A universal space for normal bundles of n manifolds.

Autor(en): Brown, E.H., Jr. / Peterson, F.P.
Objekttyp: Article
Zeitschrift: Commentarii Mathematici Helvetici

Band (Jahr): 54 (1979)

PDF erstellt am:
19.05.2024

Persistenter Link: https://doi.org/10.5169/seals-41587

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

A universal space for normal bundles of \boldsymbol{n}-manifolds

E. H. Brown, Jr, and F. P. Peterson ${ }^{1}$

§1. Introduction

In [3] the authors gave a simple criterion for deciding whether a polynomial in Stiefel-Whitney classes is zero on the normal bundles of all smooth n-manifolds. The ideal of relations among Stiefel-Whitney classes for all n-manifolds, $I_{n} \subset$ $H^{*}(B O)$ was defined by

$$
I_{n}=\left\{w \in H^{*}(B O) \mid w\left(\nu_{M^{n}}\right)=0 \quad \text { for all } \quad \mathbf{M}^{n}\right\}
$$

where M^{n} denotes a smooth n-manifold and ν_{M} is its stable normal bundle. Let $\Phi: H^{*}(B O) \simeq H^{*}(\mathrm{MO})$ be the Thom isomorphism and for $w \in H^{*}(B O)$, define $w S q^{i}$ to be $\Phi^{-1}\left(\chi\left(S q^{i}\right) \Phi(w)\right)$. It was shown that I_{n} consists of all Z_{2}-linear combinations of elements of the form $w S q^{i}$ where $2 i>n-|w|(|w|=$ dimension of $w)$.

In this paper we give a stronger version of this result, namely:

THEOREM 1. There is a space $B O / I_{n}$ and a map $\pi: B O / I_{n} \rightarrow B O$ such that
(a) If M is a smooth, compact n-manifold and $h: M \rightarrow B O$ classifies ν_{M}, then there is a map $\bar{h}: M \rightarrow B O / I_{n}$ such that $\pi \bar{h} \simeq h$.
(b) The following sequence is exact.

$$
0 \longrightarrow I_{n} \subset H^{*}(B O) \xrightarrow{\pi^{*}} H^{*}\left(B O / I_{n}\right) \longrightarrow 0 .
$$

Theorem 1 shows that $B O / I_{n}$ is a universal space for normal bundles of n manifolds in that stably, every such bundle is induced from the bundle over $B O / I_{n}$ and $B O / I_{n}$ is the space with the smallest cohomology having this property.

Our original result on I_{n} suggested the possibility of defining higher order characteristic classes, that is, one could form a space B over $B O$ by killing the

[^0]elements of I_{n}. Then an element of $H^{*}(B)$ might give a "new" characteristic class for n-manifolds. For example, with $n=4$ or 5 , the relation
$$
\left(S q^{2}+w_{1} \cup S q^{1}+w_{2} U\right)\left(v_{3}\right)=v_{3} S q^{2}=\left(1 S q^{3}\right) S q^{2}=0
$$
where v_{3} is the $W u$ class, gives a class in $H^{4}(B)$ which is not a polynomial in Stiefel-Whitney classes. Theorem 1 shows that on an n-manifold this "new" class will be a polynomial in Stiefel-Whitney classes modulo indeterminacy.

The spaces $B O / I_{n}$ are also related to the conjecture that any smooth n manifold immerses in $R^{2 n-\alpha(n)}$ where $\alpha(n)$ is the number of ones in the dyadic expansion of n. Since this conjecture is equivalent to the normal bundle map $h: \mathbf{M}^{n} \rightarrow B O$ lifting to $B O_{n-\alpha(n)}([9])$, the following is a stronger form of the conjecture:

CONJECTURE. $\pi: B O / I_{n} \rightarrow B O$ lifts to $B O_{n-\alpha(n)}$.
Using our proof of Theorem 1, our results in [4] can be restated in the following way which gives some plausibility to the above conjecture.

THEOREM 2. If ζ is the stable universal bundle over BO, MO is its Thom spectrum, MO / I_{n} is the Thom spectrum of $\pi^{*} \zeta$ and $\mathrm{MO}(n-\alpha(n))$ is the Thom spectrum of the universal bundle over $B O_{n-\alpha(n)}$, then $\mathrm{MO} / \mathrm{I}_{n}$ lifts to $\mathrm{MO}(n-a(n))$.

This paper is organized as follows: In $\S 2$ we give a detailed outline of the proof of Theorem 1 setting forth most of the notation and describing the various technical problems arising in the construction of $B O / I_{n}$. Then in Sections 3, 4, 5, and 6 we prove the various lemmas stated in $\S 2$. Throughout the remainder of this paper n is a fixed positive integer.

§2. Outline of the Proof of Theorem 1

All cohomology will be with Z_{2} coefficients, A will be the mod two Steenrod algebra and $\chi: A \rightarrow A$ will be the canonical antiautomorphism. The semi-tensor product of A and $H^{*}(B O)$ ([6]) will be denoted by $A(B O)$, that is, $A(B O)=$ $A \otimes H^{*}(B O)$ with the algebra structure defined by

$$
(a \otimes u)(b \otimes v)=\sum a b_{i}^{\prime} \otimes\left(\chi\left(b_{i}^{\prime \prime}\right) u\right) v
$$

where $b \rightarrow \sum b_{i}^{\prime} \otimes b_{i}^{\prime \prime}$ under the diagonal of A. We denote $a \otimes u$ by $a \circ u$.

By a spectrum Y, we will mean a collection of spaces Y_{q} and maps $g_{q}: S Y_{q} \rightarrow$ Y_{q+1}. If X and Y are spectra, a map $f: X \rightarrow Y$ of degree p will be a collection of homotopy classes $f_{q} \in\left[X_{q}, Y_{q+p}\right]$ compatible with the maps g_{q}. If ξ is a real k-plane bundle, $T(\xi)$ will denote its Thom spectrum, i.e., $T(\xi)_{q}=S^{q-k}$ (Thom space of ξ). Thus the Thom class is in $H^{0}(T(\xi))$. If ξ is a vector bundle over B, $\Phi: H^{*}(B) \approx H^{*}(T(\xi))$ will be the Thom isomorphism. We make $H^{*}(T(\xi))$ into an $A(B O)$ module as follows: Let $h: B \rightarrow B O$ classify ξ. If $u \in H^{*}(T((\xi)), w \in$ $H^{*}(B O)$ and $a \in A,(a \circ w) u=a\left(h^{*}(w) u\right)$. One easily checks that $\Phi\left(I_{n}\right) \subset$ $H^{*}(\mathrm{MO})$ is an $A(B O)$ submodule.

We begin by constructing an A-free, acyclic resolution of $\Phi\left(I_{n}\right)$. In [3] the following was proved:

THEOREM 2.1. If $\left\{u_{i}\right\}$ is an A basis for $H^{*}(\mathrm{MO})$, then $\Phi\left(I_{n}\right)$ is the A module generated by

$$
\left\{\chi\left(S q^{i}\right) u_{i}\left|2 j>n-\left|u_{i}\right|\right\}\right.
$$

For a partition $\omega=\left\{j_{1}, j_{2}, \ldots, j_{l}\right\}$ let $s_{\omega} \in H^{*}(B O)$ be the usual class ([17]) associated with the symmetric function $\sum t_{1}^{j_{1}} t_{2}^{j_{2}} \cdots t_{1}^{j_{1}}$. For each partition ω let ω_{r} be the partition consisting of odd integers j, one for each $j 2^{r} \in \omega$. Let

$$
u_{\omega}=\prod_{r} s_{\omega_{r}}^{2 r}
$$

Since

$$
u_{\omega}=s_{\omega}+\sum s_{\omega^{\prime}}
$$

where ω^{\prime} has fewer entries than ω and $\left\{s_{\omega}\right\}$ is a basis for $H^{*}(B O),\left\{u_{\omega}\right\}$ is also a basis for $H^{*}(B O)$. Also $\left\{\Phi\left(u_{\omega}\right) \mid 2^{i}-1 \notin \omega\right\}$ is an A basis for $H^{*}(\mathrm{MO})$ since $\left\{\Phi\left(s_{\omega}\right) \mid 2^{i}-1 \notin \omega\right\}$ is.

In [2] an A-free acyclic resolution of $A / A\left\{\chi\left(S q^{i}\right) \mid i>h\right\}$ was constructed. Combining these resolutions with 2.1 and the $\Phi\left(u_{\omega}\right)$ basis, we obtain the following resolution of $\Phi\left(I_{n}\right)$.

Let Λ be the graded free associative algebra over Z_{2} with unit generated by λ_{i}, $i=0, \pm 1, \pm 2, \ldots,\left|\lambda_{i}\right|=i$, modulo the relations: If $2 i<j$

$$
\lambda_{i} \lambda_{j}=\sum\binom{s-1}{2 s-(j-2 i)} \lambda_{i+s} \lambda_{j-s}
$$

If $I=\left(i_{1}, i_{2}, \ldots, i_{l}\right)$, let $\lambda_{I}=\lambda_{i_{1}} \lambda_{i_{2}} \cdots \lambda_{i_{i}}, l(I)=l, t(I)=i_{l}$, and $\lambda_{()}=1$. We define I
to be admissible if $2 i_{i} \geqq i_{j+1}$. As we will see in $\S 3,\left\{\lambda_{I} \mid I\right.$ admissible $\}$ is a Z_{2} basis for Λ. Let $\left\{\lambda^{I} \mid I\right.$ admissible $\}$ be the dual basis of $\Lambda^{*}=\operatorname{Hom}\left(\Lambda, Z_{2}\right)$.

Let U_{1} be the vector space over Z_{2} with basis the symbols $\lambda^{I} u_{\omega}$ where I is admissible, $2^{i}-1 \notin \omega, l(I)=l$ and $2(t(I)+1)>n-\left|u_{\omega}\right|$. Grade U_{l} by $\left|\lambda^{I} u_{\omega}\right|=$ $\left|\lambda^{I}\right|+\left|u_{\omega}\right|$. Let $d: A \otimes U_{l} \rightarrow A \otimes U_{l-1}$ be the A linear map defined by

$$
d\left(1 \otimes \lambda^{I} u_{\omega}\right)=\sum \lambda^{I}\left(\lambda_{j} \lambda_{J}\right) \chi\left(S q^{i}\right) \otimes \lambda^{J} u_{\omega}
$$

where the sum ranges over all j and admissible J. Note by 2.2 , if $\lambda^{I}\left(\lambda_{i} \lambda_{J}\right) \neq 0$, $t(J) \geqq t(I)$ and hence d is well defined. Let $\eta: A \otimes U_{0} \rightarrow H^{*}(\mathrm{MO})$ be given by $\boldsymbol{\eta}\left(a \otimes \boldsymbol{\lambda}^{()} \boldsymbol{u}_{\omega}\right)=a \boldsymbol{\Phi}\left(u_{\omega}\right)$.

PROPOSITION 2.3. The following sequence is exact:

$$
\longrightarrow A \otimes U_{l} \xrightarrow{d} A \otimes U_{l-1} \longrightarrow \cdots \longrightarrow A \otimes U_{0}
$$

and

$$
\Phi\left(I_{n}\right)=\eta\left(\text { image }\left(d: A \otimes U_{1} \rightarrow A \otimes U_{0}\right)\right)
$$

We prove 2.3 in $\S 3$.
For a graded vector space V over Z_{2}, let $K(V)$ denote the EilenbergMacLane spectrum such that $\pi_{*}(K(V))=V^{*}$ and $H^{*}(K(V))=A \otimes V$.

PROPOSITION 2.4. There is a sequence of Ω-spectra $X_{l}, l=0,1,2, \ldots$ and maps $\alpha_{l}: X_{l-1} \rightarrow K\left(U_{l}\right)$ of degree +1 such that
(i) $X_{0}=K\left(U_{0}\right)$
(ii) X_{l} is the fibration over X_{l-1} induced by α_{l} from the contractible fibration over $K\left(U_{l}\right)$.
(iii) If $i: K\left(U_{l}\right) \rightarrow X_{l}$ is the inclusion of the fibre of $X_{l} \rightarrow X_{l-1},\left(\alpha_{l+1} i\right)^{*}=$ $d: A \otimes U_{l+1} \rightarrow A \otimes U_{l}$.
(iv) If M is a smooth n-manifold, ν is its normal bundle, $\mathrm{g}: \mathrm{MO} \rightarrow K\left(U_{0}\right)$ realizes η and $h: T(\nu) \rightarrow \mathrm{MO}$ comes from the classifying map of ν, then any lifting of $\mathrm{gh}: \mathrm{T}(\nu) \rightarrow X_{0}$ to X_{l-1} lifts to X_{l}.

Since the X_{l} 's are constructed from an acyclic complex,
$\lim H^{*}\left(X_{l}\right) \approx \operatorname{Coker}\left(d: A \otimes U_{1} \rightarrow A \otimes U_{0}\right) \approx H^{*}(\mathrm{MO}) / \Phi\left(I_{n}\right)$.
To construct $B O / I_{n}$ we essentially construct a tower of spaces

$$
\rightarrow B_{l} \rightarrow B_{l-1} \rightarrow \cdots \rightarrow B_{0}=B O
$$

with fibres Eilenberg-MacLane spaces, such that if $T_{l}=T\left(\zeta_{l}\right)$ where $\zeta_{l} \rightarrow B_{l}$ is the pull back of the universal bundle over $B O$, then $T_{l}=X_{l}$ in dimensions $\leqq n$. We can then, more or less, define $B O / I_{n}=\lim B_{l}$.

We recall how the cohomology of a Thom space of a vector bundle changes, in a stable range, when a cohomology class in the base is killed. Suppose $g: B \rightarrow B O$ is a map such that $g_{*}: \pi_{q}(B) \approx \pi_{q}(B O)$ for $2 q \leqq n, V$ is a graded vector space with $V_{q}=0$ for $2 q \leqq n$ and $p: B^{\prime} \rightarrow B$ is the fibration induced by a map $\gamma: B \rightarrow$ $K(V)_{1}\left(K(V)=\left\{K(V)_{q}\right\}\right)$. Let $T=T\left(g^{*} \zeta\right)$ and $T^{\prime}=T\left(p^{*} g^{*} \zeta\right)$. Viewing $B^{\prime} \subset B$ as the fibre of γ, γ factors as $B \xrightarrow{j} B / B^{\prime} \xrightarrow{\gamma^{\prime}} K(V)_{1}$. Let

$$
\Psi:(A(B O) \otimes V)^{q} \rightarrow H^{q+1}\left(T / T^{\prime}\right)
$$

be given by $\Psi(a \circ u \otimes v)=a\left(u \Phi\left(\left(\gamma^{\prime}\right)^{*}\left(v_{1}\right)\right)\right)$ where $v_{1} \in H^{*}\left(K(V)_{1}\right)$ is the element corresponding to $v \in V$ and Φ is the relative Thom isomorphism. In §6 we show that Ψ is an isomorphism for $q \leqq n$. (An equivalent form of this was proved in [1].) Combining this with the exact sequence of the pair (T, T^{\prime}) we obtain an exact sequence,

$$
\rightarrow H^{a}(T) \rightarrow H^{q}\left(T^{\prime}\right) \rightarrow(A(B O) \otimes V)^{a} \rightarrow H^{q+1}(T) \rightarrow
$$

for $q \leqq n$.
The cohomology of X_{l} and X_{l-1} are related by the Serre exact sequence,

$$
\rightarrow H^{q}\left(X_{l-1}\right) \rightarrow H^{a}\left(X_{l}\right) \rightarrow\left(A \otimes U_{l}\right)^{q} \rightarrow H^{q+1}\left(X_{l-1}\right) \rightarrow .
$$

Thus if we have constructed B_{l-1} such that $T_{l-1}=X_{l-1}$ in dimensions $\leqq n$ and we wish to construct B_{l}, we should take $B=B_{l-1}$ in the above and choose V_{l} so that $A(B O) \otimes V_{l}=A \otimes U_{l}$ as A modules. Our main algebraic result asserts that this is possible. Let

$$
V_{l}=\left\{\lambda^{I} u_{\omega} \in U_{l} \mid \omega_{r}=\{ \} \quad \text { for } \quad r \geqq l\right\}
$$

PROPOSITION 2.5. There are A linear isomorphisms $\theta: A \otimes U_{l} \rightarrow A(B O) \otimes$ V_{l} and $A(B O)$ linear maps $d: A(B O) \otimes V_{l} \rightarrow A(B O) \otimes V_{l-1}, \quad l>1$ and $d: A(B O) \otimes V_{1} \rightarrow H^{*}(\mathrm{MO})$ such that the following diagram is commutative:

Furthermore, if $u \in V_{l} \subset U_{l}$, then $\theta(1 \otimes u)=1 \otimes u$.
The construction of spaces B_{l} can now be made, modulo technical problems, using 2.5. Given B_{l-1} and $f_{l-1}: T_{l-1} \rightarrow X_{l-1}$, the k-invariant $\beta_{l}: B_{l-1} \rightarrow K\left(V_{l}\right)_{1}$ is defined by:

$$
\Phi \beta_{l}^{*}\left(v_{1}\right)=f_{l-1}^{*} \alpha_{l}^{*}(v)
$$

where $\alpha_{l}: X_{l-1} \rightarrow K\left(U_{l}\right)$ is the k-invariant for $X_{l}, v \in V$ and $v_{1} \in H^{*}\left(K(V)_{1}\right)$ corresponds to v. If M is an n-manifold and $h: M \rightarrow B O$ classifies its normal bundle, 2.4(iv) shows that any lifting of h to B_{l-1} lifts to B_{l}. The $A(B O)$ linearity of d allows one (more or less) to construct $f_{l}: T_{l} \rightarrow X_{l}$. Actually, this straightforward procedure is marred by two technical details which we now describe.

Let $s=[n / 2]$. To form B_{1} from $B O$, one kills, among other things, the Wu class v_{s+1}, i.e. $d \lambda^{s}=\chi\left(S q^{s+1}\right) U=v_{s+1} U$, where the U is the Thom class. The map Ψ is zero on

$$
\sum_{j>0}\left(S q^{j} \circ v_{s+1-j}\right) \otimes \lambda^{s} \in\left(A(B O) \otimes V_{1}\right)^{2 s+1}
$$

As a result, there is a class $x \in H^{2 s+1}\left(X_{1}\right)$ which goes to zero in $H^{2 s+1}\left(T_{1}\right)$. The class x is killed in going from X_{1} to X_{2}. Hence if one were to follow the recipe given by 2.5 , one would kill a class in B_{1} which is already zero and thus produce a class in $H^{2 s}\left(B_{2}\right)$ not coming from $H^{2 s}\left(X_{2}\right)$. To avoid this, we omit a basis element from V_{2}. This same phenomena occurs in dimension $2 s+2$ so we omit some more elements from V_{2} and V_{3}. Namely, let $\bar{V}_{l} \subset V_{l}$ be spanned by $\lambda^{I} u_{\omega} \in V_{l}$ except $\lambda^{0,0} w_{s}^{2}, \lambda^{0,-1} w_{s+1}^{2}, \lambda^{-1,-2} w_{s+2}^{2}$ and for s odd, $\lambda^{-1,-2,-4} w_{1}^{4} w_{s}^{2}\left(w_{s}=u_{(1,1, \ldots, 1)}\right)$.

In §3 we define a certain $A(B O)$ linear map

$$
\begin{equation*}
r: A(B O) \otimes V_{l} \rightarrow A(B O) \otimes \bar{V}_{l} \tag{2.6}
\end{equation*}
$$

such that $r \mid A(B O) \otimes \bar{V}_{l}$ is the identity. We then use $r \theta$ in place of θ in our construction of B_{l}.

The second difficulty arises in the following fashion. Again suppose we have B_{l-1} and $f_{l-1}: T_{l-1} \rightarrow X_{l-1}$ and we construct B_{l} using \bar{V}_{l} instead of V_{l} as above. Let $g_{l}: T_{l-1} / T_{l} \rightarrow K\left(U_{l}\right)$ be the map such that $g_{l}^{*}(u)=\Psi r \theta(u)$ for $u \in U_{l}$. In order to construct $f_{l}: T_{l} \rightarrow X_{l}$ we need commutativity of the diagram

We can only prove that this diagram commutes in dimensions $\leqq 2 s+1$. To correct for this we relabel B_{l} above, B_{l}^{\prime} and we form B_{l} from B_{l}^{\prime} by killing the obstructions to commutativity as follows:

Define $\Delta=\Delta\left(f_{l-1}\right): U_{l} \rightarrow H^{*}\left(T_{l-1}\right)$ by

$$
\Delta(u)=f_{l-1}^{*} \alpha_{l}^{*} u-\sum x_{i} f_{l-1}^{*} \alpha_{l}^{*} u_{i}
$$

where $r \theta(u)=\sum x_{i} u_{i}, x_{i} \in A(B O), u_{i} \in \bar{V}_{l}$. Then

$$
\begin{aligned}
j^{*} g_{l}^{*}(u) & =j^{*} \Psi r \theta(u)=j^{*} \Psi\left(\sum x_{i} u_{i_{1}}\right)=\sum x_{i} j^{*} \Phi\left(\left(\beta_{l}^{\prime}\right)^{*}\left(u_{i_{1}}\right)\right) \\
& =\sum x_{i} \Phi\left(\beta_{l}^{*}\left(u_{i}\right)\right)=\sum x_{i} f_{l-1}^{*} \alpha_{l}^{*}\left(u_{i}\right)=\Delta(u)+f_{l-1}^{*} \alpha_{l}^{*}(u)
\end{aligned}
$$

Thus Δ is the deviation from commutativity of our diagram above. Let $W_{l}=U_{l} /$ ker Δ. We kill $\Phi^{-1}(\Delta(W))$ in B_{l}^{\prime} to form B_{l}.

To recapitulate, we inductively construct a sequence of spaces B_{l}, stable vector bundles ζ_{l} over B_{l} and maps $f_{l}: T_{l}=T\left(\zeta_{l}\right) \rightarrow X_{l}$ such that $\Delta\left(f_{l}\right)=0$. We take $B_{0}=B O, \zeta_{0}=\zeta$ the universal bundle and f_{0} the map such that $f_{0}^{*}\left(u_{\omega}\right)=\Phi\left(u_{\omega}\right)$ for $u_{\omega} \in U_{0} .\left(X_{0}=K\left(U_{0}\right)\right.$.) Referring to $2.5, f_{0}^{*}=\eta, \alpha_{1}^{*}=d$ and $\Delta\left(f_{0}\right)=\eta d-d \theta=0$. Suppose B_{l-1}, ζ_{l-1} and f_{l-1} have been defined and $\Delta\left(f_{l-1}\right)=0$. Let $p^{\prime}: B_{l}^{\prime} \rightarrow B_{l-1}$ be the fibration induced by $\beta_{l}: B_{l-1} \rightarrow K\left(\bar{V}_{l}\right)_{1}$ where β_{l} is defined by

$$
\Phi\left(\beta_{l}^{*}\left(v_{1}\right)\right)=f_{l-1}^{*} \alpha_{l}^{*}(v)
$$

for $v \in \bar{V}_{l} \subset U_{l}$ and $v_{1} \in H^{*}\left(K\left(\bar{V}_{l}\right)_{1}\right)$ the element corresponding to v. Let $\zeta_{l}^{\prime}=$ $\left(p^{\prime}\right)^{*} \zeta_{l-1}$ and $T_{l}^{\prime}=T\left(\zeta_{l}^{\prime}\right)$.

Viewing $B_{l}^{\prime} \subset B_{l-1}$ as the fibre of β_{l}, β_{l} factors through $\beta_{l}^{\prime} . B_{l-1} / B_{l}^{\prime} \rightarrow K\left(\bar{V}_{l}\right)_{1}$. Let $\Psi: A(B O) \otimes \bar{V}_{l} \rightarrow H^{*}\left(T_{l-1} / T_{l}^{\prime}\right)$ be the $A(B O)$ linear map such that $\Psi(v)=$ $\Phi\left(\left(\beta_{l}^{\prime}\right)^{*}\left(v_{1}\right)\right)$ for $v \in \bar{V}_{l}$. Let θ be as in $2.5, r$ as in 2.6 , and let $g_{l}^{\prime}: T_{l-1} / T_{l}^{\prime} \rightarrow K\left(U_{l}\right)$ be defined by $\left(g_{l}^{\prime}\right)^{*}(u)=\Psi r \theta(u)$. Since $\Delta\left(f_{l-1}\right)=0$, there is a map f_{l}^{\prime} making a commutative diagram

Let $\Delta\left(f_{l}^{\prime}\right): U_{l+1} \rightarrow H^{*}\left(T_{l}\right)$ be given by $\Delta\left(f_{l}^{\prime}\right)(u)=\left(f_{l}^{\prime}\right)^{*} \alpha_{l+1}^{*} u+\sum x_{i}\left(f^{\prime}\right)^{*} \alpha_{l+1}^{*} u_{i}$ where $r \theta u=\sum x_{i} u_{i}$. Let $W_{l+1}=U_{l+1} / \operatorname{ker} \Delta\left(f_{l}^{\prime}\right)$ and let $p: B_{l} \rightarrow B_{l}^{\prime}$ be the fibration induced
by $\gamma_{l}: B_{l}^{\prime} \rightarrow K\left(W_{l+1}\right)_{1}$ where $\Phi\left(\gamma_{l}^{*} u_{1}\right)=\Delta\left(f_{l}^{\prime}\right)(u)$ for $u \in W_{l+1}$. Finally let $\zeta_{l}=$ $p^{*} \zeta_{l}^{\prime}$ and $f_{l}=f_{l}^{\prime} T(p)$. Then $\Delta\left(f_{l}\right)=T(p)^{*} \Delta\left(f_{l}^{\prime}\right)=0$ and the inductive step is complete.

In §5 we prove:

LEMMA 2.7. If $l \geqq 3$ and $q \leqq n, f_{l}^{*}: H^{q}\left(X_{l}\right) \approx H^{a}\left(T\left(\zeta_{l}\right)\right)$. Furthermore, if M is a smooth n-manifold and $h: \mathrm{M} \rightarrow B_{0}=B O$ classifies its normal bundle, then any lifting of h to B_{l-1} lifts to B_{l}.

We next examine $H^{*}\left(B_{l}\right)$ for l large.

LEMMA 2.8. If $l \geqq n, \dot{V}_{l}^{q}=U_{i}^{q}=0$ for $q<n-1, W_{l}^{q}=0$ for $q \leqq n$ and
$V_{l}^{n-1}=U_{l}^{n-1}=\left\{\lambda^{(0,0, \ldots, 0)} u_{\omega} \mid u_{\omega} \in U_{0}^{n-1}\right\}$. Furthermore,
$\Phi\left(\beta_{l}^{*}\left(\lambda^{(0, \ldots, 0)} u_{\omega}\right)\right)=\delta_{l} \tilde{u}_{\omega}$
$\tilde{u}_{\omega} \in H^{*}\left(T_{l-1} ; Z_{2 l}\right), u_{\omega} U \in H^{*}\left(T_{l-1}\right)$ is the mod two reduction of \tilde{u}_{ω} and δ_{l} is the Bockstein associated with $Z_{2} \rightarrow Z_{2 l+1} \rightarrow Z_{2 l}$.
Thus for $l \geqq n$,

$$
\begin{array}{rl}
H^{q}\left(B_{l}\right) \approx H^{q}(B O) / I_{n}^{a} & q<n \\
H^{n}\left(B_{l}\right) / \Phi^{-1}\left\{\delta_{l+1} \tilde{u}_{\omega}\right\} \approx H^{n}(B O) / I_{n}^{n} &
\end{array}
$$

We form B_{∞} from $B_{l}, l \geqq n$, by killing classes $\Phi^{-1}\left(\delta^{l+1} \tilde{u}_{\omega}\right) \in H^{n+1}\left(B_{l} ; Z_{\tau}\right)$ where Z_{τ} denotes twisted integer coefficients, twisted by $w_{1}, \Phi: H^{*}\left(B_{l} ; Z_{\tau}\right) \approx$ $H^{*}\left(T\left(\zeta_{l}\right) ; Z\right)$ is the Thom isomorphism and δ^{l} is the Bockstein associated with $Z \rightarrow Z \rightarrow Z_{2^{l}}$. Let \tilde{B}_{l} be the two sheeted cover of \tilde{B}_{l} defined by w_{1}. The classes $\Phi^{-1}\left(\delta^{l+1} \tilde{u}_{\omega}\right)$ may be represented by $Z_{2^{-}}$equivariant maps $x_{\omega}: \tilde{B}_{l} \rightarrow K(Z, n)$ where $K(Z, n)$ has the action defined by the nontrivial action of Z_{2} on Z. Let \tilde{B}_{∞} be the fibration over \tilde{B}_{l} induced by

$$
x=\prod x_{\omega}: \tilde{B}_{l} \rightarrow \prod K(Z, n)
$$

Since x is Z_{2}-equivariant, Z_{2} acts freely on \tilde{B}_{∞}. Let $B_{\infty}=\tilde{B}_{\infty} / Z_{2}$. The map $B_{\infty}=\tilde{B}_{\infty} / Z_{2} \rightarrow \tilde{B}_{l} / Z_{2}=B_{1}$ has fibre $\Pi K(Z, n)$. With Z_{2} coefficients, $\pi_{1}\left(B_{l}\right)$ acts trivially on the cohomology of the fibre. The Serre spectral sequences, with Z_{2} coefficients has its usual, nonlocal coefficient form and the usual argument shows
that in dimensions $\leqq n$,

$$
H^{*}\left(B O_{\infty}\right)=H^{*}\left(B_{l}\right) /\left\{\Phi^{-1}\left(\delta^{l+1} \tilde{u}_{\omega}\right)\right\}
$$

Thus for $q \leqq n$

$$
0 \rightarrow I_{n}^{q} \rightarrow H^{q}(B O) \rightarrow H^{q}\left(B_{\infty}\right) \rightarrow 0
$$

is exact. Also if M is an n-manifold and $h: M \rightarrow B$ is covered by a bundle map $\mathrm{g}: \nu \rightarrow \zeta_{l}, T(g)^{*}\left(\delta^{l+1} \tilde{u}_{\omega}\right)=\delta^{l+1} T\left(g^{*}\right)\left(\tilde{u}_{l}\right)=0$ since the top homology class of $T(\nu)$ is spherical. Therefore, h lifts to B_{∞}.

Finally, assume B_{∞} is a $C W$ complex and let

$$
B O / I_{n}=B_{\infty}^{n} \cup e_{1}^{n+1} \cup e_{2}^{n+1} \cdots e_{m}^{n+1}
$$

where e_{i}^{n+1} is attached by $f_{i} \mid S^{n}, f_{i}:\left(D^{n+1}, S^{n}\right) \rightarrow\left(B^{n+1}, B^{n}\right)$ and $\left[f_{i}\right] \in$ $\pi_{n+1}\left(B_{\infty}^{n+1}, B_{\infty}^{n}\right)$ give a Z_{2}-basis for the image of

$$
\pi_{n+1}\left(B_{\infty}^{n+1}, B_{\infty}^{n}\right) \xrightarrow{\rho} H_{n+1}\left(B_{\infty}^{n+1}, B_{\infty}^{n}\right) \xrightarrow{\partial^{*}} H_{n}\left(B_{\infty}^{n}, B_{\infty}^{n-1}\right)
$$

The maps f_{i} give an extension of $B_{\infty}^{n} \subset B_{\infty}, f: B O / I_{n} \rightarrow B_{\infty}$ and

$$
\begin{aligned}
& f^{*}: H^{q}\left(B_{\infty}\right) \approx H^{a}\left(B O / I_{n}\right) \text { for } q \leqq n \\
& H^{q}\left(B O / I_{n}\right)=H^{q}(B O) / I_{n}=0 \text { for } q>n
\end{aligned}
$$

Also any map of an n-manifold into B_{∞} is homotopic to a map factoring through f. The proof of Theorem 1 is thus complete, modulo the lemmas and propositions of this section.

§3. Proofs of 2.3, 2.5, and 2.6

Let Λ_{l}^{k} be the Z_{2}-subspace of Λ^{*} generated by λ^{I} with $l(I)=l, t(I) \geqq k$, and I admissible. Let

$$
d: A \otimes \Lambda_{l}^{k} \rightarrow A \otimes A_{l-1}^{k}
$$

be defined by

$$
\begin{equation*}
d\left(1 \otimes \lambda^{I}\right)=\sum \lambda^{I}\left(\lambda_{j} \lambda_{J}\right) \chi\left(S q^{j+1}\right) \otimes \lambda^{J} \tag{3.1}
\end{equation*}
$$

where the sum is over all j and admissible J. Proposition 2.3 follows from 2.1 and 3.2(ii) below:

PROPOSITION 3.2.

(i) $\left\{\lambda_{I} \mid I\right.$ admissible $\}$ is a Z_{2}-basis for Λ.
(ii) The following is exact:

$$
\longrightarrow A \otimes \Lambda_{l}^{k} \xrightarrow{d} A \otimes \Lambda_{l-1}^{k} \longrightarrow \cdots \longrightarrow A \otimes A_{0}^{k} \xrightarrow{\epsilon} A / A\left\{\chi\left(S q^{i}\right) \mid i>k\right\}
$$

where $\boldsymbol{\epsilon}\left(a \otimes \lambda^{()}\right)=\{a\}$.
(iii) If I and J are admissible, $l(I)=l, l(J)=l-1$, and $I_{l}=\left(1,2,4, \ldots, 2^{l-1}\right)$, then $\lambda^{I+r I_{I}}\left(\lambda_{j+r} \lambda_{J+2 r I_{t-1}}\right)=\lambda^{I}\left(\lambda_{j} \lambda_{J}\right)$.

Proof. For any sequence $T=\left(t_{1}, t_{2}, \ldots, t_{l}\right)$ and integer r, let $h^{r}\left(\lambda_{T}\right)=\lambda_{T+r I_{l}}$. Extending linearly, h^{r} gives a well defined map $h^{r}: \Lambda \rightarrow \Lambda$ since for any element of Λ of the form $\alpha=\lambda_{I_{1}} \beta \lambda_{I_{2}}$ where β is a relation for Λ as in $2.2, h^{r}(\alpha)$ also has this form. Since $h^{r} h^{-r}$ is the identity, h^{r} is an isomorphism for all r. Furthermore, $h^{r}\left(\lambda_{I}\right)$ is admissible if and only if λ_{I} is admissible.

Let $\bar{\Lambda} \subset \Lambda$ be the subalgebra generated by $\lambda_{0}, \lambda_{1}, \lambda_{2}, \ldots$ In [8] it is proved that $\left\{\lambda_{I} \mid I\right.$ admissible $\}$ is a basis for $\bar{\Lambda}$. For any $\lambda_{I}, h^{r}\left(\lambda_{I}\right) \in \bar{\Lambda}$ for r sufficiently large. Thus $\left\{\lambda_{I} \mid I\right.$ admissible $\}$ is a basis for Λ.

In [2], 3.2(ii) was proved for $k \geqq 0$. From 2.2 one sees that $\lambda_{-1} \lambda_{-1}=0$ and if $t(J) \geqq 0, \lambda_{-1} \lambda_{J}$ is a sum involving $\lambda_{J^{\prime}}$'s with $t\left(J^{\prime}\right)>0$ and $\lambda_{J} \lambda_{-1}$. Suppose $J_{1}=$ $\left(j_{i}, \ldots, j_{m}\right), J_{2}=\left(j_{m+1}, \ldots, j_{l}\right)$ and $J=\left(j_{1}, \ldots, j_{l}\right)$ are admissible with J_{1} or J_{2} possibly the empty sequence (). Define $\lambda^{J_{1}} \lambda^{J_{2}}=\lambda^{J}$. Suppose $j_{m} \geqq 0$ and $j_{m+1}<-1$. Then 3.1 yields

$$
\begin{aligned}
d\left(\lambda^{J_{1}} \lambda^{-1} \lambda^{J_{2}}\right) & =\left(d \lambda^{J_{1}}\right) \lambda^{-1} \lambda^{L_{2}}+\lambda^{J_{1}} \lambda^{J_{2}} \\
d\left(\lambda^{J_{1}} \lambda^{J_{2}}\right) & =\left(d \lambda^{J_{1}}\right) \lambda^{J_{2}} .
\end{aligned}
$$

Let

$$
D\left(\lambda^{J_{1}} \lambda^{J_{2}}\right)=\lambda^{J_{1}} \lambda^{-1} \lambda^{J_{2}}, D\left(\lambda^{J_{1}} \lambda^{-1} \lambda^{J_{2}}\right)=0 .
$$

Then for $k<0, D: A \otimes \Lambda_{l}^{k} \rightarrow A \otimes \Lambda_{l+1}^{k}$ satisfies $d D+D d=$ identity. Therefore 3.2(ii) holds for $k<0$.

Finally we prove 3.2 (iii). Note that if I is admissible, $I+r I_{l}$ is admissible and if $\left(h^{r}\right)^{*}: \Lambda^{*} \rightarrow \Lambda^{*}$ is the dual of $h^{r}, h^{r},\left(h^{r}\right)^{*} \lambda^{I}=\lambda^{I-r I_{i}}$. Therefore

$$
\begin{aligned}
\lambda^{I}\left(\lambda_{j} \lambda_{J}\right) & =\left(h^{r}\right)^{*}\left(\lambda^{I+r I_{I}}\right)\left(\lambda_{j} \lambda_{J}\right) \\
& =\lambda^{I+r I_{I}}\left(h^{r}\left(\lambda_{j} \lambda_{J}\right)\right)=\lambda^{I+r I_{I}}\left(\lambda_{j+r} \lambda_{J+2 r I_{l-1}}\right)
\end{aligned}
$$

Proof of 2.5. Let $C_{l}=A \otimes U_{l}, D_{l}=A(B O) \otimes V_{l}, l>0$, and $D_{0}=H^{*}(\mathrm{MO})$. Denote $a \otimes u \in C_{l}$ by $a u$ and $a \circ v \otimes w \in D_{l}, l>0$, by $(a \circ v) w$. We filter C_{l} and D_{l} as follows: $F_{q}\left(C_{l}\right)$ is spanned by $a \lambda^{I} u_{l}$ with $\left|u_{\omega}\right| \leqq q$ and $F_{q}\left(D_{l}\right), l>0$, is spanned by all $a \circ v \lambda^{I} u_{l}$ with $\left|u_{\omega}\right|+2^{l}|v| \leqq q . F_{q}\left(D_{0}\right)$ is spanned by all $a u_{\omega}$ where $a \in A$, $u_{\omega} \in U_{0}=\left\{u_{\omega} \mid 2^{i}-1 \notin \omega\right\}$ and $\left|u_{\omega}\right| \leqq q$.

The chain complex $\left(C_{l}, d\right)$ is a direct sum of chain complexes of the form described in 3.2 , indexed by the $u_{\omega} \in U_{0}$. Hence d is filtration preserving and:
(3.3) The following is exact.

$$
\longrightarrow F_{q}\left(C_{l}\right) \xrightarrow{d} F_{q}\left(C_{l-1}\right) \longrightarrow \cdots \longrightarrow F_{q}\left(C_{0}\right)
$$

Using induction on l we define A linear maps $\theta: C_{l} \rightarrow D_{l}$ and $A(B O)$ linear maps $d: D_{l} \rightarrow D_{l-1}$ such that
(i) θ is an isomorphism and $\theta: C_{0} \rightarrow D_{0}$ is given by $\theta\left(a \otimes u_{\omega}\right)=a \Phi\left(u_{\omega}\right) \in$ $H^{*}(\mathrm{MO}), u_{\omega} \in U_{0}$.
(ii) $d \theta=\theta d$
(iii) If $u \in V_{l} \subset U_{l}, \theta(u)=u$
(iv) $\theta\left(F_{q}\left(C_{l}\right)\right)=F_{q}\left(D_{l}\right)$
(v) Suppose $\lambda^{I} u_{\omega} \in U_{l}$. Let α and β be the partitions

$$
\alpha=\bigcup_{r<l} 2^{r} \omega_{r}, \quad \beta=\bigcup_{r \geq l} 2^{r-l} \omega_{r}
$$

Note $u_{\omega}=u_{\alpha} u_{\beta}^{2 l}$. Then θ satisfies

$$
\theta\left(\lambda^{I} u_{\omega}\right)=u_{\beta} \lambda^{I^{\prime}} u_{\alpha} \quad \bmod \quad F_{\left|u_{\omega}\right|-1}\left(D_{l}\right)
$$

where $I^{\prime}=I+\left|u_{\beta}\right| I_{l}$.
Note that Proposition 2.5 consists of statements (i), (ii), and (iii) above.
For $l=0, \theta$ is defined by (i) and $d=0$ on D_{0}.
Suppose θ and d have been defined on C_{k} and $D_{k} k<l$, and satisfy (i)-(v). Define $d=d_{D}: D_{l} \rightarrow D_{l-1}$ to be the $A(B O)$ linear map such that for $u \in V_{l}$,
$d_{D}(u)=\theta\left(d_{C} u\right)$. We next define $\theta: C_{l} \rightarrow D_{l}$. Suppose $\lambda^{I} u_{\omega} \in U_{l}$ and $u_{\omega}=u_{\alpha} u_{\beta}^{2^{l}}$ as in (v). If $u_{\beta}=1, \lambda^{I} u_{\omega} \in V_{l}$ and we define $\theta\left(\lambda^{I} u_{\omega}\right)=\lambda^{I} u_{\omega}$. In this case (i) $-(\mathrm{v})$ are satisfied. Suppose $u_{\beta} \neq 1$. Let

$$
X=\theta\left(d\left(\lambda^{I} u_{\omega}\right)\right)+u_{\beta} \theta\left(d \lambda^{I^{\prime}} u_{\alpha}\right)
$$

where $I^{\prime}=I+\left|u_{\beta}\right| I_{l}$. By induction, $\theta d=d \theta$ on C_{l-1} and hence $\partial X=0$. We show that $X \in F_{p-1}\left(D_{l}\right)$ where $p=\left|u_{\omega}\right|$. Decompose u_{α} into $u_{\alpha_{1}} u_{\alpha_{2}}^{2 l-1}$ as in (v).

$$
\begin{aligned}
\theta\left(d \lambda^{I} u_{\omega}\right) & =\sum \lambda^{I}\left(\lambda_{j} \lambda_{K}\right) \chi\left(S q^{i+1}\right) \theta\left(\lambda^{K} u_{\omega}\right) \\
& =\sum \lambda^{I}\left(\lambda_{j} \lambda_{K}\right)\left(\chi\left(S q^{j+1}\right) \circ u_{\alpha_{2}} u_{\beta}^{2}\right) \lambda^{K^{\prime}} u_{\alpha_{1}} \bmod F_{p-1}
\end{aligned}
$$

where $K^{\prime}=K+\left|u_{\alpha_{2}} u_{\beta}^{2}\right| I_{l-1}$. On the other hand,

$$
u_{\beta} \theta\left(d \lambda^{I^{\prime}} u_{\alpha}\right)=\sum \lambda^{I^{\prime}}\left(\lambda_{j} \lambda_{J}\right) u_{\beta} \chi\left(S q^{j+1}\right) \theta\left(\lambda^{J} u_{\alpha}\right)
$$

In $A(B O)$,

$$
u_{\beta} \chi\left(S q^{i+1}\right)=\chi\left(S q^{i-q+1}\right) \circ u_{\beta}^{2}+\sum_{k<q} \chi\left(S q^{i-k+1}\right) \circ S q^{k} u_{\beta}
$$

where $q=\left|u_{\beta}\right|$.

$$
\theta\left(\lambda^{J} u_{\alpha}\right)=u_{\alpha_{2}} \lambda^{J^{\prime}} u_{\alpha_{1}} \bmod F_{\left|u_{\alpha}\right|-1}
$$

where $J^{\prime}=J+\left|u_{\alpha_{2}}\right| I_{l-1}$. If $u \lambda^{I} v$ has filtration less than $\left|u_{\alpha}\right|-1$ and $k<q$, $S q^{k} u_{\beta} u \lambda^{I} v$ has filtration less than $p=\left|u_{\omega}\right|$.

Hence

$$
u_{\beta} \theta\left(d \lambda^{I^{\prime}} u_{\alpha}\right)=\sum_{j, J} \lambda^{I^{\prime}}\left(\lambda_{j} \lambda_{J}\right)\left(\chi\left(S q^{j-q+1}\right) \circ u_{\alpha} u_{\beta}^{2}\right) \lambda^{J^{\prime}} u_{\alpha_{1}} \bmod F_{p-1}
$$

In the above sum, replace j by $j+q$ and J by $K+2 q I_{l-1}$. Then

$$
u_{\beta} \theta\left(d \lambda^{I^{\prime}} u_{\alpha}\right)=\sum_{j, K} \lambda^{I^{\prime}}\left(\lambda_{i+q} \lambda_{K+2 q I_{1-1}}\right) \chi\left(S q^{j+1}\right) \circ u_{\alpha_{2}} u_{\beta}^{2} \lambda^{K^{\prime}} u_{\alpha_{1}} \bmod F_{p-1}
$$

where $K^{\prime}=K+\left|u_{\alpha_{2}} u_{\beta}^{2}\right| I_{l-1}$. But $I^{\prime}=I+q I_{l}$ and hence by 3.2 (iii),

$$
\lambda^{I^{\prime}}\left(\lambda_{i+q} \lambda_{K+2 q I_{1-1}}\right)=\lambda^{I}\left(\lambda_{j} \lambda_{K}\right)
$$

Hence $X \in F_{p-1}\left(D_{l}\right)$.

By (iv) there is a $Y \in F_{\mathrm{p}-1}\left(C_{l-1}\right)$ such that $\theta(Y)=X$ and by (i) and (ii), $d Y=0$. Hence for $l>1$, by 3.3 , there is a $Z \in F_{p-1}\left(C_{l}\right)$ such that $d Z=Y$. We verify that there is such a Z for $l=1$ by showing that when $l=1, X \in \Phi\left(I_{n}\right)$. In this case

$$
\begin{aligned}
X & =\chi\left(S q^{i+1}\right) \Phi\left(u_{\alpha} u_{\beta}^{2}\right)+u_{\beta} \chi\left(S q^{i+q+1}\right) \Phi\left(u_{\alpha}\right) \\
& =\sum_{j<q} \chi\left(S q^{i+q+1-j}\right) \Phi\left(\left(S q^{i} u_{\beta}\right) u_{\alpha}\right)
\end{aligned}
$$

where $2(i+1)>n-q, q=\left|u_{\beta}\right|$. But then, $2(i+q-j+1)>n-\left|\left(S q^{j} u_{\beta}\right) u_{\alpha}\right|$ and hence $X \in \Phi\left(I_{n}\right)$.

We now define $\theta\left(\lambda^{I} u_{\omega}\right)$ by induction on $\left|u_{\omega}\right|=$ filtration degree of $\lambda^{I} u_{\omega}$. For $\left|u_{\omega}\right|=0, \theta\left(\lambda^{I} 1\right)=\lambda^{I} 1$. If θ is defined on $F_{\left|u_{\omega}\right|-1}\left(C_{i}\right)$, let

$$
\theta\left(\lambda^{I} u_{\omega}\right)=u_{\beta} \lambda^{I^{\prime}} u_{\alpha}+\theta(Z)
$$

where Z, α, β, and I^{\prime} are as above. Then $d \theta(Z)=\theta(d Z)=\theta(Y)=X$ and

$$
\begin{aligned}
d \theta\left(\lambda^{I} u_{\omega}\right) & =d\left(u_{\beta} \lambda^{I^{\prime}} u_{\alpha}\right)+d \theta(Z) \\
& =u_{\beta} \theta\left(d\left(\lambda^{I^{\prime}} u_{\alpha}\right)\right)+X=\theta\left(d\left(\lambda^{I} u_{\omega}\right)\right)
\end{aligned}
$$

Note that elements of the form $u_{\beta} \lambda^{I^{\prime}} u_{\alpha}$, as above, together with $F_{p-1}\left(D_{l}\right)$, span $F_{p}\left(D_{l}\right)$ over A. Thus $\theta: C_{l} \rightarrow D_{l}$ is an epimorphism. (It is at this point that we use λ^{I} where I has negative entries. For each $u_{\beta} \lambda^{I^{\prime}} u_{\alpha} \in H^{*}(B O) V_{l}$ we need $\lambda^{I} u_{\alpha} u_{\beta_{1}}^{21} \in$ U_{l} such that $I^{\prime}=I+\left|u_{l}\right| I_{l}$.) Elements of the form $\lambda^{I} u_{\alpha} u_{\beta}^{2 l}$ are an A basis for C_{l} and elements of the form $u_{\beta} \lambda^{\lambda^{\prime}} u_{\alpha}$ are an A basis for D_{l}. Hence $\theta: C_{l} \rightarrow D_{l}$ is an isomorphism and the proof of 2.5 is complete.

Proof of 2.6. Let $v_{i} \in H^{*}(B O)$ be the Wu classes, that is, $\Phi\left(v_{i}\right)=\chi\left(S q^{i}\right) \Phi(1)$ where $\Phi: H^{*}(B O) \rightarrow H^{*}(\mathrm{MO})$ is the Thom isomorphism.

LEMMA 3.4.

$$
v_{i}=\sum s_{\omega}
$$

where the sum ranges over all ω with entries only of the form $2^{i}-1$ and $\left|s_{\omega}\right|=i$.
Proof. We view $H^{*}(B O) \subset Z_{2}\left[t_{1}, t_{2}, \ldots\right],\left|t_{i}\right|=1$, and $t_{1} t_{2} \ldots$ as the Thom class. Let $S q=S q^{0}+S q^{1}+\cdots$ and $v=v_{0}+v_{1}+\cdots$. Then

$$
\chi(\mathrm{Sq}) \mathrm{t}_{\mathrm{i}}=\sum t_{i}^{2}
$$

and

$$
\begin{aligned}
v\left(t_{1}, t_{2}, \ldots\right)\left(t_{1} t_{2} \cdots\right) & =\chi(S q)\left(t_{1} t_{2} \cdots\right) \\
& =\prod_{i}\left(\sum_{j} t_{i}^{2 j-1}\right)\left(t_{1} t_{2} \cdots\right)=\left(\sum_{\omega} s_{\omega}\right)\left(t_{1} t_{2} \cdots\right)
\end{aligned}
$$

where the sum ranges over ω with entries only of the form $2^{j}-1$.
Let x_{1} and $x_{2} \in A(B O)$ be given by

$$
x_{1}=\sum_{j>0} S q^{j} \circ v_{s+1-j}, \quad x_{2}=\sum S q^{j} \circ v_{s+2-j}
$$

Recall $s=[n / 2]$ and n is the dimension of the manifolds we are considering. Let $y_{i} \in D_{1}$ be defined by

$$
y_{1}^{1}=x_{1} \lambda^{s}, \quad y_{2}^{1}=x_{2} \lambda^{s}, \quad y_{3}^{1}=v_{s+1} \lambda^{s+1}+v_{s+2} \lambda^{s}+x_{2} \lambda^{s}
$$

LEMMA 3.5. There are elements $y_{i}^{2} \in D_{2}$ such that $d y_{i}^{2}=y_{i}^{1}$ and

$$
\begin{aligned}
& y_{1}^{2}=\lambda^{0,0} v_{s}^{2} \bmod F_{2 s-1} \\
& y_{2}^{2}=\lambda^{0,-1} v_{s+1}^{2} \bmod F_{2 s+1} \\
& y_{3}^{2}=\lambda^{-1,-2} v_{s+2} \bmod F_{2 s+3}
\end{aligned}
$$

If s is odd, there is an element y_{2}^{3} such that $y_{2}^{3}=\left(S q^{1}+w_{1}\right) y_{2}^{2}$ and

$$
y_{2}^{3}=\lambda^{-1,-2,-4} w_{1}^{4} v_{s+2}^{2} \bmod F_{2 s+7}
$$

Proof. We first show that $d y_{i}^{1}=0, d: D_{1} \rightarrow D_{0}=H^{*}(\mathrm{MO})$. Let $U \in H^{0}(\mathrm{MO})$ be the Thom class.

$$
\begin{aligned}
d y_{1}^{1} & =x_{1} d \lambda^{s}=\sum S q^{j}\left(v_{s+1-j} \chi\left(S q^{s+1}\right) U\right)+v_{s+1} \chi\left(S q^{s+1}\right) U \\
& =\left(S q^{s+1} v_{s+1}\right) U+v_{s+1}^{2} U=0 \\
d y_{2}^{1} & =\sum S q^{j}\left(v_{s+2-j} \chi\left(S q^{s+1}\right) U\right) \\
& =\sum S q^{j}\left(v_{s+1} \chi\left(S q^{s+2-j}\right) U\right)=\left(S q^{s+2} v_{s+1}\right) U=0 \\
d y_{3}^{1} & =v_{s+1} \chi\left(S q^{s+2}\right) U+v_{s+2} \chi\left(S q^{s+1}\right) U+d y_{2}^{1}=0
\end{aligned}
$$

We next show that y_{1}^{2} exists. In $A \otimes \Lambda^{*}$ one may easily calculate $d \lambda^{0,0}=S q^{1} \lambda^{0}$.

Hence, by the arguments in the proof of 2.5 ,

$$
\begin{aligned}
d \lambda^{0,0} v_{s}^{2} & =\theta\left(d \lambda^{0,0} v_{s}^{2}\right)=\theta\left(S q^{1} \lambda^{0} v_{s}^{2}\right) \\
& =S q^{1} \circ v_{s} \lambda^{s} \bmod F_{2 s-1} \\
& =\sum_{j>0} S q^{j} \circ v_{s+1-j} \lambda^{s} \bmod F_{2 s-1}=y_{1}^{1} \bmod F_{2 s-1}
\end{aligned}
$$

Thus $u=d \lambda^{0,0} v_{s}^{2}+y_{1}^{1} \in F_{2 s-1}$ and $d u=0$. Therefore there is a $z \in F_{2 s-1}\left(D_{2}\right)$ such that $d z=u$. Let $y_{1}^{2}=\lambda^{0,0} v_{s}^{2}+z$. The existence of y_{2}^{2}, y_{3}^{2}, and y_{3}^{3} are proven in an analogous fashion.

We now define $r: A(B O) \otimes V_{l} \rightarrow A(B O) \otimes \bar{V}_{l}$. For $l \neq 2$ and $l \neq 3$, s odd, $\bar{V}_{l}=V_{l}$ and r is the identity; $\bar{V}_{l} \subset V_{l}$ and $r \mid A(B O) \otimes \bar{V}_{l}$ is the identity. \bar{V}_{2} is formed from V_{2} by omitting the basis elements $\lambda^{0,0} w_{s}^{2}, \lambda^{0,-1} w_{s+1}^{2}$ and $\lambda^{-1,-2} w_{s+2}^{2}$. By 3.4, v_{i} involves $w_{i}=s_{(1,1, \ldots, 1)}$ when v_{i} is expressed in the u_{ω} basis. Let

$$
\begin{aligned}
& r\left(\lambda^{0,0} w_{s}^{2}\right)=y_{1}^{2}-\lambda^{0,0} w_{s}^{2} \\
& r\left(\lambda^{0,-1} w_{s+1}^{2}\right)=y_{2}^{2}-\lambda^{0,-1} w_{s+1}^{2} \\
& r\left(\lambda^{-1,-2} w_{s+2}^{2}\right)=y_{2}^{3}-\lambda^{-1,-2} w_{s+2}^{2}
\end{aligned}
$$

We define r on $A(B O) \otimes V_{3}$ analogously. Then $r\left(y_{i}^{2}\right)=r\left(y_{2}^{3}\right)=0$.
We conclude this section with an algebraic lemma about the $y_{j}^{i \text { 's. }}$. Let $L_{l} \subset$ $A(B O) \otimes V_{l}$ be defined as follows: $L_{l}=0$ for $l=0, l=3$ and s even, and $l>3$.

$$
L_{1}=A(B O)\left(\left\{y_{i}^{1}\right\}+S_{1}\right)
$$

where $S_{1}=\left\{v_{3} S q^{2} \lambda^{2}\right\}$ when $s=2$ and $S_{1}=0$ for $s \neq 2$.

$$
L_{2}=A(B O)\left(\left\{y_{i}^{2}\right\}+S\right)
$$

where $S_{2}=\left\{v_{3} \lambda^{1,2}\right\}$ when $s=2$ and $S_{2}=0, s \neq 2$.

$$
\begin{gathered}
L_{3}=A(B O)\left\{y_{3}^{2}\right\} \\
\left(d\left(v_{3} \lambda^{1,2}\right)=v_{3} S q^{2} \lambda^{2}\right)
\end{gathered}
$$

LEMMA 3.6. $d\left(L_{l}\right) \subset L_{l-1}, r\left(L_{l}\right)=0$ for $l>1$ and the sequence

$$
\longrightarrow L_{l} \xrightarrow{d} L_{l-1} \longrightarrow \cdots \longrightarrow L_{0}
$$

is exact at L_{l}^{a} for all l and $q \leqq 2 s+2$.

Proof. The first part of 3.6 is clear from the definition of L_{l}. One easily checks that if $x \in A(B O),|x| \leqq 1$ and $d\left(x y_{2}^{3}\right)=0$, then $x=0$ and therefore $d: L_{3}^{q} \rightarrow L_{2}^{q+1}$ is an injection for $q \leqq 2 s+2$. $d: L_{2} \rightarrow L_{1}$ is clearly onto. To check exactness at L_{2}^{q}, $q \leqq 2 s+2$ one must verify that if $y=x_{1} y_{1}^{1}+x_{2} y_{2}^{1}+x_{3} y_{3}^{1}+x_{4} v_{3} S q^{2} \lambda^{2}=0, x_{i} \in$ $A(B O)$ and $|y| \leqq 2 s+3$, then $x_{1}=x_{3}=x_{4}=0$ and $x_{2}=0$ or s is odd and $x_{2}=$ $S q^{1}+w_{1}$. This is a tedious but straightforward calculation, made somewhat simpler by the following observation. Let

$$
F: A(B O) \otimes\left\{\lambda^{s}\right\} \rightarrow H^{*}\left(\mathrm{MO} \wedge K\left(Z_{2}, N\right)\right)
$$

be given by

$$
F\left(a \circ u \lambda^{s}\right)=a\left(u \chi\left(S q^{s+1}\right) U \otimes \iota_{N}\right)
$$

Then

$$
\begin{aligned}
& F\left(y_{1}^{1}\right)=v_{s+1} U \otimes \iota_{N}+U \otimes S q^{s+1} \iota_{N} \\
& F\left(y_{2}^{1}\right)=U \otimes S q^{s+2} \iota_{N} \\
& F\left(v_{3} S q^{2} \lambda^{2}\right)=v_{3}^{2} U \otimes S q^{2} \iota_{N}
\end{aligned}
$$

We leave the details to the reader.

§4. Proofs of 2.4 and 2.8

Let $\left\{\mathrm{A} \otimes \Lambda_{l}^{k}, d\right\}$ be the chain complex described in Proposition 3.2.

PROPOSITION 4.1. For each integer k, there are Ω-spectra $Y_{l}=Y_{l}(k)$ and maps $\rho_{l}=\rho_{l}(k): Y_{l-1} \rightarrow K\left(\Lambda_{l}^{k}\right)$ of degree one, $l=0,1,2, \ldots$ such that
(i) $Y_{0}=K\left(\Lambda_{0}^{k}\right)$. Y_{l} is a fibration over Y_{l-1} induced by ρ_{l} from the contractible fibration over $K\left(\Lambda_{l}^{k}\right)$.
(ii) If $i: K\left(\Lambda_{l-1}^{k}\right) \rightarrow Y_{l-1}$ is the inclusion of the fibre,

$$
\left(\rho_{l} i\right)^{*}=d: A \otimes \Lambda_{l}^{k} \rightarrow A \otimes \Lambda_{l-1}^{k}
$$

where d is as in 3.2.
(iii) If M is a smooth, compact n-manifold and ν is its normal bundle, then

$$
\left[T(\nu), Y_{l}\right]_{p} \rightarrow\left[T(\nu), Y_{l-1}\right]_{p}
$$

is an epimorphism for $p<2 k+2$.
(iv) Suppose $k=0$ Let $I(l, 0)=(0, \ldots, 0)$ have length l.

$$
\rho_{l}^{*} \lambda^{I(l, 0)}=\delta_{l} \tilde{l}
$$

where $\iota \in H^{0}\left(Y_{l-1} ; Z_{2 l}\right)$, in reduced modulo two is the generator $\iota \in H^{0}\left(Y_{l-1}\right) \approx Z_{2}$ and δ_{l} is the Bockstein associated to $Z_{2} \rightarrow Z_{2 l+1} \rightarrow Z_{2 l}$.

Proof. For $k \geqq 0,4.1(i)$, (ii), and (iii) were proved in [5]. For $k<0,\left\{A \otimes \Lambda_{l}^{k}, d\right\}$ is a free acyclic resolution of the zero A module so that the existence of Y_{l} and ρ_{l} easily follow by induction on l. If M is as in (iii), $v: T(\nu) \rightarrow Y_{l-1}$ has degree p, $p<2 k+2$ and $k<0$, then $\left|\left(\rho_{l} v\right)^{*}\left(\lambda^{I}\right)\right|>n$ and (iii) follows.

Finally we prove (iv). The formula for d in 3.1 shows that $d \lambda^{I(l, 0)}=S q^{1} \lambda^{I(l-1,0)}$ The complex,

$$
\longrightarrow A \otimes\left\{\lambda^{I(l, 0)}\right\} \xrightarrow{d} A \otimes\left\{\lambda^{I(I-1,0)}\right\} \longrightarrow \cdots A \otimes\left\{\lambda^{I(0,0)}\right\}
$$

is realized by the tower

$$
\rightarrow K\left(Z_{2}\right) \rightarrow K\left(Z_{2} l-1\right) \rightarrow \cdots \rightarrow K\left(Z_{2}\right)
$$

with k-invariants, $\delta_{l}: K\left(Z_{2 l}\right) \rightarrow K\left(Z_{2}\right)$. Except for $\lambda^{I(l, 0)}$, the generators of Λ_{l}^{0} have dimension >0 and hence kill classes of dimension >1. Thus $Y_{1}=K\left(Z_{2 l+1}\right)$ in dimensions $\leqq 1$. Therefore (iv) holds.

Proof of 2.4: We wish to realize the complex $\left\{A \otimes U_{l}, d\right\}$ by a tower of spectra, X_{l}. Let $Y_{l}(k)$ and $\rho_{l}(k)$ be as in 4.1. For a spectrum Z, let $S Z$ denote the shift suspension, i.e., $(S Z)_{q}=Z_{a+1}$. Define X_{l} and $\alpha_{l}: X_{l-1} \rightarrow K\left(Y_{l}\right)$ by

$$
\begin{aligned}
& X_{l}=\prod_{u_{\omega} \in U_{0}} S^{\left|u_{\omega}\right|} Y_{l}\left(\left[\left(n-\left|u_{\omega}\right|\right) / 2\right]\right) \\
& \alpha_{l}=\prod S^{\left|u_{\omega}\right|} \rho_{l}\left(\left[\left(n-\left|u_{\omega}\right|\right) / 2\right]\right)
\end{aligned}
$$

The map α_{l} takes X_{l-1} into $K\left(U_{l}\right)$ since

$$
\prod s^{k} K\left(\Lambda_{i}^{k}\right)=K\left(U_{l}\right)
$$

where k ranges over $\left[\left(n-\left|u_{\omega}\right| / 2\right],\left|u_{\omega}\right| \in U_{0}\right.$. Proposition 2.4 now follows directly from 4.1.

Proof of 2.8: Using induction on l, one easily proves that if I is admissible and $l=l(I)$,

$$
\left|\lambda^{I}\right| \geqq 2 t(I)\left(1-\frac{1}{2^{l}}\right)
$$

Suppose $l \geqq n$ and $\lambda^{I} u_{\omega} \in U_{l}$. Then $2(t(I)+1)>n-\left|u_{\omega}\right|$. Therefore

$$
\left|\lambda^{I} u_{\omega}\right| \geqq 2 t(I)\left(1-\frac{1}{2^{l}}\right)+\left|u_{\omega}\right| \geqq n-1-\frac{n-\left|u_{\omega}\right|-1}{2^{l}}>n-2
$$

Also if $\left|u_{\omega}\right|>n-1,\left|\lambda^{I} u_{\omega}\right|>n-1$. If $\left|u_{\omega}\right|<n-1, t(I) \geqq 1$ and hence $\left|\lambda^{I}\right| \geqq l \geqq n$. Therefore $U_{l}^{q}=0$ for $q<n-1$ and $U_{l}^{n-1}=\left\{\lambda^{I(l, 0)} u_{\omega} \mid u_{\omega} \in U_{0}^{n-1}\right\}$ since $\lambda^{I(l, 0)}$ is the only λ^{I} with $t(I) \geq 0$ and $\left|\lambda^{I}\right|=0$. If $r>l$ and $\omega_{r} \neq\{ \},\left|u_{\omega}\right| \geq\left|u_{\omega_{r}}^{2^{r}}\right| \geq 2^{r}>n$. Hence $V_{l}^{q}=U_{l}^{q}$ for $q \leqq n-1$.

By the definition of $\beta_{l}: B_{l-1} \rightarrow K\left(V_{l}\right)$,

$$
\Phi\left(\beta_{l}^{*}\left(\lambda^{I(l, 0)} u_{\omega}\right)\right)=f_{l-1}^{*} \alpha_{l}^{*}\left(\lambda^{I(l, 0)} u_{\omega}\right)
$$

By 4.1(iv) $\alpha_{\imath}^{*}\left(\lambda^{I(l, 0)} u_{\omega}\right)=\delta_{\imath} \tilde{\imath}$ where $\tilde{\imath} \in H^{*}\left(X_{l-1} ; Z_{2^{\imath}}\right)$ comes from the factor of $X_{l-1}, Y\left(\left[n-\left|u_{\omega}\right| / 2\right]\right)$. Since the diagram

commutes, $\tilde{u}=f_{0-1}^{*} \tilde{\imath}$ reduced modulo two is $p_{1}^{*} f_{0}^{*} u_{\omega}=p_{1}^{*} u_{\omega} U_{0}=u_{\omega} U_{l-1}$, where U_{l} is the Thom class of T_{l} and the proof of 2.8 is complete.

§5. Proof of 2.7

If G_{1} and G_{2} are graded groups and $h: G_{1} \rightarrow G_{2}$ is a homomorphism of degree i, we will say that h is k connected if $h: G_{1}^{a} \rightarrow G_{2}^{a+i}$ is an epimorphism for $q<k$ and a monomorphism if $q \leqq k$. We will say that a sequence of graded groups and homorphisms,

$$
\cdots \rightarrow G_{l} \rightarrow G_{l-1} \rightarrow \cdots
$$

is k-exact if

$$
G_{l+1}^{a-i} \rightarrow G_{l}^{a} \rightarrow G_{l-1}^{a+j}
$$

is exact for all l and $q \leqq k$.
In $\S 3$ we constructed isomorphisms $\theta: A \otimes U_{l} \rightarrow A(B O) \otimes V_{l}$ and a subcomplex $\left\{L_{l}, d\right\} \subset\left\{A(B O) \otimes V_{l}, d\right\}$ such that

$$
\longrightarrow L_{l} \xrightarrow{d} L_{l-1} \xrightarrow{d} \cdots \longrightarrow L_{0}=0
$$

is $2 s+2$ exact, $s=[n / 2]$. In $\S 4$ we constructed a tower of fibrations $\rightarrow X_{l} \rightarrow$ $X_{l-1} \rightarrow$ with k-invariants $\alpha_{l}: X_{l-1} \rightarrow K\left(U_{l}\right)$ associated to the complex $\left\{A \otimes U_{l}, d\right\}$. Let

$$
\begin{aligned}
& \bar{H}^{*}\left(K\left(U_{l}\right)\right)=H^{*}\left(K\left(U_{l}\right)\right) / \theta^{-1}\left(L_{l}\right) \\
& \bar{H}^{*}\left(X_{l}\right)=H^{*}\left(X_{l}\right) / \alpha_{l-1}^{*} \theta^{-1}\left(L_{l-1}\right)
\end{aligned}
$$

LEMMA 5.1: The maps

$$
K\left(U_{l}\right) \xrightarrow{i} X_{l} \xrightarrow{p} X_{l-1} \xrightarrow{\alpha_{l}} K\left(U_{l}\right)
$$

induce a $2 s+2$-exact sequence

$$
\rightarrow \bar{H}^{*}(K(U)) \rightarrow \bar{H}^{*}\left(X_{l-1}\right) \rightarrow \bar{H}^{*}\left(X_{l}\right) \rightarrow
$$

Proof: Let E_{l} be the kernel of

$$
H^{*}\left(X_{l}\right) \rightarrow \lim _{k \rightarrow \infty} H^{*}\left(X_{k}\right)
$$

Then $H^{*}\left(X_{l}\right) \approx H^{*}(\mathrm{MO}) / \Phi\left(I_{n}\right) \oplus E_{l}$ and E_{l} and $A \otimes U_{l}$ are related by the diagram

where the $\bar{\alpha}_{l}$ and \bar{i}_{l} are defined by α_{l}^{*} and i_{l}^{*} and each pair of composable arrows is exact. Dividing $A \otimes U_{l}$ and E_{l-1} by $\theta^{-1}\left(L_{l}\right)$ and $\bar{\alpha}_{l} \theta^{-1}\left(L_{l-1}\right)$, respectively, produces the same type of diagram with exactness replaced by $2 s+2$-exactness. The desired result then follows.

In §2 we defined maps

$$
g_{l}^{\prime}: K\left(U_{l}\right) \rightarrow T_{l-1} / T_{l}^{\prime}
$$

In §6 we prove:
LEMMA 5.2. The map g_{1}^{\prime} induces a $2 s+2$-connected map

$$
F_{l}: \bar{H}^{*}\left(K\left(U_{l}\right)\right) \rightarrow H^{*}\left(T_{l-1} / T_{l}^{\prime}\right)
$$

for $l \geqq 1$.
Proof of 2.7: We first prove 2.7(ii). Suppose M is a smooth n-manifold, $h: M \rightarrow B_{0}=B O$ classifies ν, the normal bundle of M and $\tilde{h}: M \rightarrow B_{l-1}$ is a lifting of h. Let $T(\tilde{h}): T(\nu) \rightarrow T_{l-1}$ denote the associated Thom space map. Then $f_{l-1} T(\tilde{h}): T(\nu) \rightarrow X_{l-1}$ is a lifting of $f_{0} T(h): T(\nu) \rightarrow X_{0}$ and hence by 2.4(iv), $f_{l-1} T(\tilde{h})$ lifts to X_{l} and therefore $\alpha_{l} f_{l-1} T(\tilde{h})=0$. Thus for $v \in \bar{V}_{l}$

$$
\Phi h^{*} \beta_{l}^{*}\left(v_{1}\right)=T(\tilde{h})^{*} \Phi\left(\beta_{l}^{*}\left(v_{1}\right)\right)=T(\tilde{h})^{*} f_{l-1}^{*} \alpha_{l}^{*}(v)=0
$$

Thus $\beta_{l} \tilde{h}=0$ and \tilde{h} lifts to $h^{\prime}: M \rightarrow B_{l}^{\prime}$
If $u \in U_{l+1}, \bar{u}=\{u\} \in W_{l+1}=U_{l+1} /$ ker Δ and $\nu \theta(u)=\sum x_{i} u_{i}, x_{i} \in A(B O)$ and $u_{i} \in V_{l+1}$, then

$$
\Phi\left(\left(h^{\prime}\right)^{*} \gamma_{l}^{*}\left(\bar{u}_{1}\right)\right)=T\left(h^{\prime}\right)^{*} \Phi\left(\gamma_{l}^{*} \bar{u}_{1}\right)=T\left(h^{\prime}\right) \Delta(u)
$$

Recall,

$$
\Delta(u)=\left(f_{i}^{\prime}\right)^{*} \alpha_{l+1}^{*} u-\sum x_{i}\left(f_{\imath+1}^{\prime}\right)^{*} \alpha^{*} u_{i}
$$

But $T\left(h^{\prime}\right)^{*}$ is $A(B O)$ linear and $\alpha_{l+1} f^{\prime} T\left(h^{\prime}\right)=0$ as above. Thus $T\left(h^{\prime}\right)^{*} \Delta(u)=0$ and hence $\gamma_{l} h^{\prime}=0$. Therefore h^{\prime} lifts to B_{l} and the proof of 2.7(ii) is complete. We note for further reference:

LEMMA 5.3: $T\left(h^{\prime}\right)^{*} \Delta(u)=0$ for $u \in U_{l+1}$.
LEMMA 5.4. If $\delta^{*}: H^{*}\left(T_{i}^{\prime}\right) \rightarrow H^{*}\left(T_{l-1} / T_{i}^{\prime}\right), \delta^{*} \Delta(u)=0$ for $u \in U_{l+1}$.

Proof. Consider the commutative diagram:

Recall, g_{0}^{\prime} realizes $\Psi r \theta, \quad i^{*} \alpha_{l+1}^{*}=d$ and Ψ, r, and $d: A(B O) \otimes V_{l-1} \rightarrow$ $A(B O) \otimes V_{l-1}$ are $A(B O)$ linear. Hence,

$$
\begin{aligned}
\delta^{*} \Delta(u) & =\delta^{*}\left(\left(f_{l}^{\prime}\right)^{*} \alpha_{\alpha+1}^{*} u+\sum x_{i}\left(f^{\prime}\right)^{*} \alpha_{l+1}^{*} u_{i}\right) \\
& =\left(g_{l}^{\prime}\right)^{*} i^{*} \alpha_{l+1}^{*} u+\sum x_{i}\left(g_{l}^{\prime}\right)^{*} i^{*} \alpha_{l+1}^{*} u_{i} \\
& =\Psi r \theta d u+\sum x_{i} \Psi r \theta d u_{i}=\Psi r d \theta u+\sum \Psi r d x_{i} \theta\left(u_{i}\right)
\end{aligned}
$$

where $r \theta(u)=\sum x_{i} u_{i}, x_{i} \in A(B O)$ and $u_{i} \in V_{l+1}$. But for $v \in V_{l+1}, \theta(v)=v$. Thus

$$
\sum x_{i} \theta\left(u_{i}\right)=\sum x_{i} u_{i}=r \theta u=\theta u+z
$$

where $\quad z \in L_{l+1}$. Furthermore $d z \in L_{l}$. Hence $\delta^{*} \Delta(u)=\Psi r d z=\Psi r \theta \theta^{-1} d z=$ $\left(g^{\prime}\right)^{*} \theta^{-1} d z$.

But by 5.2, $\theta^{-1}\left(L_{l}\right)$ is the kernel of $\left(g_{l}^{\prime}\right)^{*}$.
We now prove that f_{l} induces a $2 s+2$-connected map $\bar{f}_{l}: \bar{H}\left(X_{l}\right) \rightarrow H^{*}\left(T_{l}\right)$ by induction on $l \geqq 0$. We first show that \bar{f}_{l} is well defined.

$$
\bar{H}^{*}\left(X_{l}\right)=H^{*}\left(X_{l}\right) / \alpha_{l+1}^{*}\left(\theta^{-1}\left(L_{l+1}\right)\right)
$$

From the commutative diagram:

we see that

$$
f_{l}^{*} \alpha_{l+1}^{*}\left(\theta^{-1}\left(L_{l+1}\right)\right)=j^{*}\left(g_{+1}^{\prime}\right)^{*}\left(\theta^{-1}\left(L_{l+1}\right)\right)
$$

By 5.2, $\theta^{-1}\left(L_{l+1}\right)$ is in the kernel of $\left(g_{1+1}^{\prime}\right)^{*}$.

Since f_{0}^{*} is an isomorphism, $\bar{f}_{0}=f_{0}^{*}$ and \bar{f}_{0} is an isomorphism.
Suppose \bar{f}_{l-1} is $2 s+2$ connected. If $u \in U_{l+1}, \Delta(u) \in H^{q}\left(T_{l}^{\prime}\right)$ pulls back to $H^{a}\left(T_{l-1}\right)$ since, by $5.4, \delta^{*} \Delta(u)=0$ and it pulls back to $H^{q}\left(X_{l-1}\right)$ if $q<2 s+2$, that is, if $|u|<2 s+1, \Delta(u)=\left(f_{l}^{\prime}\right)^{*} p^{*} x$ where $p: X_{l} \rightarrow X_{l-1}$. But since the X_{l} 's are constructed from an acyclic complex, image $p^{*}=$ image $\left(H^{*}\left(X_{0}\right) \rightarrow H^{*}\left(X_{l}\right)\right)$. Therefore image $\left(f_{i}^{\prime}\right)^{*} p^{*}=$ image $\left(H^{*}\left(T_{0}\right) \rightarrow H^{*}\left(T_{l}^{\prime}\right)\right)=H^{*}(M O) / \Phi\left(I_{n}\right)$. But by 5.3, $\Delta(u)$ is zero on all n-manifolds. Hence $\Delta(u)=0$ and we have shown that $W_{l+1}^{q}=\left(U_{l+1} / \operatorname{ker} \Delta\right)^{q}=0$ for $q<2 s+1$. Therefore $H^{a}\left(B_{l}^{\prime}\right) \rightarrow H^{a}\left(B_{l}\right)$ is an isomorphism for $q \leqq 2 s+2$ since B_{l} is a fibration over B_{i-1}^{\prime} induced by $\gamma_{l}: B_{l}^{\prime} \rightarrow$ $K\left(W_{l+1}\right)_{1}$. Then $H^{q}\left(T_{l}^{\prime} / T_{l}\right)=H^{a}\left(B_{l}^{\prime}, B_{l}\right)=0$ for $q<2 s+2$ and hence

$$
H^{*}\left(T_{l-1} / T_{l}^{\prime}\right) \rightarrow H^{*}\left(T_{l-1} / T_{l}\right)
$$

is $(2 s+2)$-connected. Let g_{l} be the composition

$$
T_{l-1} / T_{l} \longrightarrow T_{l-1} / T_{l}^{\prime} \xrightarrow{8_{l}} K\left(U_{l}\right)
$$

and let $\bar{g}_{l}: \bar{H}^{*}\left(K\left(U_{l}\right)\right) \rightarrow H^{*}\left(T_{l-1} / T_{l}\right)$ be induced by g_{l}. Then $\overline{\mathrm{g}}_{l}$ is $(2 s+2)$ connected by 5.2. Consider the commutative diagram:

A five lemma argument and the fact that \bar{f}_{l-1} and \bar{g}_{l} are $(2 s+2)$-connected shows that \bar{f}_{l} is $2 s+2$-connected.

Since $L_{l}=0$ for $l>3, \quad \bar{H}^{*}\left(X_{l}\right)=H^{*}\left(X_{l}\right) \quad$ for $\quad l \geqq 3$ and therefore $f_{l}^{*}: H^{q}\left(X_{l}\right) \rightarrow H^{q}\left(T_{l}\right)$ is an isomorphism for $q \leqq n<2 s+2$. This completes the proof of 2.7.

§6. Proof of 5.2

LEMMA 6.1.

$$
H^{a}\left(B_{l-1}\right) \rightarrow H^{q}\left(B_{l}^{\prime}\right)
$$

is an isomorphism for $l>1$ and $q \leqq s+1$. For $l=1$ it is an epimorphism for $q \leqq s+1$ and $v_{s+1}, w_{1} v_{s+1}, S q^{1} v_{s+1}$ and v_{s+2} generate the kernel for $q \leqq s+2$.

Proof. As we saw in the proof of 2.8 , if $\lambda^{I} u_{\omega} \in V_{l}, \quad\left|\lambda^{I} u_{\omega}\right| \geqq$ $(n-1)-\left(n-\left|u_{\omega}\right|-1\right) / 2^{l}$. Hence the lowest dimensional element in V_{l} is of the form λ^{I} with $t(I)=s$. For such an $I,\left|\lambda^{I}\right| \geqq s+2$ except for $l=1$ or $l=2$ and $s=1$ and 2. The space B_{l}^{\prime} is a fibration over B_{l-1} induced by $\beta_{l}: B_{l-1} \rightarrow K\left(V_{l}\right)_{1}$ and for $l>1, K\left(V_{l}\right)_{1}$ is $s+2$ connected except when $l=2$ and $s=1$ or 2 . For $s=1$ or 2 , the lowest dimensional elements in V_{2} are $\lambda^{1,1}$ and $\lambda^{1,2}$ respectively; $d \lambda^{1,1} \neq 0$ and $d \lambda^{1,2} \neq 0$ so these elements kill nonzero classes in B_{1}. Thus for $l>1, H^{q}\left(B_{l-1}\right) \approx$ $H^{q}\left(B_{l}^{\prime}\right)$ for $q \leqq s+1$.

Suppose $l=1$. From 3.1 one sees that $d \lambda^{i}=\chi\left(\operatorname{Sq}^{i+1}\right) U=\Phi\left(v_{i+1}\right)$ where U is the Thom class and v_{i+1} is the Wu class. Hence $\beta_{1}: B_{0} \rightarrow K\left(V_{1}\right)_{1}$ takes λ^{i} into v_{i+1}. One easily checks that $V_{1}^{q}=0$ for $q<s, V_{1}^{s}=\left\{\lambda^{s}\right\}$ and $V_{1}^{s+1}=\left\{\lambda^{s+1}\right\}$. The remainder of 6.1 now follows by a simple Serre spectral sequence argument.

Let $K_{l}=K\left(V_{l}\right)_{1}$. Viewing $\beta_{l}: B_{l-1} \rightarrow K_{l}$ as a fibre map with fibre B_{l}^{\prime}, consider the pair of fibrations p_{1} and p_{2} :

where p_{1} is defined by β_{l}, p_{2} is projection on the second factor and $c=i d \times p$. Note c is a fibre preserving map so we may use it to compare the Serre spectral sequences of p_{1} and p_{2}.

LEMMA 6.2. For $l>1, c^{*}: H^{q}\left(B_{l-1} \times K_{l}, B_{l-1} \times\left\{{ }^{*}\right\}\right) \rightarrow H^{q}\left(B_{l-1}, B_{l}^{\prime}\right)$ is an isomorphism for $q \leqq 2 s+3$. For $l=1, c^{*}$ is an epimorphism for $q \leqq 2 s+2$ and for $q \leqq 2 s+3$ the kernel is generated by

$$
\begin{aligned}
& v_{s+1} \otimes \lambda_{1}^{s}+1 \otimes\left(\lambda_{1}^{s}\right)^{2} \\
& v_{s+1} \otimes S q^{1} \lambda_{1}^{s}+1 \otimes \lambda_{1}^{s} S q^{1} \lambda_{1}^{s} \\
& v_{s+1} \otimes \lambda_{1}^{s+1}+1 \otimes \lambda_{1}^{s} \lambda_{1}^{s+1} \\
& w_{1} v_{s+1} \otimes \lambda_{1}^{s}+w_{1} \otimes\left(\lambda_{1}^{s}\right)^{2} \\
& S q^{1} v_{s+1} \otimes \lambda_{1}^{s}+1 \otimes \lambda_{1}^{s} S q^{1} \lambda_{1}^{s} \\
& v_{s+2} \otimes \lambda_{1}^{s}+1 \otimes \lambda_{1}^{s} \lambda_{1}^{s+1}
\end{aligned}
$$

Proof. Let $E_{r}^{p, q}$ and $\bar{E}_{r}^{p, q}$ denote the Serre spectral sequences for p_{1} and p_{2} respectively.

$$
\begin{aligned}
& E_{2}^{\mathrm{p}, \mathrm{q}}=H^{\mathrm{p}}\left(K_{l},{ }^{*}\right) \otimes H^{q}\left(B_{l-1}\right) \\
& \bar{E}_{2}^{\mathrm{p}, \mathrm{q}}=H^{p}\left(K_{l}, *\right) \otimes H^{q}\left(B^{\prime}\right)
\end{aligned}
$$

As we saw above, for $l>1, K_{l}$ is $s+2$ connected and $H^{q}\left(B_{l-1}\right) \approx H^{q}\left(B_{l}^{\prime}\right)$ for $q \leqq s+1$. Therefore c induces an isomorphism at the E_{2} level for $p+q \leqq 2 s+3$ and the differentials are trivial for p_{2} because it is a product fibration. This proves 6.2 for $l>1$.

For $l=1,6.2$ is true at the E_{2} level with the first summands in the above list of elements as a basis for the kernel; the second summands are of lower filtration. The same is true at the E_{∞} level, so to complete the proof, we must show that these elements are in the kernel of c^{*}.

Under the map $H^{*}\left(B_{0}, B_{1}^{\prime}\right) \rightarrow H^{*}\left(B_{0}\right), c^{*}\left(1 \otimes \lambda_{1}^{s}\right)$ goes to v_{s+1}. Hence

$$
c^{*}\left(v_{s+1} \otimes \lambda_{1}^{s}+1 \otimes\left(\lambda_{1}^{s}\right)^{2}\right)=v_{s+1} c^{*}\left(1 \otimes \lambda_{1}^{s}\right)+c^{*}\left(1 \otimes \lambda_{1}^{s}\right)^{2}=0
$$

(If $j: X \subset(X, A)$ and $x \in H^{*}(X, A), x^{2}=\left(j^{*} x\right) x$.) The same argument applies to the other five elements.

Let

$$
\phi:\left(A(B O) \otimes \bar{V}_{l}\right)^{q} \rightarrow H^{q+1}\left(T_{l-1} \wedge K_{l}\right)
$$

be defined by

$$
\phi((a \otimes w) u)=a\left(w U \otimes u_{1}\right)
$$

where U is the Thom class, $a \in A, w \in H^{*}(B O)$ and $u \in \bar{V}_{l}$.
LEMMA 6.3. For $q \leq 2 s+1, \phi$ is an epimorphism. For $q \leq 2 s+2$ the kernel of ϕ is zero for $l>1$ and $(l, s) \neq(2,2)$, is $\left\{v_{3} \lambda^{1,2}\right\}$ for $(l, s)=(2,2)$ and is $\left\{\left(\sum S q^{i} \circ v_{s+2-i}\right) \lambda^{s}\right\}$ for $l=1$.

Proof. Let $\mu, \mu^{\prime}: A(B O) \rightarrow A(B O)$ be defined by

$$
\begin{aligned}
& \mu(a \circ w)=\sum a_{i}^{\prime} \circ w s\left(a_{i}^{\prime \prime}\right) \\
& \mu^{\prime}(a \circ w)=\sum a_{i}^{\prime} \circ w \chi\left(a_{i}^{\prime \prime}\right)
\end{aligned}
$$

(Recall, wa is defined by (wa/U= $\boldsymbol{w}(a)(w U)$.)
Where $a \rightarrow \sum a_{i}^{\prime} \otimes a_{i}^{\prime \prime}$ in the diagonal in A. Then $\mu \mu^{\prime}=\mu^{\prime} \mu=$ identity and thus μ is a Z_{2}-isomorphism. Let $\phi^{\prime}=\phi(\mu \otimes i d)$. Then

$$
\phi^{\prime}((a \circ w) u)=\sum a_{i}^{\prime}\left(\chi\left(a_{i}^{\prime \prime}\right)(w U) \otimes u_{1}\right)=w U \otimes a u_{1}
$$

Let λ^{I} be the lowest dimensional element in $\bar{V}_{l} ;\left|\lambda^{I}\right|>s$ for $l=1$. The lowest
dimensional element in $H^{*}\left(T_{l-1} \wedge K_{l}\right)$ not in the image of ϕ^{\prime} is $U \otimes\left(\lambda_{1}^{I} \cup S q^{i} \lambda_{1}^{I}\right)$, an element of dimension $\geqq 2 s+3$. Hence ϕ is an epimorphism for $q<2 s+2$. The lowest dimensional elements in the kernel of ϕ^{\prime} are $1 \circ v_{s+1} \lambda_{1}^{I}$ or $\left(S q^{m} \circ 1\right) \lambda_{1}^{I}$ where $m=\left|\lambda_{1}^{I}\right|+1$. For $l>2,(l, s) \neq(2,2), \lambda_{1}^{I}>s+1$ and hence these elements occur in dimensions $>2 s+3$. For $(l, s)=(2,2), \phi\left(v_{3} \lambda^{1,2}\right)=\phi^{\prime}\left(v_{3} \lambda^{1,2}\right)=0$. For $l=1$

$$
0=\phi^{\prime}\left(\left(S q^{s+2} \circ 1\right) \lambda^{s}\right)=\phi\left(\left(\sum S q^{i} \circ v_{s+2-i}\right) \lambda^{s}\right)
$$

This proves the last part of 6.3.
Proof of 5.2: We must show that

$$
\left(g_{l}^{\prime}\right)^{*}=\Psi r \theta:\left(A \otimes U_{l}\right)^{q} \rightarrow H^{q+1}\left(T_{l-1} / T_{l}^{\prime}\right)
$$

is an epimorphism for $q \leqq 2 s+2$ and $\left(L_{l}\right)^{q}$ is the kernel for $q \leqq 2 s+2$. By $2.5, \theta$ is an isomorphism. Let ϕ be the map in 6.3 and c the map in 6.2. Lifting c to the Thom space level we obtain a map

$$
T(c): T_{l-1} / T_{l}^{\prime} \rightarrow T_{l-1} \wedge K_{l}
$$

Furthermore $\Psi=T(c)^{*}$. Thus by 6.2 and $6.3, \Psi$ is an epimorphism for $q \leq 2 s+1$ and since r is an epimorphism, $\left(g_{l}^{\prime}\right)^{*}$ is an epimorphism for $q \leq 2 s+1$. For $l>1$ and $(l, s) \neq(2,2), T(c)^{*}$ and ϕ are monomorphisms for $q \leq 2 s+2$ and L_{l}^{q} is the kernel of r. When $(l, s)=(2,2) r\left(L_{l}\right)=\left\{v_{3} \lambda^{1,2}\right\}$. This completes the proof of 5.2 for $l>1$.

Suppose $l=1$. Then $r=$ identity. We wish to show that $L_{1}=\phi^{-1}\left(\operatorname{ker} T(c)^{*}\right)$. In 6.2 a basis for ker c^{*} was given for $q \leq 2 s+2$. Since image $\phi=$ image ϕ^{\prime} cannot involve cup products (except squares) in $H^{*}\left(K_{l}\right)$, the above basis shows that the following is a basis for image $\phi \cap \operatorname{ker} T(c)^{*}$:

$$
\begin{aligned}
& v_{s+1} U \otimes \lambda_{1}^{s}+U \otimes S q^{s+1} \lambda_{1}^{s} \\
& w_{1} v_{s+1} U \otimes \lambda_{1}^{s}+w_{1} U \otimes S q^{s+1} \lambda_{1}^{s} \\
& v_{s+1} U \otimes S q^{1} \lambda_{1}^{s}+\left(S q^{1} v_{s+1}\right) U \otimes \lambda_{1}^{s} \\
& v_{s+1} U \otimes \lambda_{1}^{s+2}+v_{s+2} U \otimes \lambda_{1}^{s}
\end{aligned}
$$

Thus a basis for $\phi^{-1}\left(\operatorname{ker} c^{*}\right)$ is ϕ^{-1} of these elements and $\left(\sum S q^{i} \circ v_{s+2-i}\right) \lambda^{s}$ from the kernel of ϕ. A simple calculation shows that these elements form a basis for $L_{1}^{q}, q \leq 2 s+2$, completing the proof of 5.2.

BIBLIOGRAPHY

[1] Browder, W. The Kervaire Invariant of Frammed Manifolds and its Generalizations, Ann. of Math. (2) 90 (1969), 157-186.
[2] Brown, E. and Grtler, S. A Spectrum Whose Cohomology is a Certain Cyclic Module Over the Steenrod Algebra, Topology 12, (1973) 283-295.
[3] Brown, E. and Peterson, F. Relations Among Characteristic Classes I, Topology (3) (1964), 39-52.
[4] - On Immersions of n-manifolds, Adv. in Math. 24 (1977), 74-77.
[5] -, On Stable Decomposition of $\Omega^{2} S^{n+2}$, Trans. Amer. Math. Soc., to appear.
[6] Massey W. and Peterson, F. The Cohomology Structure of Certain Fibre Spaces, Topology 5 (1965) 47-65.
[7] Milnor J. and Stasheff, J. Characteristic Classes, Ann. of Math. Studies 76 (1974).
[8] Bousfield A. et al, The mod-p Lower Central Central Series and the Adams Spectral Sequence, Topology 5 (1966) 331-342.
[9] Hirsch, M. Immersions of Manifolds, Trans. Amer. Math. Soc. 93 (1959) 242-279.
Received June 30, 1978

[^0]: ${ }^{1}$ During the work on this paper the authors were supported by NSF grant MCS76-08804 A01 and MCS 76-06323.

