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Boundary regularity and the uniform convergence of
quasiconformal mappings

Ramo NAKkIY and BRUCE PALKA®

1. Introduction

Let D be a proper subdomain of R" and let (f;) be a sequence of quasiconfor-
mal mappings of D into R" with uniformly bounded maximal dilatations. Assume
that (f;) converges pointwise in D to a homeomorphism f. Then f is itself a
quasiconformal mapping and (f;) converges to f uniformly on compact subsets of
D. Under what circumstances can it be inferred that this sequence is, in fact,
uniformly convergent on all of D? Such information can be useful, among other
places, in the study of extremal problems. In this paper we study the above
question in two distinct situations. In Section 3 we treat the case where D is an
arbitrary domain but where each of the mappings f; is assumed to admit a
continuous extension to the closure of D. We show that (f;) converges uniformly
on D if and only if the sequence of boundary mappings converges uniformly on
the boundary of D. In Section 4 the assumption that such boundary mappings
exist is removed, but it is replaced by the requirement that the domain D be
quasiconformally equivalent to a ‘“‘smoothly bounded’” domain. In this case the
uniform convergence of (f;) is characterized in terms of a metric regularity
condition on the sequence of image domains f;(D). This approach involves the use
of a distortion function first introduced by Warschawski [13] to study conformal
mappings in the plane and leads to generalizations of results of Gaier [2]. The
paper concludes with some comments regarding the boundary regularity of the
limit domain f(D), under the assumption that (f;) converges to f uniformly on D.

2. Preliminaries

Unless otherwise stipulated, the notation and terminology in this paper will
conform to the relatively standard notation and terminology employed in the

(M Part of this research was done at the University of Michigan in 1974-75. The research was
supported by the Academy of Finland.
@ This research was partially supported by NSF Grant MCS 76-06563.
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book of Viisild [12]. In the absence of a statement to the contrary, any set
considered is assumed to be a subset of extended euclidean n-space R"=
R"U{x}, n=2. All topological considerations refer to the usual topology on R",
that is, to the metric topology associated with the chordal metric ¢ on R".For x
in R" and for r >0 we use B"(x, r) to denote the open (euclidean) ball of radius r
centered at x, we let $"7'(x, r) denote the boundary sphere of B"(x,r) and we
abbreviate

B"(r)=B"(0, 1), " '(r)=8""%0,r), B"=B"(1), S '=S""'(1).

By a path in a set G we understand a continuous mapping of an interval on
the real line into G. A path is termed closed (respectively, open) if its domain is a
closed (respectively, an open) interval. For sets E, F and G the notation A(E, F:
G) indicates the family of all closed paths which join E to F through G. The
corresponding family of epen paths will be denoted by Ay(E, F: G). (See [12, pp.
21-23] for the precise description of these path families.) The notation M(A)
designates the conformal modulus of a family A of paths. A homeomorphism f
mapping a domain D into R" is said to be K-quasiconformal, 1=K <, provided
that

K 'M(A)=M([f(A)]=KM(4A) (1)

is satisfied for each family A of paths in D. A mapping f is quasiconformal if it is
K-quasiconformal for some K. The smallest such K is referred to as the maximal
dilatation of f and is denoted by K(f). The terminology chordal isometry is used
to describe a 1-quasiconformal mapping f of R" onto itself such that

alfx), fy)l=q(x,y)

for all points x, y of R™.

A family % of continuous mappings of a set A into R" is said to be
equicontinuous at a point x in A if, corresponding to each £ >0, there is a § >0
such that

alf(x), f(y)l<e

for every f in &% and for every y in A satisfying q(x, y)<8. The family & is
equicontinuous if it is equicontinuous at each point of A. Ascoli’s Theorem asserts
that & is equicontinuous if and only if & is a normal family, that is, if and only if
each sequence in % contains a subsequence which converges uniformly on
compact subsets of A.
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If (f,) is a sequence of K-quasiconformal mappings of a domain D into R™ and
if (f;) converges pointwise in D to a mapping f, then one of the following must
hold: (1) the mapping f is a constant mapping; (2) the mapping f assumes
precisely two values; (3) the mapping f is a K-quasiconformal mapping of D onto
some component of the open set ker,_,.. D,

ker D, = | int [ﬂ D,-],
i—>o0 i=1 i=i

where we have written D, = f;(D). Furthermore, in case (3) it can be shown that
f; = f uniformly on compact subsets of D. For a detailed discussion of these
results the reader is advised to consult the work of Gehring [3], Srebro [11] and
Viisila [12, §21]. ‘

3. Uniform convergence and boundary mappings

To what extent is the uniform convergence of a sequence of quasiconformal
mappings with uniformly bounded maximal dilatations controlled by the uniform
convergence of associated boundary correspondences? For a pointwise convergent
sequence whose limit is a homeomorphism the answer to this question is provided
by the following theorem.

THEOREM 3.1. Let D be a proper subdomain of R" and let (f,) be a sequence
of quasiconformal mappings of D with uniformly bounded maximal dilatations
which converges pointwise in D to a homeomorphism. Assume that each f, admits
an extension to a continuous mapping f; of D. Then (f.) converges uniformly on D if
and only if (f.) converges uniformly on aD.

Proof. Denote by f the limit of the sequence (f;). The necessary part in the
theorem is evident. For the sufficiency it is enough to verify that the sequence
% =(f,) of extended mappings forms an equicontinuous family. (See, for example,
[12, Theorem 20.3].) Since f; — f uniformly on compact subsets of D, it is clear
that & is equicontinuous at points of D. We need only demonstrate the equicon-
tinuity of & at points of aD. Fix a point b in 3D. Because (f;) converges uniformly
on dD, we note that the family % | 9D of boundary mappings is equicontinuous at
b. Now assume that & fails to be equicontinuous at b. After possible passage to
subsequences and relabeling we may assume that there is a sequence (b,) of points
in D converging to b such that

lim f,(b) = b’ # b"=lim f,(b,). ()
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Applying preliminary chordal isometries, we may further assume that b, b’ and b" ’
are finite points and that f(D) contains the point «. In order to derive a
contradiction we divide the argument into two parts, depending on the “thick-
ness”’ of dD near b. To be precise, let U be the set of r in the open interval (0, 1)
such that S"~1(b, r) does not intersect dD. Clearly U is an open subset of (0, 1).
As a rough indicator of the thickness of D near b we make use of the integral
- [
r
U
Two cases arise.

Case 1. I =. In this case choose a continuum A' which is contained in f(D)
and which contains « as an interior point. Set A =f"'(A’) and let

qo=3min{q(b’, b"), q(A")}, (3)

where we write q(A’) for the chordal diameter of A’. There exists a 6 >0 such
that

q(T)=35, 4)

whenever T is a topological (n—1)-sphere in R" such that both components of
R™\T have chordal diameter no smaller than q,. (See [14].) Now let S = S™~'(b, r)
be a sphere which is contained in D and which separates A from b. For large
values of i, S separates A from b; as well. For such i, f,(S) is a topological
(n—1)-sphere and one component of R"\f,(S) contains f;(b) and f,(b,), while the
other component contains the set f;(A). We infer using (2) and (3) — together with
the fact that f; — f uniformly on A - that, for sufficiently large i, each component
of R"\f.(S) has chordal diameter at least q,. Utilizing (4) we conclude that
qlf:(S)]= 8 for sufficiently large i. Since f; — f uniformly on S, this implies that

qlf(S)]=6 (5

for each such sphere S.
Fix r,>0 so that B"(b,r,) is disjoint from A and set Uy,= UN(0,ry).
Obviously,

[, == ©

For r in U, the sphere S, =S""!(b, r) is contained in D and separates A from b.
From (5) we obtain

8 =q[f(S,)]= max |f(x)—f(y)| = osc (£, r),

x,y €S,
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whenever r belongs to U,. It is then a consequence of (6) that
d
L [osc (f, NI 7’ =0, (7)

On the other hand, U, is a non-empty open set of real numbers. As such, U, is a
finite or countably infinite union of disjoint open intervals (r;, s;). Each of the
spherical rings A,

A;={xeR":r,<|x—b|<s},

is contained in D. Since the mapping f is K-quasiconformal —here we set
K =sup; K(f;) — the n-dimensional version of a lemma due to Gehring [3, p. 18]
implies that

| toscnrT=cT misan=cm, R4 <,

where m, denotes Lebesgue measure on R" and where C is a positive constant
depending only on K and n. Recalling (7), we see that in Case 1 we have arrived
at the desired contradiction.

Case 2. 1<, In this case f, (dr/fr)=o, where V=(0,1)\U. Let t>0 and
N >0 be given and write B = B"(b, t). We observe that there exists an s in (0, t)
such that

MI[AL(E, BNaD: D)]=N, ' (8)

whenever F is a connected set in D meeting both $"7'(b, s) and S"~!(b, t). To see
this choose s in (0, t) such that

[ ¥ | ;
T C )

where Vo=V N(s, t) and where c, is the constant in the ‘“‘cap inequality.” (We
are referring here to [12, Theorem 10.9].) Let F be a connected set in D which
meets both $" (b, s) and S"'(b, t) and let p be an admissible density for the
path family Ay(F, BNdD: D). For each r in V,, the path family A(F, BNaD: S,),
where S, = S" (b, r), is minorized by the path family A,(F, BNaD: DNS,). The



Boundary regularity 463

‘“‘cap inequality”’ allows us to conclude that

Cn
J pn dmn—l =
S,

T
for each r in V,. Here m,_, denotes (n—1)-dimensional Hausdorff measure on
R™. In light of (9) we obtain

J' p"dm, = J' (I p" dmn_l) dr=N
. Vo S,

for each such p. Consequently, M[A,(F, BNaD: D)]= N, establishing (8).

Now fix a point x, in D such that f(x,) is finite and fix open euclidean balls B’,
B” and B, centered at b’, b” and f(x,), with the property that these balls have
pairwise disjoint closures. We may assume that

fib)eB',  fi(b)eB",  fi(x)€eB,

hold for each i. Let a be a closed Jordan arc joining 8B, to dB” in R™\B’ and
choose, for each i, a closed Jordan arc «; in the set L = a U B,U B” which joins
fi(xo) to fi(b;). Designate by B; the component of a; Nf,(D) which contains the
point f;(b;). Also, set

M=MI[A,L, B":R")] <. (10)

Next, utilizing the equicontinuity of the family % |oD at b, choose a ball
B = B"(b, t) such that B does not contain the point x, and such that

f.(BNaD)< B’ (11)

is valid for each i. If B; = a;, then f; '(B;) is a closed Jordan arc joining x, and b;. If
B: # a;, then B; is a Jordan arc with an endpoint in the boundary of f;(D) and,
therefore, f; '(B;) has an accumulation point in dD. In view of (11), any such
accumulation point must lie in 8D\B. In either case f; }(8,) is a connected set in D
which contains b, and which intersects D\B. Because b, — b we can apply (8) with
N=(M+1)K and fix an index i such that M(4)> MK, where, as earlier,
K=sup, K(f) and where A=A,f'(B;),BNaD:D). Since f is K-
quasiconformal we infer from (1) that M[f,(A)]>M. However, f.(4d)c
Ao(L, B':R™). Consequently, by (10), M[f.(A)]=<M. Again, in Case 2, a con-
tradiction has been obtained.
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We are now able to conclude that % is equicontinuous at b, as desired. The
proof of Theorem 3.1 is complete.

As a consequence of Theorem 3.1 we obtain the following normal family
theorem.

THEOREM 3.2. Let D be a proper subdomain of R™ and let % be a family of
continuous mappings of D into R™ such that each member of % maps D quasicon-
formally into R" with uniformly bounded maximal dilatation. Assume that F
contains no sequence which converges pointwise in D to a constant mapping. Then
% is a normal family if and only if each of the restricted families % | 9D and ¥ | D
is a normal family.

Proof. Only the sufficiency requires proof. Let (f;) be a sequence in %. By
assumption, {f;) contains a subsequence which converges uniformly on 4D and
uniformly on compact subsets of D to a limit mapping f. Making use of [12,
Theorem 21.1], we infer that f is not a mapping which assumes only two values in
D and, by hypothesis, f is not a constant mapping in D. Therefore f is a
quasiconformal homeomorphism in D. Using Theorem 3.1, we conclude that (f;)
has a subsequence which converges uniformly on D, hence uniformly on D. Thus
% is a normal family.

It is not difficult to exhibit examples which show that, in general, neither the
normality of % | aD nor that of % | D is by itself sufficient to insure the normality
of ¥ in Theorem 3.2. However, we note the following companion to Theorem
3.2

THEOREM 3.3. Let D be a proper subdomain of R™ and let % be a family of
continuous mappings of D into R" such that each member of % maps D quasicon-
formally into R" with uniformly bounded maximal dilatation. Assume that F
contains no sequence which converges pointwise in D to either a constant mapping
or a mapping assuming only two values. Then ¥ is a normal family if and only if
the restricted family % | 0D is a normal family.

Proof. This result will follow from Theorem 3.2 if it can be demonstrated that
% | D is a normal family. Suppose that this is not the case. By Ascoli’s Theorem,
% must fail to be equicontinuous at some point x, in D. This implies the existence
of an € >0, a sequence (x;) in D converging to x, and a sequence (f;) in ¥ such
that, for each i,

qlfi(x), fi(x0)]=«. (12)

If x is a point of D\{x,} and if U is a neighborhood of x contained in D whose
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closure does not contain x,, then, for large i, f; does not assume the values f;(x;)
and fi(xo) in U. By (12) and by [12, Theorem 19.2], the sequence (f,) is
equicontinuous in U. Therefore (f;) is equicontinuous in D\{x,}. Using Ascoli’s
Theorem, we may pass to a subsequence and assume that (f;) converges uniformly
on compact subsets of D\{x,}. We may further assume that (f;(x,)) converges, that
is, we may assume that (f;) converges pointwise in D to a mapping f. In view of
the hypotheses, f must be a quasiconformal homeomorphism in D. It then follows
that f; — f uniformly on compact subsets of D. This, in turn, implies that
qlf.(x)), f.(xo)]— 0, contradicting (12). We conclude that % | D is a normal family,
as desired.

Theorems 3.1, 3.2 and 3.3 generalize results in [8] and [9], where only suitably
“regular” domains D were considered. (For related ideas see [1] and the paper of
Martio [4].) It must be emphasized that the uniform boundedness of the maximal

dilatations is crucial in these theorems. This fact is demonstrated by the example
in [9, p. 291].

4. Uniform convergence and boundary regularity

The remainder of this paper is concerned primarily with quasiconformal
mappings of ‘“smoothly bounded” domains, namely, with domains which are
quasiconformally collared. We will see that the uniform convergence of a sequ-
ence (f;) of K-quasiconformal mappings of a collared domain D is intimately
related to the boundary regularity of the image domains f;(D) and to the manner
in which these domains ‘“fit together.”

Quasiconformally collared domains. A proper subdomain D of R" is said to
be quasiconformally collared, or briefly, collared, provided that each boundary
point of D has arbitrarily small neighborhoods U such that U N D can be mapped
quasiconformally onto B". A collared domain has only finitely many boundary
components, each of which is a compact (n—1)-dimensional manifold. Con-
versely, if D is a domain in R" with only finitely many boundary components,
each of which is an (n — 1)-dimensional C*-submanifold of R", then D is collared.
A plane domain is collared if and only if its boundary consists of a finite number

of disjoint Jordan curves. For amplification of the above comments see [5] and
[12, §17].

Finite connectedness. A domain D is said to be finitely connected on the
boundary if each boundary point of D has arbitrarily small neighborhoods U such
that U N D has only finitely many components.
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Uniform domains. A domain D is called a uniform domain if, to each t>0,
there corresponds a § >0 such that M[A(F, F*: D)]= & for each pair of connected
sets F and F* in D with q(F)=t and q(F*)=t. (See [6], [10].) Every collared
domain is a uniform domain and every uniform domain is finitely connected on
the boundary. The converse statements are, in general, false. However, if a
domain D is quasiconformally equivalent to a collared domain, then D is a
uniform domain if and only if D is finitely connected on the boundary. A plane
domain with only finitely many boundary components is a uniform domain if and
only if it is finitely connected on the boundary.

The function n(r, D). A connected set S in a domain D is termed a cross-set of
D if S is closed in D, if S intersects D and if D\S has precisely two components,
both of which have boundaries which intersect dD. Given such a cross-set S, let
D*(S) be the component of D\S of smaller chordal diameter. Should both
components have the same chordal diameter either of the two can be designated
D*(S). For 0<r=1 we define

n (rs D) = Supq(S)sr q[D*(S)].

The function n(-, D) is clearly nondecreasing on (0, 1]. Furthermore, n(r,D)=
n(r, f(D)) for every chordal isometry f. Roughly speaking m(:, D) provides a
gauge for measuring ‘“bulges” in D. As such, it is a convenient device for
translating certain qualitative information pertaining to the boundary regularity of
D into quantitative terms. The function n(:, D) was introduced in dimension

n=2 by Warschawski [13], who used it to study the boundiry behavior of
conformal mappings.

Given a sequence (D,) of domains we will make use of the functions
n*(r) = n*(r, (DY) =lim sup n(r, D)
and ,
N4(r) = nu(r, (D)) = lim inf n(r, D,),

defined for r in (0, 1].

LEMMA 4.1. Let D be a domain which is quasiconformally equivalent to a
collared domain. Then

lim n(r, D)=0 (13)

r—0*

if and only if D is finitely connected on the boundary.
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Proof. Suppose first that D is finitely connected on the boundary but that (13)
is false. Then there is a d >0 and a sequence (S;) of cross-sets of D such that
q(S;) — 0, while each component of D\S; has chordal diameter at least d. Fix a
continuum F in D. Since S; meets 8D, F is contained in one of the components of
D\S,, provided that i is sufficiently large. For such i let F; denote the other
component of D\S;. The minorizing principle for the modulus allows us to
conclude that M[A(F, F.: D)]=MI[A(F, S; : D)] — 0, as i — o, This contradicts the
fact, noted earlier, that D is a uniform domain. Therefore (13) must hold.

The reverse implication in Lemma 4.1 is a special case of the following result.

LEMMA 4.2. Let D be a domain which is quasiconformally equivalent to a
collared domain and let (f.) be a sequence of quasiconformal mappings of D with
uniformly bounded maximal dilatations which converges pointwise in D to a
homeomorphism f. Assume that

lim m4(r)=0, (14)

r—0"

where my corresponds to the sequence (f.(D)) of image domains. Then f(D) is
finitely connected on the boundary.

Proof. By composing the mappings f; and f with some fixed quasiconformal
mapping of a collared domain onto D, we can reduce the proof to the situation in
which D is itself collared. We assume this to be the case. After the application of
a chordal isometry we may also assume that f(D) contains a continuum E which
has « as an interior point. Finally, we may assume that E is contained in
D, = f,(D) for each i. Since D is collared, results in [5] imply that the conclusion
of the theorem will follow, if it can be established that f has a continuous
extension to D.

If no such extension exists, there is a point b in dD and there are sequences
(b.) and (b;) of points in D converging to b such that

alf(b), f(bi)]=d >0 (15)

for each k. Let
. (d
8 =min {-2—, q(E)}. (16)

By hypothesis there is an r,>0 such that

Nx(ro) <8. 17)
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Thus there exist arbitrarily large indices i with
n(ro, D) <. (18)

This fact, in conjunction with (15), will lead to a contradiction.

Since D is collared, there is a neighborhood U of b and a homeomorphism h
of UND onto {x =(x,, ..., x,)€B":x, =0} such that h(b)=0 and such that h is
quasiconformal in UND [5]. We may choose U so small that UNfY(E)= ¢.
Because f; ' — f ! uniformly on E [12, §21] we may, in fact, assume that

UNnfi'(E)=4¢ (19)

for each i. Let K,= KK’, where K =sup; K(f,) and K'=K(h | UND). A lemma
due to Gehring [3, p. 18] implies that, given p in (0,1) and given a K-
quasiconformal mapping g of B} ={xe B": x,, >0} into R"\E, there exists ¢t in
(p>, p) such that

Comn(R"\E)]"“’

q[g(s::—l(t»]s[ e

(20)

where ST 1(t)=S""'(t) N B} and where C, is a positive constant depending only
on n and K,. Fix p in (0, 1) so that the right-hand side of (20) is smaller than r,
and choose a neighborhood U,< U of b so that

h(U,N D)< B} NB"(p?). (21)

Finally, fix an index k for which b, and b; belong to U,N D.
Choose an index i for which (18) is satisfied and for which

alfibo, fBII<G  alfGD, fibin<S, (22)

We apply (20) and choose t in (p% p) such that q(S)<r,, where S=
(fieh D[S 1(1)], a cross-set of D,. By (19) and (21), one component of D;\S
contains E, while the other component contains the points f;(b,) and f;(b;). Using
(16), (15) and (22), we infer that each component of D,\S has chordal diameter
no smaller than 8 and conclude that n(ry, D;) =8, contradicting (18). Therefore
the mapping f extends to a continuous mapping of D, as desired, and the proof of
Lemma 4.2 is complete.
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The next lemma begins to reveal the relevance of functions such as my to
questions concerning uniform convergence.

LEMMA 4.3. Under the other hypotheses of Lemma 4.2, assume that (14)
remains valid when the sequence (f.) is replaced by an arbitrary subsequence. Then
(f;) converges uniformly on D.

Proof. As in the proof of Lemma 4.2 we need only consider the case where D
is itself collared. Under this assumption and the assumption that (14) holds for the
sequence (f;) we have just seen that f admits an extension to a continuous
mapping f of D. Now suppose that (f.) fails to converge uniformly on D. After
possibly passing to a subsequence of (f;) and relabeling, we may assume the
existence of a sequence (b;) in D, which converges to some point b, such that

qlfi(b), f(b)]=d >0 (23)

for all i. By hypothesis, the passage to a subsequence of (f;) does not alter the
validity of (14). Since f; — f uniformly on compact sets in D, b must be a point in
dD. The remainder of this argument is quite similar to the proof of Lemma 4.2
and much of the notation used there can be carried over verbatim for use in the
present situation. In particular, we assume that E, D,, 8, r,, U, h, p and U, are
defined as in the proof of Lemma 4.2 so that (16), (17), (19), (20) and (21) hold.
Furthermore, because f is continuous at b, we may assume that U was chosen
sufficiently small that

q[f(UﬂD)]<—§—. (24)

Now fix a point b, in U,N D and then fix an index i for which (18) is satisfied,
for which b; belongs to U,N D and for which

alfi(bo), fbo] <5 (25)

We apply (20) to obtain t in (p? p) such that q(S)<r, where S=
(fieh ™ H[S771(t)], a cross-set of D,. By (19) and (21), one component of D;\S
contains E, while the other component contains the points f;(b,) and f;(b;). Using
(16), (23), (24) and (25) we see that each component of D,\S has chordal
diameter at least 8 and conclude that n(r,, D;)=38, contradicting (18). This
contradiction shows that (f;) converges uniformly on D, as asserted.

We are now in a position to state one of the main results in this section.
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THEOREM 4.4. Let D be a domain which is quasiconformally equivalent to a
collared domain and let {f;) be a sequence of quasiconformal mappings of D with
uniformly bounded maximal dilatations which converges pointwise in D to a
homeomorphism. Assume that

lim n*(r)=0, (26)

r—0*

where n* corresponds to the sequence {f;(D)) of image domains. Then (f,) converges
uniformly on D.

Proof. It is clear that (26) implies the validity of (14) for the sequence (f;) and
for any of its subsequences. Lemma 4.3 implies the stated conclusion.

The essential content of condition (26) is that, as i gets larger, the domains
f.(D) display progressively greater ‘‘regularity’’ near their boundaries. The idea of
using a function such as n™* to express this notion quantitatively originated with
Warschawski [13] and was developed by Gaier [2]. Condition (26) is not, in
general, a necessary condition for uniform convergence to occur. For example, we
may take f,=f,=---=f, where f maps a collared domain D quasiconformally
onto a domain D’ which is not finitely connected on the boundary. Trivially f, — f
uniformly on D but

lim n*@)=lim n(r, D) #0

r—0* r—0"

by Lemma 4.1. On the other hand, we now show that condition (26) is indeed
necessary in the one situation where we may reasonably expect it be so, consider-
ing Lemma 4.2.

THEOREM 4.5. Let D be a domain which is quasiconformally equivalent to a
collared domain and let (f;) be a sequence of quasiconformal mappings of D with
uniformly bounded maximal dilatations which converges pointwise in D to a
homeomorphism f. Assume that f(D) is finitely connected on the boundary. Then
(f.) converges uniformly on D if and only if lim,_ - n*(r) =0, where n* corresponds
to the sequence (f,(D)) of image domains.

Proof. We need only verify the necessity. As earlier, we are free to assume
that D is actually a collared domain and, therefore, a uniform domain. Because
f(D) is finitely connected on the boundary, f has a continuous extension to D [5].
In particular, f is uniformly continuous on D. This fact, together with the uniform
convergence of (f;), implies that to each £ >0 there correspond a t>0 and an
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index i, such that
qlf:(x), fi(y)1<e/2, (27)

whenever i =i, and x, y are points in D satisfying q(x, y)<t.

Choose a continuum E in f(D). We may assume that E is contained in
D, = f.(D) for each i. Then

d =inf q(E, aD;)>0, (28)

where q(E, oD;) designates the chordal distance between E and oD,. Fix ¢ in
(0, q(E)) and let t and i, be such that (27) holds. Next let K =sup; K(f,), let >0
be a constant corresponding to the domain D and the number ¢ in the definition
of a uniform domain and let M=8K '. Condition (27) and the K-
quasiconformality of f; imply that

MI[A(E, F:D,)]= M, (29)

whenever i =i, and F is a connected set in D; with q(F)=e. Finally, it is easily
verified that there is an s >0 such that

M[A(E, F:R")]<M (30)

for each set F in R™ which satisfies q(F)<s and q(E, F)=d/2. Set r =min {s, d/2}.

Now fix i =i, and let S be a cross-set of D, with q(S)=r. Since S meets oD,
we infer from (28) that q(E, S)=d/2. In particular, E is contained in one of the
components of D;\S. Let F designate the other component. Then

M[A(E, F:D,)]=MI[A(E, S:D,)]=M[A(E, S:R")]<M

by the minorizing principle for the modulus and by (30). Because F is connected
we conclude using (29) that q(F)<e. Consequently, q[D¥(S)]<e. Taking the
supremum over all such S yields n(r, D;) < &. Since this is true for each i =i,, we
obtain n*(r) =lim sup;_,.. n(r, D;) < . Because n* is nondecreasing, it is now clear
that lim,_,o- n*(r) =0, as asserted. The proof of Theorem 4.5 is complete.

As a consequence of Theorem 4.5 we obtain the following reformulation of
Theorem 3.1 in the context of collared domains.

THEOREM 4.6. Let D be a collared domain and let {f,) be a sequence of
quasiconformal mappings of D with uniformly bounded maximal dilatations which
converges pointwise in D to a homeomorphism. Assume that each f, admits an
extension to a continuous mapping f, of D. Then (f,) converges uniformly on D if

and only if lim,_,o- n*(r)=0, where n* corresponds to the sequence (f,(D)) of
image domains.
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Proof. The sufficiency follows from Theorem 4.4; only the necessity needs to
be established. The uniform convergence of (f;) on D clearly forces the uniform
convergence of (f,) on D. This, in turn, implies that f = lim, f, has an extension to
a continuous mapping of D. Using results in [5], we conclude that f(D) is finitely
connected on the boundary. Theorem 4.5 now applies to insure that
lim, o+ n*(r) =0.

In this section an attempt has been made to characterize the uniform con-
vergence of a sequence (f;) of quasiconformal mappings in terms of conditions
such as (26) which depend solely on the intrinsic geometry of the image domains
f;(D). The results of this attempt, as stated in Theorem 4.5, might at first sight be
regarded as somewhat unsatisfying, owing to the restriction imposed on the limit
domain f(D). However, the next result shows that this restriction cannot be
avoided and that Theorem 4.5 is, in the framework of the present section, the best
kind of result one can hope to establish.

THEOREM 4.7. Let D be a domain which is quasiconformally equivalent to a
collared domain and let (f;) be a sequence of quasiconformal mappings of D with
uniformly bounded maximal dilatations which converges uniformly on D to a
homeomorphism f. Suppose that f(D) fails to be finitely connected on the boundary.
Then there exists a sequence g;) of quasiconformal mappings of D with uniformly
bounded maximal dilatations such that g,(D) = f,(D) and such that (g;) converges
to f pointwise in D — but not uniformly on D.

Proof. As in previous proofs, we may assume that D is a collared domain.
Because f(D) is not finitely connected on the boundary, f cannot have an
extension to a continuous mapping of D [5]. Consequently, there is a point b in
aD such that the cluster set C(f, b) of f at b contains at least two points.

Since D is collared, there is a neighborhood U of b and a homeomorphism h
of UND into B" which maps UND quasiconformally onto B" and which
satisfies h(b) =e,, where e, =(0,0,...,1) [5]. Fix &, in (0, 1) so that

B"(e,,28,)NS" 'c h(U NabD).
For 0<§=28§,, denote by C; the open cone

Cs={rx:r>0,xeB"(e,, §)NS"'}.

Fix a sequence (a}) in $"~' N G, converging to e, such that the mapping g,
defined in B™ by g(x)=(f° h~")(x), has a radial limit b; at the point a/. This is
possible because a quasiconformal mapping of B" has a radial limit at each point
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of S"~!, with the possible exception of a set of conformal capacity zero [7]. We
may assume that (b]) converges to some point b’. Clearly b’ belongs to C(g, e,) =
C(f, b). Choose a point b” in C(f, b), b'# b", and choose neighborhoods U’ and
U" of b’ and b", respectively, with disjoint closures. We may assume that b! lies in
U’ for every i. Next fix, for each i, a number r, in (0, 1) such that

gL)= U, (31)
where
Li={ra;:r,=r<1}
Finally, select a sequence {(a) in Cs,NB" converging to e, such that

lafl=r,  glaDelU", limg(a})=>b". (32)

It is shown in [7] that there is a number K'>1, depending only on §, and n,
such that the following assertions are valid: for each pair of points z and w in G,
with |z| =|w| there exists a K'-quasiconformal mapping F of R" onto itself (a
“modified rotation”) which satisfies F(z)=w, |F(x)|=|x| for each x in R"™ and
F(x)=x for all x outside C,5. Furthermore, if (5,) is a sequence in (0, §,) with
8, — 0 and if z; and w; are points of Cs with |z;|=]|w;|, it is possible to choose
mappings F, of this type in such a way that lim,_,.. F;(x) = x for each x in R".

Returning to the proof of Theorem 4.7, we use the preceding remarks to
choose a sequence (h;) of K'-quasiconformal mappings of B" onto intself such
that

hi(a})e L, hi(x)=x (33
for x in B"\C,,, and

lim h; (x) = x (34)

i—»c0

for all x in B". Now define g, in D by

ioh_lo .oh , if DﬂU,
gi(x)={ (f; h;°h)(x) xe€ 35)

fi(x), if xeD\U.
Then g; is a quasiconformal mapping with

K(g)=K'K(h)*sup K(f)
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and g, (D)=f;(D). It is easily shown using (34) that (g;) converges to f pointwise
in D. On the other hand, write b, = h~'(a?) and L; = h~'(L!) and observe that, for
each i, f(b)=(g°h)(b,) = g(a})e U" by (32), while g (b)) € f;(L;) by (33) and (35).
Since, by (31), f(L;)=g(L!) is contained in U’, we conclude that

qlf(b), f(L)]1=q(U', U)>0
for each i. Consequently,
qlf(b), &(B)1=alf(b), f.(L)]1=3q(U’, U")

for large i, in view of the fact that (f;) converges to f uniformly on D. It follows
that (g;) does not converge to f uniformly on D.

We conclude this section with a theorem which indicates the close relationship
between extension problems and convergence problems.

THEOREM 4.8. Let D be a collared domain and let f be a quasiconformal
mapping of D onto a domain D'. Then f has an extension to a continuous mapping
of D if and only if each sequence {f.) of quasiconformal mappings of D onto D’
with uniformly bounded maximal dilatations, which converges to f pointwise in D,
converges to f uniformly on D.

Proof. A continuous extension of f to D exists if and only if D’ is finitely
connected on the boundary [5]. Thus the sufficiency in Theorem 4.8 follows from

Theorem 4.7, while the necessity is a consequence of Lemma 4.1 and Theorem
4.4.

5. Uniform convergence and the regularity of limit domains

We consider once again a domain D which is quasiconformally equivalent to a
collared domain and a sequence (f;) of quasiconformal mappings of D with
uniformly bounded maximal dilatations which converges pointwise in D to a
homeomorphism f. Given the fact that each f;(D) has a ‘“‘regular’” boundary — say
fi(D) is finitely connected on the boundary or even collared — one might optimisti-
cally expect to conclude that f(D) exhibits corresponding boundary regularity.
Such optimism is, in general, unwarranted, as simple examples demonstrate.
There are, however, circumstances under which one might realistically hope to
glean information concerning the boundary regularity of f(D) from given data on
the boundary regularity of the domains f;(D). It may happen that these domains
“fit together” in a particularly felicitous configuration. The uniform convergence
of (f;) may also have an effect on the regularity of f(D). In what follows, we will
briefly investigate these notions.
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THEOREM 5.1. Let D be a domain which is quasiconformally equivalent to a
collared domain and let (f;) be a sequence of quasiconformal mappings of D with
uniformly bounded maximal dilatations which converges pointwise in D to a
homeomorphism f. Assume that f(D)< f,(D) for each i and that f(D) is finitely
connected on the boundary. Then f(D) is collared.

Proof. As in earlier proofs, we may assume that D is collared. Then f has a
continuous extension to D [5]. Since f(D)c<f,(D) for each i, [10, Theorem 4]
implies that the sequence {f; ') of inverse mappings converges to f~ ' uniformly on
f(D). Because f(D)< f,(D), each of the mappings f; ! is uniformly continuous on
f(D). Therefore f~* is uniformly continuous on f(D). Consequently, f~* can be
extended to a continuous mapping of f(D), that is, f extends to a homeomorphism
of D. This implies that D is collared.

Theorem 5.1 allows us to strengthen Lemma 4.2 in the present context.

COROLLARY 5.2. Let D, {f;) and f be as in Theorem 5.1. Suppose that

f(D)< f.(D) for each i and that lim,_.y- n4(r) =0, where ny corresponds to the
sequence (f;(D)) of image domains. Then f(D) is collared.

We also note the following consequence of Theorem 5.1.

COROLLARY 5.3. Let D, {f;) and f be as in Theorem 5.1. Assume that each
of the domains f;(D) is finitely connected on the boundary, that (f,) converges
uniformly on D and that f(D) < f,(D) for each i. Then f(D) is collared.

It may happen that, in Theorem 5.1, each of the domains f;(D) is collared. In
this case the condition mc fi(D) can be weakened to f(D)c f,(D) without
affecting the conclusion. Moreover, the proof carries over verbatim. This is true
because each f, now extends to a homeomorphism on D and f;! is still uniformly
continuous on f(D). We then obtain the following analogue of Corollary 5.3.

COROLLARY 5.4. Let D, (f;) and f be as in Theorem 5.1. Assume that each
of the domains f.(D) is collared, that (f;) converges uniformly on D and that
f(D)< f.(D) for each i. Then f(D) is collared.

It is not difficult to construct examples which show that the conclusion of
Corollary 5.4 may fail to hold if either the assumption on uniform convergence or
the condition f(D)c< f,(D) is omitted.

We conclude this paper with the following reformulation of Theorem 4.5 in
the present setting.
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COROLLARY 5.5. Let D, {f;) and f be as in Theorem 5.1. Assume that each
of the domains f;(D) is collared and that f(D)c< f,(D) for each i. Then (f,)
converges uniformly on D if and only if f(D) is collared and lim,_,, n*(r) =0,
where n™* corresponds to the sequence (f;(D)) of image domains.
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