remains valid when the séquence (ft) is replaced by an arbitrary subsequence. Then

(ft) converges uniformly on D.

Proof. As in the proof of Lemma 4.2 we need only consider the case where D
is itself collared. Under this assumption and the assumption that (14) holds for the

séquence (ft) we hâve just seen that / admits an extension to a continuous
mapping / of D. Now suppose that (f,) fails to converge uniformly on D. After
possibly passing to a subsequence of (ft) and relabeling, we may assume the
existence of a séquence (bt) in D, which converges to some point b, such that

qlfl(bl)J(bl)]^d>0 (23)

for ail i. By hypothesis, the passage to a subsequence of (ft) does not alter the
validity of (14). Since ft—>f uniformly on compact sets in D, b must be a point in
dD. The remainder of this argument is quite similar to the proof of Lemma 4.2
and much of the notation used there can be carried over Verbatim for use in the

présent situation. In particular, we assume that E, D,, ô, r0, U, h, p and Uo are
defined as in the proof of Lemma 4.2 so that (16), (17), (19), (20) and (21) hold.
Furthermore, because / is continuous at b, we may assume that 17 was chosen

sufficiently small that

q[/([/nD)]<| (24)

Now fix a point b0 in U0C\D and then fix an index i for which (18) is satisfied,
for which bx belongs to U0DD and for which

(25)

We apply (20) to obtain t in (p2,p) such that q(S)<r0, where S

(ft°h~1)[Sl~1(t)l a cross-set of D,. By (19) and (21), one component of Dt\S
contains E, while the other component contains the points /i(bo) and f,(6,). Using
(16), (23), (24) and (25) we see that each component of Dt\S has chordal
diameter at least S and conclude that r\(r09Dt)>8, contradicting (18). This
contradiction shows that (ft) converges uniformly on D, as asserted.

We are now in a position to state one of the main results in this section.
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THEOREM 4.4. Let D be a domain which is quasiconformally équivalent to a
collared domain and let (ft) be a séquence of quasiconformal mappings of D with
uniformly bounded maximal dilatations which converges pointwise in D to a
homeomorphism. Assume that

lim Tï*(r) O, (26)
r-*0+

where tj* corresponds to the séquence (ft(D)) of image domains. Then (ft) converges
uniformly on D.

Proof. It is clear that (26) implies the validity of (14) for the séquence (£) and
for any of its subsequences. Lemma 4.3 implies the stated conclusion.

The essential content of condition (26) is that, as i gets larger, the domains

ft(D) display progressively greater "regularity" near their boundaries. The idea of
using a function such as 17* to express this notion quantitatively originated with
Warschawski [13] and was developed by Gaier [2]. Condition (26) is not, in
gênerai, a necessary condition for uniform convergence to occur. For example, we

may take fx f2 • • • /, where / maps a collared domain D quasiconformally
onto a domain D' which is not finitely connected on the boundary. Trivially £ —> /
uniformly on D but

lim Tj*(r)= lim i?(r, J

by Lemma 4.1. On the other hand, we now show that condition (26) is indeed

necessary in the one situation where we may reasonably expect it be so, consider-

ing Lemma 4.2.

THEOREM 4.5. Let D be a domain which is quasiconformally équivalent to a
collared domain and let (ft) be a séquence of quasiconformal mappings of D with
uniformly bounded maximal dilatations which converges pointwise in D to a
homeomorphism f. Assume that f(D) is finitely connected on the boundary. Then

(fi) converges uniformly on D if and only if limr_»0+ Tï*(r)= 0> where 17* corresponds

to the séquence (ft(D)) of image domains.

Proof. We need only verify the necessity. As earlier, we are free to assume
that D is actually a collared domain and, therefore, a uniform domain. Because

f(D) is finitely connected on the boundary, / has a continuous extension to D [5].
In particular, / is uniformly continuous on D. This fact, together with the uniform
convergence of (£), implies that to each e>0 there correspond a t>0 and an
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index i0 such that

2, (27)

whenever i^i0 and x, y are points in D satisfying q(x,y)<t.
Choose a continuum E in /(D). We may assume that E is contained in

A /,(D) for each i. Then

d=infq(E»aDI)>0, (28)

where q(E, dDt) désignâtes the chordal distance between E and dDt. Fix e in

(0, q(E)) and let t and i0 be such that (27) holds. Next let K supt X(f,), let 8 > 0

be a constant corresponding to the domain D and the number t in the définition

of a uniform domain and let M=8K1. Condition (27) and the K-
quasiconformality of /, imply that

:A)]>M, (29)

whenever i^i0 and F is a connected set in Dt with q(F)>e. Finally, it is easily
verified that there is an s > 0 such that

M[A(E,F:Rn)]<M (30)

for each set F in Rn which satisfies q(F)<s and q(E, F) > d/2. Set r min {s, d/2}.
Now fix i > i0 and let S be a cross-set of D, with q(S)<r. Since S meets dDl5

we infer from (28) that q(E, S)>d/2. In particular, E is contained in one of the

components of Dt\S. Let F designate the other component. Then

by the minorizing principle for the modulus and by (30). Because F is connected

we conclude using (29) that q(F)<e. Consequently, q[D?(S)]<e. Taking the

supremum over ail such S yields 17(r, Df)< e. Since this is true for each i > i0, we
obtain r)*(r) lim supt.^ Tj(r, Dt)< e. Because 17* is nondecreasing, it is now clear
that limr_^0+ ri*(r) 0, as asserted. The proof of Theorem 4.5 is complète.

As a conséquence of Theorem 4.5 we obtain the following reformulation of
Theorem 3.1 in the context of collared domains.

THEOREM 4.6. Let D be a collared domain and let (ft> be a séquence of
quasiconformal mappings of D with unifonnly bounded maximal dilatations which
converges pointwise in D to a homeomorphism. Assume that each f admits an
extension to a continuous mapping fx of D. Then (fx) converges uniformly on D if
and only if limr_^0+ ï|*(r) 0, where t)* corresponds to the séquence </t(D)) 0/
image domains.
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Proof. The sufficiency follows from Theorem 4.4; only the necessity needs to
be established. The uniform convergence of (ft) on D clearly forces the uniform
convergence of </t) on D. This, in turn, implies that f \imlfl has an extension to
a continuous mapping of D. Using results in [5], we conclude that f(D) is finitely
connected on the boundary. Theorem 4.5 now applies to insure that

In this section an attempt has been made to characterize the uniform
convergence of a séquence (ft) of quasiconformal mappings in terms of conditions
such as (26) which dépend solely on the intrinsic geometry of the image domains

ft(D). The results of this attempt, as stated in Theorem 4.5, might at first sight be

regarded as somewhat unsatisfying, owing to the restriction imposed on the limit
domain f(D). However, the next resuit shows that this restriction cannot be

avoided and that Theorem 4.5 is, in the framework of the présent section, the best
kind of resuit one can hope to establish.

THEOREM 4.7. Let D be a domain which is quasiconformally équivalent to a
collared domain and let (ft) be a séquence of quasiconformal mappings of D with
uniformly bounded maximal dilatations which converges uniformly on D to a
homeomorphism f. Suppose that f(D) fails to be finitely connected on the boundary.
Then there exists a séquence (gt) of quasiconformal mappings of D with uniformly
bounded maximal dilatations such that gl(D) fl(D) and such that (gt) converges
to f pointwise in D - but not uniformly on D.

Proof. As in previous proofs, we may assume that D is a collared domain.
Because f(D) is not finitely connected on the boundary, / cannot hâve an

extension to a continuous mapping of D [5]. Consequently, there is a point b in
dD such that the cluster set C(/, b) of / at b contains at least two points.

Since D is collared, there is a neighborhood U of b and a homeomorphism h

of UdD into Bn which maps UC\D quasiconformally onto Bn and which
satisfies h(b) en, where en (0,0,..., 1) [5]. Fix Ôo in (0,1) so that

Bn(cn,2ô0)nsn-1ch(i/naD).

For 0 < S < 2ôo> dénote by Cô the open cône

C6={rx:r>0,xGBn(en,8)nSn-1}.

Fix a séquence (a[) in Sn~1 H C8o converging to en such that the mapping g,

defined in Bn by g(x) (/t>h"1)(x), has a radial limit b[ at the point a[. This is

possible because a quasiconformal mapping of JBn has a radial limit at each point
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of Sn~1, with the possible exception of a set of conformai capacity zéro [7]. We
may assume that {b[) converges to some point b'. Clearly b' belongs to C(g9 en)

C(/, b). Choose a point b" in C(f, b), b'£b"9 and choose neighborhoods U' and
U" of b' and b", respectively, with disjoint closures. We may assume that b[ lies in
U1 for every i. Next fix, for each i, a number rt in (0,1) such that

U\ (31)

where

L; {ra;:rt<r<l}.

Finally, sélect a séquence (a?) in C^DB" converging to en such that

\<\ ^ r,, g(aî) e 17", lim gia",) b". (32)

It is shown in [7] that there is a number K'> 1, depending only on 80 and n,
such that the foliowing assertions are valid: for each pair of points z and w in C^
with |z| |w| there exists a K'-quasiconformal mapping F of Rn onto itself (a

"modified rotation") which satisfies F(z) w, |F(x)| |x| for each x in jRn and

F(x) x for ail x outside C2So. Furthermore, if (ôt) is a séquence in (0, ô0) with
8t —>0 and if z, and wt are points of Côi with |z,| |w,|, it is possible to choose

mappings Ft of this type in such a way that liml_^ooFl(x) x for each x in JRn.

Returning to the proof of Theorem 4.7, we use the preceding remarks to
choose a séquence (fy) of K'-quasiconformal mappings of Bn onto intself such

that

(33)

for x in Bn\C2So and

for ail x in B". Now define g, in D by

if xeDnt/;
(35)

if xeD\U.l
Then gt is a quasiconformal mapping with



474 RAIMO NAKKI AND BRUCE PALKA

and gl(D) /,(D). It is easily shown using (34) that (g,) converges to / pointwise
in D. On the other hand, write bx h^ia") and Ll h~\L^ and observe that, for
each U f(bl) (g°h)(bl) g(a':)e U" by (32), while ^(We/^L,) by (33) and (35).

Since, by (31), f(Ll) g(L[) is contained in 17', we conclude that

for each t. Consequently,

bX &(bt)']*q\f(bl)9fl(Ll)']^q(U9, 17")

for large i, in view of the fact that (ft) converges to / uniformly on D. It follows
that (gt) does not converge to / uniformly on D.

We conclude this section with a theorem which indicates the close relationship
between extension problems and convergence problems.

THEOREM 4.8. Let D be a collared domain and let f be a quasiconformal
mapping of D onto a domain D'. Then f has an extension to a continuous mapping

of D if and only if each séquence (f) of quasiconformal mappings of D onto D'
with uniformly bounded maximal dilatations, which converges to f pointwise in D,
converges to f uniformly on D.

Proof. A continuous extension of / to D exists if and only if D' is finitely
connected on the boundary [5]. Thus the sufficiency in Theorem 4.8 follows from
Theorem 4.7, while the necessity is a conséquence of Lemma 4.1 and Theorem
4.4.

5. Unifonn convergence and the regularity of limit domains

We consider once again a domain D which is quasiconformally équivalent to a
collared domain and a séquence (/,) of quasiconformal mappings of D with
uniformly bounded maximal dilatations which converges pointwise in D to a

homeomorphism /. Given the fact that each ft(D) has a "regular" boundary-say
/j(D) is finitely connected on the boundary or even collared-one might optimisti-
cally expect to conclude that f(D) exhibits corresponding boundary regularity.
Such optimism is, in gênerai, unwarranted, as simple examples demonstrate.
There are, however, circumstances under which one might realistically hope to
glean information concerning the boundary regularity of f(D) from given data on
the boundary regularity of the domains ft(D). It may happen that thèse domains
"fit together" in a particularly felicitous configuration. The uniform convergence
of (fi) may also hâve an effect on the regularity of f(D). In what follows, we will
briefly investigate thèse notions.
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THEOREM 5.1. Let D be a domain which is quasiconformally équivalent to a
collared domain and let (ft) be a séquence of quasiconformal mappings of D with
uniformly bounded maximal dilatations which converges pointwise in D to a
homeomorphism f. Assume that /(D)c=/I(D) for each i and that f(D) is finitely
connected on the boundary. Then f(D) is collared.

Proof. As in earlier proofs, we may assume that D is collared. Then / has a

continuous extension to D [5]. Since /(D)c:/l(D) for each i, [10, Theorem 4]
implies that the séquence (f"1) of inverse mappings converges to f"1 uniformly on
f(D). Because /(D)c/t(D), each of the mappings f~x is uniformly continuous on
f(D). Therefore f~x is uniformly continuous on f(D). Consequently, f'1 can be

extended to a continuous mapping of f(D), that is, / extends to a homeomorphism
of D. This implies that D is collared.

Theorem 5.1 allows us to strengthen Lemma 4.2 in the présent context.

COROLLARY 5.2. Let D, (ft) and f be as in Theorem 5.1. Suppose that

/(D)<=/i(D) for each i and that limr_>0+rî*(r)= 0, where 7)* corresponds to the

séquence (/,(£))) of image domains. Then f(D) is collared.

We also note the foliowing conséquence of Theorem 5.1.

COROLLARY 5.3. Let D, </,> and f be as in Theorem 5.1. Assume that each

of the domains f(D) is finitely connected on the boundary, that (/,) converges
uniformly on D and that f(D)^fl(D) for each i. Then f(D) is collared.

It may happen that, in Theorem 5.1, each of the domains ft(D) is collared. In
this case the condition /(D)cz/l(D) can be weakened to f(D)<=/i(D) without
affecting the conclusion. Moreover, the proof carries over Verbatim. This is true
because each /, now extends to a homeomorphism on D and f'1 is still uniformly
continuous on f(D). We then obtain the following analogue of Corollary 5.3.

COROLLARY 5.4. Let D, </t) and f be as in Theorem 5.1. Assume that each

of the domains ft(D) is collared, that (£) converges uniformly on D and that

/(D)c/l(D) for each i. Then f(D) is collared.

It is not difficult to construct examples which show that the conclusion of
Corollary 5.4 may fail to hold if either the assumption on uniform convergence or
the condition /(D)e/t(D) is omitted.

We conclude this paper with the following reformulation of Theorem 4.5 in
the présent setting.
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COROLLARY 5.5. Let D, </t) and f be as in Theorem 5 1. Assume that each

of the domains /t(D) is collared and that /(D)c/t(D) for each u Then </t)

converges uniformly on D if and only if f(D) is collared and lim,.^-T|*(r) O,

where r\* corresponds to the séquence (ft(D)) of image domains.
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