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A universal space for normal bundles of n-manifolds

E. H. Brown, JR, and F. P. PETERsON’

§1. Introduction

In [3] the authors gave a simple criterion for deciding whether a polynomial in
Stiefel-Whitney classes is zero on the normal bundles of all smooth n-manifolds.
The ideal of relations among Stiefel-Whitney classes for all n-manifolds, I,
H*(BO) was defined by

I, ={we H¥*(BO) | w(vy»)=0 for all M"}

where M" denotes a smooth n-manifold and »,, is its stable normal bundle. Let
& : H*(BO)=H*(MO) be the Thom isomorphism and for we H*(BO), define
wSq' to be @ '(x(Sq')@(w)). It was shown that I, consists of all Z,-linear
combinations of elements of the form wSq' where 2i >n —|w| (|lw| = dimension of
w).

In this paper we give a stronger version of this result, namely:

THEOREM 1. There is a space BO/I, and a map w: BO/I, — BO such that

(@) If M is a smooth, compact n-manifold and h:M— BO classifies vy, then
there is a map h:M— BOJI, such that wh =h.

(b) The following sequence is exact.

0 —> I, « H*(BO) = H*(BO/L,) —> 0.

Theorem 1 shows that BOJI, is a universal space for normal bundles of n-
manifolds in that stably, every such bundle is induced from the bundle over BO/I,
and BO/I, is the space with the smallest cohomology having this property.

Our original result on I, suggested the possibility of defining higher order
characteristic classes, that is, one could form a space B over BO by Kkilling the

! During the work on this paper the authors were supported by NSF grant MCS76-08804 A01 and
MCS 76-06323.
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406 E. H. BROWN, JR. AND F. P. PETERSON

elements of I,. Then an element of H*(B) might give a “new’’ characteristic class
for n-manifolds. For example, with n =4 or 5, the relation

(Sq*+w; USq" +w,U)(vs) = v359%> = (189°)Sq* = 0

where v; is the Wu class, gives a class in H*(B) which is not a polynomial in
Stiefel-Whitney classes. Theorem 1 shows that on an n-manifold this ‘“new” class
will be a polynomial in Stiefel-Whitney classes modulo indeterminacy.

The spaces BOJI, are also related to the conjecture that any smooth n-
manifold immerses in R?"*™ where a(n) is the number of ones in the dyadic
expansion of n. Since this conjecture is equivalent to the normal bundle map
h:M" — BO lifting to BO, _,, ([9]), the following is a stronger form of the
conjecture: )

CONJECTURE. =:BO/I, — BO lifts to BO,_,)-

Using our proof of Theorem 1, our results in [4] can be restated in the
following way which gives some plausibility to the above conjecture.

THEOREM 2. If { is the stable universal bundle over BO, MO is its Thom
spectrum, MOJI, is the Thom spectrum of w*{ and MO(n—a(n)) is the Thom
spectrum of the universal bundle over BO, _,,,, then MO/I, lifts to
MO (n—a (n)).

This paper is organized as follows: In §2 we give a detailed outline of the
proof of Theorem 1 setting forth most of the notation and describing the various
technical problems arising in the construction of BO/I,.. Then in Sections 3, 4, 5,
and 6 we prove the various lemmas stated in §2. Throughout the remainder of this
paper n is a fixed positive integer.

§2. Outline of the Proof of Theorem 1

All cohomology will be with Z, coefficients, A will be the mod two Steenrod
algebra and x: A — A will be the canonical antiautomorphism. The semi-tensor
product of A and H*(BO) ([6]) will be denoted by A(BO), that is, A(BO)=
A @ H*(BO) with the algebra structure defined by

(a®u)(b®v) =) ab,’®(x(b")u)v

where b — ) b;® b’ under the diagonal of A. We denote a®u by a ° u.
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By a spectrum Y, we will mean a collection of spaces Y, and maps g, :SY, —
Y, 1. If X and Y are spectra, a map f: X — Y of degree p will be a collection of
homotopy classes f, €[X,, Y,.,] compatible with the maps g, If & is a real
k-plane bundle, T(£) will denote its Thom spectrum, i.e., T(£), =S*™* (Thom
space of £). Thus the Thom class is in HY(T(£)). If £ is a vector bundle over B,
@ : H*(B) = H*(T(¢)) will be the Thom isomorphism. We make H*(T(£)) into an
A(BO) module as follows: Let h:B— BO classify & If ue H*(T((¢)), we
H*(BO) and acA, (a - wu=a(h*(w)u). One easily checks that &(I,)c<
H*(MO) is an A(BO) submodule.

We begin by constructing an A-free, acyclic resolution of ®(I,). In [3] the
following was proved:

THEOREM 2.1. If {u} is an A basis for H*(MO), then ®(I,) is the A module
generated by

{x(Sa")u; [2j>n—|ul}.

For a partition o ={j;, j,, ..., ji} let s, € H*(BO) be the usual class ([17])
associated with the symmetric function Y tiit%z- - - t:. For each partition w let o,
be the partition consisting of odd integers j, one for each j2" € w. Let

—_ 2r
U, = H Se,
r
Since

u,=s,+ Zsu,'

where o’ has fewer entries than o and {s,} is a basis for H*(BO), {u,} is also a
basis for H*(BO). Also {®(u,)|2'—1€w} is an A basis for H*(MO) since
{D(s,) | 2" — 1€ w} is.

In [2] an A-free acyclic resolution of A/A{x(Sq')|i>h} was constructed.
Combining these resolutions with 2.1 and the ®(u,,) basis, we obtain the follow-
ing resolution of &(I,).

Let A be the graded free associative algebra over Z, with unit generated by A,,
i=0, 1, £2,...,|A| =1, modulo the relations: If 2i <j

AiA =Z( 1 )Aws)\i—S.

2s —(j—2i)

If I:‘(il, i2, c ey i!), let AI =Ai|hi2 vt Ail’ l(D= l, t(I)= il’ and A.(): 1. We deﬁl’le I
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to be admissible if 2i; =i, ,. As we will see in §3, {A; | I admissible} is a Z, basis
for A. Let {A"| I admissible} be the dual basis of A* =Hom (A, Z,).

Let U, be the vector space over Z, with basis the symbols A'u, where I is
admissible, 2'—1€w, I(I)=1 and 2(t(+1)>n—|u,|. Grade U, by |A'u,|=
AT +|u,|. Let d: AQU, > AQU,_, be the A linear map defined by ‘

d(1®Au,) =Y AT(AA)x (ST A u,

where the sum ranges over all j and admissible J. Note by 2.2, if A'(AA;) #0,
t(J)=t(I) and hence d is well defined. Let n: A ® U,— H*(MO) be given by
n(@a®Au,)=adP(u,).

PROPOSITION 2.3. The following sequence is exact:

———)A®Ul—d—>A®U,_1 o o 8 AQU,
and

d(I,)=n(image (d: AQ U, > AQU,))

We prove 2.3 in §3.
For a graded vector space V over Z,, let K(V) denote the Eilenberg-
MacLane spectrum such that 74(K(V))=V™* and H*(K(V))=AQ V.

PROPOSITION 2.4. There is a sequence of 2-spectra X,, |=0, 1, 2,...and
maps o, : X;_; = K(U,) of degree +1 such that

(i) Xo=K(Uo) ,

(ii) X, is the fibration over X,_, induced by o, from the contractible fibration over
K(Uy).

(i) If i:K(U)— X, is the inclusion of the fibre of X, — X,_,, (oy,1)*=
d:AQU,,; > AQU.

(iv) If M is a smooth n-manifold, v is its normal bundle, g:MO — K(U,)
realizes n and h: T(v) > MO comes from the classifying map of v, then any lifting
of gh: T(v)— X, to X,_, lifts to X,.

Since the X,’s are constructed from an acyclic complex,

lim H*(X;)~Coker (d: AQ U, > AQ U,) =~ H*(MO)/®(I,).
To construct BO/I, we essentially construct a tower of spaces

"*B["')B[_l'“)" "")B():BO
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with fibres Eilenberg-MacLane spaces, such that if T, = T({,) where ¢, — B, is the
pull back of the universal bundle over BO, then T, =X, in dimensions =n. We
can then, more or less, define BO/I, =1lim B,.

We recall how the cohomology of a Thom space of a vector bundle changes, in
a stable range, when a cohomology class in the base is killed. Suppose g: B — BO
is a map such that g,:#,(B)=m,(BO) for 2q=n, V is a graded vector space
with V, =0 for 2q=n and p:B’— B is the fibration induced by a map y:B —
K(V), (K(V)={K(V)}). Let T=T(g*¢) and T' = T(p*g*{). Viewing B'c B as

the fibre of v, vy factors as B —— B/B’ —— K(V),. Let
V. (A(BO)Q V)T — H"(T/T)

be given by ¥(a °c u®v)=a(u®((vy')*(v,))) where v, € H¥(K(V),) is the element
corresponding to v € V and @ is the relative Thom isomorphism. In §6 we show
that ¥ is an isomorphism for q =n. (An equivalent form of this was proved in
[1].) Combining this with the exact sequence of the pair (T, T’) we obtain an exact
sequence,

— HY(T)— H(T)—> (A(BO)Q V)* - H**(T) —>

for g=n.
The cohomology of X; and X,_; are related by the Serre exact sequence,

— H*(X,_y) — H*(X) > (AQ U)* > H"(X;-) —.

Thus if we have constructed B,_, such that T,_, = X,_, in dimensions =n and we
wish to construct B,, we should take B = B,_, in the above and choose V, so that
A(BO)Q®V,=AQU, as A modules. Our main algebraic result asserts that this is
possible. Let

Vi={Mu,eU|low,={} for rz=l}

PROPOSITION 2.5. There are A linear isomorphisms 0: A QU, > A(BO)®
V, and A(BO) linear maps d:A(BO)®V,— A(BO)®V,_;, I>1 and
d: A(BO)® V, — H*(MO) such that the following diagram is commutative:

—> AQU, <L, AQU_, s —> AR U,

I I I

— > A(BO)®V, 25 A(BO)®V,_, —> + - - —> H*(MO).
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Furthermore, if ue V< U, then 6(1Qu)=1Qu.

The construction of spaces B, can now be made, modulo technical problems,
using 2.5. Given B,_; and f_,: T,_, — X,_;, the k-invariant B,:B,_, — K(V)),
is defined by:

‘pB?‘(UO = fl*—la:k(v)

where «;:X,_;— K(U,) is the k-invariant for X;, veV and v,e H*(K(V),)
corresponds to v. If M is an n-manifold and h: M — BO classifies its normal
bundle, 2.4(iv) shows that any lifting of h to B,_, lifts to B,. The A(BO) linearity
of d allows one (more or less) to construct f;: T; — X,. Actually, this straightfor-
ward procedure is marred by two technical details which we now describe.

Let s=[n/2]. To form B, from BO, one kills, among other things, the Wu
class v, 4, i.e. dA®* = x(Sq** ) U =v,,, U, where the U is the Thom class. The map
¥ is zero on

2 (84" v,11-)®N* € (A(BO)R V)™

i>0
As a result, there is a class x e H>**'(X,) which goes to zero in H***'(T,). The
class x is killed in going from X, to X,. Hence if one were to follow the recipe
given by 2.5, one would kill a class in B, which is already zero and thus produce a
class in H**(B,) not coming from H>*(X,). To avoid this, we omit a basis element
from V,. This same phenomena occurs in dimension 2s +2 so we omit some more
elements from V, and V. Namely, let V,< V, be spanned by Alu, € V, except
A%OwZ A% w2, AT Pwl, and for s odd, AV TR THRWAWS (W =ugn )

In §3 we define a certain A (BO) linear map

r:A(BO)®V,— A(BO)® YV, (2.6)

such that r | A(BO)®YV, is the identity. We then use r6 in place of 6 in our
construction of B,.

The second difficulty arises in the following fashion. Again suppose we have
B,_; and f,_,:T,_, — X,_, and we construct B, using V, instead of V, as above.
Let g : T,_,/T, = K(U,) be the map such that g¥(u) = ¥ré(u) for u € U,. In order
to construct f;: T, — X, we need commutativity of the diagram

T, — T,_/T,

B

X,_, — K(U)).
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We can only prove that this diagram commutes in dimensions =2s+ 1. To correct
for this we relabel B, above, B/ and we form B, from B/ by killing the
obstructions to commutativity as follows:

Define A =A(f_,): U, — H*(T,_,) by

A(u)= ﬁ—la?‘“ - inﬁk—laikui

where r0(u)=Y xu, x,€ A(BO), u; € V,. Then

gt = 90w = ¥ T xan,)= T x*0(B)*(w)
=Y x®P(BEwW) = X xff ot () = AW+ £ afw)

Thus A is the deviation from commutativity of our diagram above. Let
W, = U/ker A. We kill @ '(A(W)) in Bj to form B,.

To recapitulate, we inductively construct a sequence of spaces B,, stable vector
bundles ¢ over B, and maps f,:T,=T({)— X, such that A(f))=0. We take
B,=BO, {,= ¢ the universal bundle and f, the map such that fa(u,)= ®(u,) for
u, € Uy. (Xo=K(Uy,).) Referring to 2.5, f&¥=m, a¥=d and A(f,)=nd—d6=0.
Suppose B,_,, {_, and f,_, have been defined and A(f,_,)=0. Let p':B{— B,_,
be the fibration induced by B, : B,_, — K(V,); where B, is defined by

D(BY (1) =ft1ai (v)

for ve V,c U, and v, € H*(K(V,),) the element corresponding to v. Let {{=
(p)*&-1 and T{=T(L)). _

Viewing B/ < B,_, as the fibre of B,, B, factors through B{. B,_,/B; — K(V}),.
Let ¥:A(BO)® V, — H*(T,_,/T}) be the A(BO) linear map such that ¥(v)=
®((B!)*(v,)) for ve V,. Let 0 be as in 2.5, r as in 2.6, and let g{: T,_,/T; — K(U))
be defined by (g))*(u)= ¥r6(u). Since A(fi_,)=0, there is a map f; making a
commutative diagram

T,.JT{—> T —> T, —> T,_{/T]

SRR

K(U) = X, —> X,_, — K(U)).

Let A(f}): Uy, = H*(Ty) be given by A(f))(u) = (f)*af1u+X x(f)*af u; where
rou =Y xu. Let W, = U, /ker A(f}) and let p : B, — B] be the fibration induced
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by v,:B]— K(W,,,); where ®(yfu,)=A(f))(u) for ue W,,,. Finally let ¢ =
p*¢i and f, =fiT(p). Then A(f)=T(p)*A(f})=0 and the inductive step is com-
plete.

In §5 we prove:

LEMMA 2.7. If 1=Z3 and q=n, {¥: HY(X,)=H*(T(%)). Furthermore, if M is
a smooth n-manifold and h: M — B, = BO classifies its normal bundle, then any
lifting of h to B,_, lifts to B,.

We next examine H*(B,) for | large.

LEMMA 2.8. If l=n, V¢=U?=0 forq<n-—1, Wi=0 forq=n and

Vit=Upt ={A %P | u, € Uy~ '}. Furthermore,

u,eH*(T,_;Zy), u,Ue H*(T,_,) is the mod two reduction of i, and 0, is the
Bockstein associated with Z,— Z 41— Z ;.
Thus for [=n,

HY(B)~H*(BO)/I, q<n

H"(B)/®™ {8+, }~H"(BO)/I;

We form B, from B,, |=n, by killing classes & '(6'"! ii,)e H**'(B,; Z,) where
Z. denotes twisted integer coefficients, twisted by w,, ®:H*(B;;Z)~
H*(T(g); Z) is the Thom isomorphism and &' is the Bockstein associated with
Z—>Z—>Z, Let B, be the two sheeted cover of B, defined by w;. The classes
&~ '(8'*' ii,) may be represented by Z, equivariant maps x,:B, > K(Z, n)
where K(Z, n) has the action defined by the nontrivial action of Z, on Z. Let B.,
be the fibration over B, induced by

x=n xw:1§,—->nK(Z, n)

Since x is Z,-equivariant, Z, acts freely on B.. Let B..= B./Z,. The map
B.=B./Z,— BJZ,=B, has fibre IIK(Z, n). With Z, coefficients, m,(B;) acts
trivially on the cohomology of the fibre. The Serre spectral sequences, with Z,
coefficients has its usual, nonlocal coefficient form and the usual argument shows
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that in dimensions =n,

H*(BO.))=H¥(B)/{® (6" @1,)}.
Thus for g=n

0—I?— H‘(BO)— H*®B.)—0
1s exact. Also if M is an n-manifold and h: M — B is covered by a bundle map
g:v— ¢, T(g)*(8' i1, ) =8"""T(g*)(#;) =0 since the top homology class of T(v)
is spherical. Therefore, h lifts to B..

Finally, assume B, is a CW complex and let

BO/I, =BLUe} " Ues*' - - elt?

where e is attached by f|S", f:(D"*',S")— (B"*',B") and [f]e
m,.1(B2, BL) give a Z,-basis for the image of

(B2, B2) —2> H,.y(B2™, BY) -~ H, (B2, B.™")
The maps f; give an extension of BL< B,, f: BO/I, — B, and

f*:H*(B,)=H%BOJI,) for q=n
HY(BO/1,)=H*BO)/I,=0 for q>n

Also any map of an n-manifold into B, is homotopic to a map factoring through

f. The proof of Theorem 1 is thus complete, modulo the lemmas and propositions
of this section.

§3. Proofs of 2.3, 2.5, and 2.6

Let Af be the Z,-subspace of A* generated by A" with I(I)=1, t(I)=k, and I
admissible. Let

d:AQAF—> ARAL
be defined by

dA®A) =Y AT(AA)x(Sq RN’ 3.1)
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where the sum is over all j and admissible J. Proposition 2.3 follows from 2.1 and
3.2(ii) below:

PROPOSITION 3.2.

(i) {A; | I admissible} is a Z,-basis for A.
(i) The following is exact:

S AQA LS ARAK  — > —> AQAK— AJA{X(Sq}) | i>k}

where e(a®A) ={a}. .
(iii) If I and J are admissible, [()=1 10N =1-1, and I,=(1,2,4,...,2" "),
then A™*™ (AjirAyizm )= AI(AiAJ)~

Proof. For any sequence T =(t;,,,...,4) and integer r, let h"(Ap) = Ay,
Extending linearly, h" gives a well defined map h": A — A since for any element
of A of the form a =A; BA;, where B is a relation for A as in 2.2, h'(a) also has
this form. Since h"h™" is the identity, h" is an isomorphism for all r. Furthermore,
h"(A;) is admissible if and only if A; is admissible.

Let A< A be the subalgebra generated by Ay, Ay, A, . ... In [8] it is proved
that {A; | I admissible} is a basis for A. For any A;, h"(A;)€ A for r sufficiently
large. Thus {A; | I admissible} is a basis for A.

In [2], 3.2(ii) was proved for k =0. From 2.2 one sees that A_;A_; =0 and if
t()=0, A_,;A; is a sum involving A;’s with t(J')>0 and A;A_;. Suppose J, =
Gis o -5 dm)s J2=Ums1r--->401) and J=(j,,...,J;) are admissible with J, or J,
possibly the empty sequence ( ). Define A’sA”>=A’. Suppose j,, =0 and j,.., <—1.
Then 3.1 yields '

dATATINT) = (dA A TIA L+ AT T2
d(ATAT3) = (dA TN

Let

DA = AT 7N, D(ATATIA) = 0.

Then for k<0, D:AQAF—> A®AF,, satisfies dD + Dd =identity. Therefore
3.2(ii) holds for k <0.
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Finally we prove 3.2(iii). Note that if I is admissible, I +rl; is admissible and if
(h")*:A* — A* is the dual of h", h", (W )*AT=A""" Therefore

)\I(Aj/\J) = (hr)*(kurl')()tj/\J)
= )tHrI‘(hr(/\iAJ)) = AIJrrl'()tj+r'\1+2r1,_l)

Proof of 2.5. Let G=AQ® U, D,=ABO)® V, [>0, and D,=H*(MO).
Denote a®ue C, by au and a c vQ®Qwe D, [ >0, by (a o v)w. We filter G, and D,
as follows: F,(C) is spanned by aA'y, with |u,|=q and F,(D,), >0, is spanned
by all a o vA'y, with |u,|+2' |v|=q. F,(D,) is spanned by all au, where ac A,
u,cUy={u, |2'—1€w} and |u,|=q.

The chain complex (C, d) is a direct sum of chain complexes of the form
described in 3.2, indexed by the u, € U,. Hence d is filtration preserving and:

(3.3) The following is exact.

— F,(G)—> F,(C_,) —> - - - —> F,(Cy)

Using induction on | we define A linear maps 0:C, — D, and A (BO) linear
maps d: D, — D,_, such that

(i) 0 is an isomorphism and 6:C,— D, is given by 8(a®u,)=ad(u,)e
H*(MO), u, € U,.

(i) de=6d

Gii) f ueVv,c U, 6(u)=u

(iv) 8(F,(C))=F,(D,)

(v) Suppose A'u, € U,. Let a and B be the partitions

a=U2w, B=U27,

r<l rl

Note u,, = u,uj. Then 6 satisfies

6(A"u,)=ugA"u, mod F, _,(D,)

where I' =I+|ug| .

Note that Proposition 2.5 consists of statements (i), (ii), and (iii) above.

For 1 =0, 6 is defined by (i) and d =0 on D,

Suppose 6 and d have been defined on C, and D, k <l, and satisfy (i) —(v).
Define d =d, : D, — D,_; to be the A(BO) linear map such that for ueV,
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dp(u) = 6(dcu). We next define 6:C, — D,. Suppose A'u, € U, and u, = u,uj as
in (v). If ug =1, AMu, €V, and we define 8(A"u,)=A"u,. In this case (i)—(v) are
satisfied. Suppose ug# 1. Let

X=0(d(A"u,))+ug0(dr"u,)

where I’ =1I+|ug| I,. By induction, 6d =d@ on C,_, and hence X =0. We show
that X € F,_,(D,) where p = |u,|. Decompose u, into u, u2 ' as in (v).

0(dA"u,) =Y AT AA)X(Sq™ 1)0(A¥u,,)
=Y MAA)KX(SG™*Y) © ug,u2)AX u, mod F,_,

where K'= K +|u, uz| I,_;. On the other hand,

ugB(dA 1) =Y. A" (A uax(Sq' oA u,)
In A(BO),

uax(Sq’*") = x(Sq'~ ") u§+k§qx(s¢'*"“) ° 8q“ug
where q = |ug|.
0N u,)=u, A 'u, mod F,__,
where J'=J+|u,|I,_;. f uA'v has filtration less than |u,|—1 and k<gq,

Sq*ugul™ has filtration less than p =|u,|.
Hence ]

ugB(dA u,) =Y AT(AA)(x(Sq' ") o uup)A"u, mod F,_,
Ix
In the above sum, replace j by j+q and J by K+2ql,_,. Then

uBG(d)\"ua) = Z AI’(Aj+¢\1AK+2qI,_1)X(qu+l) ° uazug/\K'ual mod F,_,
K

where K'=K+|u, u}| I,_,. But I'=I+ql, and hence by 3.2(iii),
AI'(Ai+qAK+2qI‘_1) = AI(Aj/\K)

Hence X e F,_,(D,).
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By (iv) there is a Ye F,_;(C,_,) such that 6(Y)= X and by (i) and (ii), dY =0.
Hence for 1>1, by 3.3, there is a Z€ F,_,(() such that dZ =Y. We verify that
there is such a Z for I =1 by showing that when [ =1, X e @(1,). In this case

X = x(Sq"" P (u,up)+ugx(Sq" P (u,)

=Y x(Sq" N D(Sq'ug)u,)

i<a

where 2(i +1)>n—gq, q =|ug|. But then, 2(i +q—j+1)>n—|(Sq’ug)u, | and hence
Xed(,).

We now define 6(A'u,) by induction on |u,|=filtration degree of A'u,. For
lu,| =0, 6(AT1)=A"1. If 6 is defined on F,,_, ,(C), let

0(A"u,) =ugA"u, +6(2)
where Z, a, B, and I' are as above. Then d6(Z)=0(dZ)=6(Y)=X and

dO(A"u,) =d(ugA"u,)+do(Z)

=ugf(d(A\"u,))+ X =0(d(\"u,))

Note that elements of the form ugA’ ‘u,, as above, together with F,_i(D,), span
F,(D,) over A. Thus 6:C, — D, is an epimorphism. (It is at this point that we use
A" where I has negative entries. For each ugA"u, € H*(BO)V, we need A'u,uj €
U, such that I' =+ || I,.) Elements of the form A'u,u3 are an A basis for C, and
elements of the form ugA'u, are an A basis for D,. Hence 6:C,— D, is an
isomorphism and the proof of 2.5 is complete.

Proof of 2.6. Let v, e H*(BO) be the Wu classes, that is, ®(v;,) = x(Sq")P(1)
where @ : H*(BO) — H*(MO) is the Thom isomorphism.

LEMMA 3.4.

vi=Zs¢,,

where the sum ranges over all w with entries only of the form 2 —1 and |s,|=i.

Proof. We view H¥(BO)< Z,[t,, t,, ...}, || =1, and t,t, . . . as the Thom class.
Let Sq=89°+Sq'+ - -and v =v,+v,+'--. Then

x(Sq)t =) t?
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and

o(ty, b, .. Ytitz - ) = x(Sq)(t,t2* * *)
_—_I:[ (; t?i“l)(tltz ce)= (Z sm)(tltZ )

«

where the sum ranges over w with entries only of the form 2’ —1.
Let x, and x,€ A(BO) be given by

X1 = Z Sqi © Usr1—js Xy = Z qu © Usy2—j

ji>0

Recall s =[n/2] and n is the dimension of the manifolds we are considering. Let
y! € D, be defined by

yi=XA% Y2 =X;A%, Y3 =0 A% 0, A% + XA 8
LEMMA 3.5. There are elements y? € D, such that dy? =y and

yi=A%vI mod F,,_,
2__30,—-1_12
YZ—'A Us+1 mod F2s+1

yg = Awl’”21~’s+2 mod F;, 5
If s is odd, there is an element y3 such that y3=(Sq'+w,)y3 and
y3>=A""">"*wivi,, mod Fy .,

Proof. We first show that dy} =0, d: D, = D,=H*(MO). Let U< H°MO)
be the Thom class.

dy}=x,dA° =Y Sq'(0,41-x(Sq* ) U)+ 0,1 x(Sq* U
=(Sq** v, )U+ 02, U=0
dy3 =Y., Sq'(v,45-x(Sq* ") U)
=Y Sq'(v,1x(Sa*** ) U) = (Sq* 2, ) U =0
dy3=0,.1X(Sq* ") U +0,,,x(Sq** U + 4y% =0

We next show that y? exists. In A @ A* one may easily calculate dA%° = Sq'A°.



A universal space for normal bundles of n-manifolds 419

Hence, by the arguments in the proof of 2.5,

dA°©v2 = 6(dA"*b?) = B(Sq'A°v?)
=8q" e v,A* mod F,,_,

= Z Sq’ ° U A° mod Fy_y = yimod F,_,

ji>0

Thus u=dA*°v2+yieF,,_, and du=0. Therefore there is a ze F,,_,(D,)
such that dz = u. Let y7 = A%%?+ z. The existence of y3, y3, and y3 are proven in
an analogous fashion.

We now define r: A(BO)®V,—> A(BO)®V, For 1#2 and [#3, s odd,
V,=V, and r is the identity; V,<V, and r| A(BO)®YV, is the identity. V, is
formed from V, by omitting the basis elements A°°w?2, A>"'w?,, and A "2w?

s+1 s+2 -

By 3.4, v; involves w; =s(;;._;) when v; is expressed in the u, basis. Let

r(A%%w2) = y2— A%02

r(A>'wi ) =y3-A%wi,,
r(A—l’-2W3+2) = y; —A—l’_zwi+2
We define r on A(BO)® V; analogously. Then r(y?) =r(y3)=0.

We conclude this section with an algebraic lemma about the y’s. Let L, <
A(BO)® YV, be defined as follows: L, =0 for [ =0, l=3 and s even, and [ > 3.

L,=A(BO){yi}+S,)

where S, ={v389*A*} when s =2 and S, =0 for s#2.
L,=A(BO){y{}+S)

where S, ={v;A"?} when s=2 and S,=0, s#2.
Ly=A(BO){y3}

(d(v3A %) =1v58q%A\?).

LEMMA 3.6. d(L)<L,_,, r(L))=0 for I>1 and the sequence

> L > L, R E > Ly

is exact at L7 for all l and q=2s+2.
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Proof. The first part of 3.6 is clear from the definition of L,. One easily checks
that if x e A(BO), |x|=1 and d(xy3) =0, then x =0 and therefore d : L§ — L3*" is
an injection for q=2s+2. d:L,— L, is clearly onto. To check exactness at L,
q=2s+2 one must verify that if y=x,y]+x,y3+x3y3+x,0s89°A>=0, x; €
A(BO) and |y|=2s+3, then x;=x3=x,=0 and x,=0 or s is odd and x,=
Sq'+w,. This is a tedious but straightforward calculation, made somewhat
simpler by the following observation. Let

F: A(BO)®{\*}— H*(MO AK(Z,, N))
be given by

F(a ° ur®)=a(ux(Sq¢** Y U@ uw)

Then

F(y}) =0, UQ®u+ U®qu+1l'N
F()’zl)) =UQ® SQHZ"N
F(v389°A®) =0v3U®Sq*wy

We leave the details to the reader.

§4. Proofs of 2.4 and 2.8

Let {A®AF, d} be the chain complex described in Proposition 3.2.

PROPOSITION 4.1. For each integer k, there are 2-spectra Y, = Y,(k) and
maps p,=p(k): Y — K(A}) of degree one, 1=0,1,2,...such that

(i) Yo=K(A). Y, is a fibration over Y,_, induced by p, from the contractible
fibration over K(AY).

(i) If i: K(AF.,) = Y,_, is the inclusion of the fibre,

(Ei)*=d: AQAF—> AQAL,

where d is as in 3.2.
(iii) If M is a smooth, compact n-manifold and v is its normal bundle, then

[T(), YiI, > [T(), Yi-4],

is an epimorphism for p <2k +2.
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(iv) Suppose k =0. Let I(1,0)=(0, ..., 0) have length l.
p;kAI(l,O) o 6117

where € H(Y,_,; Z,), i reduced modulo two is the generator v H(Y,_,)=~Z,
and 8, is the Bockstein associated to Z,— Z ;.. —> Z ,.

Proof. For k=0, 4.1(i), (ii), and (iii) were proved in [5]. For k <0, {A ® A}, d}
is a free acyclic resolution of the zero A module so that the existence of Y; and p,
easily follow by induction on . If M is as in (iii), v: T(v) — Y,_; has degree p,
p<2k+2 and k<0, then |(pv)*(A")|>n and (iii) follows.

Finally we prove (iv). The formula for d in 3.1 shows that dA'®? = §q'AT¢~10
The complex,

A®{AI(I,O)} d A®{/\I(l~1,0)} > e A®{/\I(O’O)}

is realized by the tower
- K(Zzl) - K(Zzl—l) —---—>K(Z,)

with k-invariants, §, : K(Z,) — K(Z,). Except for A'“?, the generators of A} have
dimension >0 and hence Kkill classes of dimension >1. Thus Y, =K(Z,,,) in
dimensions =1. Therefore (iv) holds.

Proof of 2.4: We wish to realize the complex {A® U, d} by a tower of
spectra, X;. Let Y,(k) and p;(k) be as in 4.1. For a spectrum Z, let SZ denote the
shift suspension, i.e., (SZ), =Z,,,. Define X; and ;: X, _; — K(Y,) by

X = [I s"'Y,((n—|u.D/2D

u,€Ug
o =[] 8" \p([(n—u. /2D
The map «; takes X,_; into K(U,) since

[1s*k(Al) = K(Uy)

where k ranges over [(n—|u,|/2], |u,|€ U,. Proposition 2.4 now follows directly
from 4.1.
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Proof of 2.8: Using induction on I, one easily proves that if I is admissible and

1=11D),

|)\’|§2t(1)(1——21—,)

Suppose [=n and A'u, € U,. Then 2(¢(I)+1)>n —|u,|. Therefore

1 s -1
|ATu, | = 2¢(I) (1——2—1)+|uw|§n—1—2——~|—g—‘l"—l———>n—2

Also if |u,|>n—1, |A'u,|>n~1. If |u,|<n—1, t(I)=1 and hence [A'|Zlz=n.
Therefore U9=0 for g<n—1 and U} ' ={A""Py_ | u, € Uz} since AT*? is the
only A" with t(I)=0 and |A"|=0. If r>1 and w,#{ }, |u,|=|uZ|=2">n. Hence
Vi=U} for gqg=n—1.

By the definition of B,:B,_; — K(V)),

Q(BFA " u,)) = 1af (N u,)

By 4.1(Gv) af(A'"*®u,)=8i where i€ H¥(X,_,; Z,) comes from the factor of
Xi—1, Y((n—|u,l/2]. Since the diagram

fi
Ty — X

o

T, _._‘l__,XO

commutes, i =fg_,i reduced modulo two is p¥fgu, =pTu,U,=u,U,_,, where U,
is the Thom class of T; and the proof of 2.8 is complete.

§5. Proof of 2.7

If G, and G, are graded groups and h:G,; — G, is a homomorphism of
degree i, we will say that h is k connected if h: G — G%*' is an epimorphism for
q <k and a monomorphism if g = k. We will say that a sequence of graded groups
and homorphisms,

...-_)Gl_>Gl~l—>...
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1s k-exact if
Gii— Gl— G

is exact for all | and q=k.

In §3 we constructed isomorphisms 6: A® U, — A(BO)® V, and a subcomp-
lex {L,, d}={A(BO)®V, d} such that

——.—>L,__§—9Ll—1 d,o-n ’L0=O

is 2s+2 exact, s =[n/2]. In §4 we constructed a tower of fibrations — X, —

X,_, — with k-invariants «; : X;_, — K(U,) associated to the complex {A ® U, d}.
Let

H*(K(Uy)) = H*(K(U))/67 (L))
H*(X) = H*(X)/a¥ 107 (Li_y)

LEMMA 5.1: The maps

K(U) — X, = X, > K(U)
induce a 2s +2-exact sequence

— H*K(U)) - H*(X,_,) = H*(X,) =

Proof: Let E, be the kernel of
H*(X) = lim H*(X,)

Then H*(X))~ H*(MO)/®(1,) BE, and E, and A QU] are related by the diagram

— AQU,——> A®U_,—> AQU,_,—>

N AN
VAN
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where the &, and i, are defined by aff and if and each pair of composable arrows
is exact. Dividing AQU, and E,_;, by 67 '(L;) and &0 '(L,_,), respectively,
produces the same type of diagram with exactness replaced by 2s +2-exactness.
The desired result then follows.

In §2 we defined maps

gi:K(U) — T,/ Ti

In §6 we prove:
LEMMA 5.2. The map g| induces a 2s+2-connected map

F: HYK(U)) —» H¥(T,_,[T})

forl=1.

Proof of 2.7: We first prove 2.7(ii). Suppose M is a smooth n-manifold,
h :M — B, = BO classifies v, the normal bundle of M and A:M— B,_, is a lifting
of h. Let T(h): T(v)— T,_, denote the associated Thom space map. Then
fio T(h): T(v) = X,_, is a lifting of foT(h): T(v)— X, and hence by 2.4(iv),
fi_.T(R) lifts to X, and therefore a,f;_;T(h)=0. Thus for ve V,

®h*BF(v,) = T(M*P(BE(v)) = T(W*fF 1af(0) =0

Thus Bh =0 and h lifts to h':M — Bj

If ueU,,, i={uteW,,,=U,, /ker A and vO(u)=) xu, x;€ A(BO) and
u; € Vi, then

((h)*yH(y) = T(R* P(y¥ia,) = T(W)A(u).
Recall,

A(u) = (¥ u— Y x(fla)*a*u,
But T(h')* is A(BO) linear and a,,f'T(h')=0 as above. Thus T(h')*A(u)=0

and hence y;h' = 0. Therefore h’ lifts to B, and the proof of 2.7(ii) is complete. We
note for further reference:

LEMMA 5.3: T(h')Y*A(u)=0 for ue U,,,.

LEMMA 5.4. If 8*: H*(T}) —» H*(T,_,/T}), 8*A(u)=0 for ue U,,,.



A universal space for normal bundles of n-manifolds 425

Proof. Consider the commutative diagram:

H*(X,)—— H*(K(U)))

lh’ l(g{)

H*(T}) == H*(T,_,/T})

Recall, g} realizes ¥r0, i*af,,=d and ¥, r, and d:A(BO)®V,_,—>
A(BO)®V,_; are A(BO) linear. Hence,

8*A(u) = 8*((f)*ak ju+ ) x (F*af u)
= (g)*i*af u+ ) x(g)*i*al u
= Wrdu+ ) x;¥rédu, = Wrdou + ), Vrdx,0(u,)

where r0(u) =) xu;, x, € A(BO) and y € V,,,. But for ve V,,;, 8(v)=v. Thus
in()(ui)=z X;u; =rbu=0u+z
where zel,,,. Furthermore dzelL, Hence 6*A(u)= Vrdz=Yr00 'dz=
(g")*0 'dz.
But by 5.2, 87(L,) is the kernel of (g))*.
We now prove that f, induces a 2s+2-connected map f,: H(X,) = H*(T,) by
induction on [ =0. We first show that f; is well defined.
H*(X;) = H*(X))/ a1 (07" (Li10))

From the commutative diagram:

1]
T,— TYT}

lfl l gl41

X, —— K(Up+)
we see that
f;kaﬁl(o_l(ldﬂ)) = j*(g'+1)*(0_1(L1+1))

By 5.2, 67'(L,,,) is in the kernel of (g}.,)*.
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Since f¥ is an isomorphism, f,=f& and f, is an isomorphism.

Suppose f,_l is 2s+2 connected. If ue U,,,, A(u)e HY(T}) pulls back to
HA4(T,_,) since, by 5.4, 8*A(u) =0 and it pulls back to H*(X,_,) if g <2s+2, that
is, if |lul<2s+1, A(w)=(F)*p*x where p:X, — X,_,. But since the X,’s are
constructed from an acyclic complex, image p*=image (H*(X,)— H*(X))).
Therefore image (f))*p*=image (H*(T,)— H*(T}))=H*(MO)/®(I,). But by
5.3, A(u) 1s zero on all n-manifolds. Hence A(u)=0 and we have shown that
Wi i=(U,/kerA)*=0 for q<2s+1. Therefore H9B)— H%B;) is an
isomorphism for q=2s+2 since B, is a fibration over B{_, induced by v, : B|—
K(W,,,);. Then HY(T}/T,)= H*(B], B;) =0 for q<2s+2 and hence

H*(Tl—llTD — H*(Tl-llTl)
is (2s +2)-connected. Let g be the composition

T /T, — T/ Ti = K(Uy)

and let g :H*(K(U))— H*(T,_,/T,) be induced by g. Then g is (2s+2)-
connected by 5.2. Consider the commutative diagram:

— H*(K(U)) — H*(X,_,)) —> H*(X;) — H*(K(U)) —

o

—_— H*(TIA/TI) — H*(Tl—l) R H*(Tl) N H*(Tl—1/Tt) —

A five lemma argument and the fact that fi—, and g, are (2s +2)-connected shows
that f, is 2s +2-connected.

Since L,=0 for [>3, H*X)=H*X,) for 1=3 and therefore
f¥:H(X,) > H%(T)) is an isomorphism for q=n<2s+2. This completes the
proof of 2.7.

§6. Proof of 5.2

LEMMA 6.1.
H*(B,-,) — H*(Bi)

is an isomorphism for |>1 and q=s+1. Forl =1 it is an epimorphism forq=s+1
and v,,,, WiUs4q, Sq'v,,, and v,,, generate the kemnel for q=s+2.
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Proof. As we saw in the proof of 2.8, if Au,eV, [Au,l=
(n—1)—(n—|u,|—1)/2". Hence the lowest dimensional element in V, is of the
form A' with t(I)=s. For such an I, |A'|=s+2 exceptfor [I=1orl=2and s=1
and 2. The space Bj is a fibration over B,_, induced by B, : B,_; — K(V;), and for
[>1, K(V)), is s+2 connected except when [ =2 and s=1 or 2. For s=1 or 2,
the lowest dimensional elements in V, are A' and A ' respectively; dA "' # 0 and
dA*# 0 so these elements kill nonzero classes in B;. Thus for [>1, H*(B,_,) =~
H9(B)) for g=s+1.

Suppose [ =1. From 3.1 one sees that d\' = x(Sq' ") U = ®(v,,,) where U is
the Thom class and v;,, is the Wu class. Hence ,:B,— K(V,); takes A' intc
v;i+1- One easily checks that V¢=0 for g<s, V5;={A*} and V;*'={A*"'). The
remainder of 6.1 now follows by a simple Serre spectral sequence argument.

Let K, = K(V,),. Viewing B,: B,_; — K, as a fibre map with fibre B}, consider
the pair of fibrations p, and p,:

(Bi_1, B)) — (B,_ XK, Bi_ x{*})
N A
(Kb *)
where p, is defined by B,, p, is projection on the second factor and ¢ =id Xp.

Note c is a fibre preserving map so we may use it to compare the Serre spectral
sequences of p; and p,.

LEMMA 6.2. For 1>1, ¢*:H%B, XK, B,_x{*}) > H%B,_,,B}) is an
isomorphism for q=2s+3. For l=1, c* is an epimorphism for q=2s+2 and for
q =2s+3 the kernel is generated by

0,1 @A +H1®AY)?

041089 A5 +1®A5Sq A5

U @A H 1A

W10, 1 A +w, ®(A3)?

Sq v, QA+ 1@ A5Sq A3

0, @A+ 1@ AN

Proof. Let E? and E™ denote the Serre spectral sequences for p;, and p,
respectively.

E3*=H"(K, *)®H"(B,-,)
E%*=H" (K, *)® H*(B")
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As we saw above, for [>1, K| is s+2 connected and HY(B,_,)~ H%(B}) for
q=s+1. Therefore ¢ induces an isomorphism at the E, level for p+q=2s+3
and the differentials are trivial for p, because it is a product fibration. This proves
6.2 for [>1.

For l =1, 6.2 is true at the E, level with the first summands in the above list of
elements as a basis for the kernel; the second summands are of lower filtration.
The same is true at the E, level, so to complete the proof, we must show that
these elements are in the kernel of c*.

Under the map H*(B,, B}) —> H*(B,), c*(1®A\3) goes to v,,,;. Hence

(0,11 @A +1®(A5)?) = 1,41 C* AR + c*(1®A)* =0
(If j: X<=(X, A) and xe H¥(X, A), x*>=(j*x)x.) The same argument applies to
the other five elements.

Let

¢ :(A(BO)® V)* = H¥"" (T AK)
be defined by

d(a@Wu)=a(wUQu,)
where U is the Thom class, a€ A, we H*(BO) and ueV,.

LEMMA 6.3. For q=2s+1, ¢ is an epimorphism. For q <2s+2 the kernel of
¢ is zero for 1>1 and (I,s)#(2,2), is {vsAY%} for (I,s)=(2,2) and is
{XESq' ° vy, A} for 1=1.

Proof. Let u, u': A(BO)— A(BO) be defined by

piaew)=2 al° ws(a;)
w'(a°w)=Y) al° wx(a)
(Recall, wa is defined by (wa/U = x(a)(wU).)

Where a — ) a/®a; in the diagonal in A. Then pp’ = u'w =identity and thus
is a Z,-isomorphism. Let ¢' = ¢(n®id). Then

¢'((a > wu) =Y al(x(a)(wl)®u,) = wU®au,

Let A" be the lowest dimensional element in V,; |Af|>s for | =1. The lowest
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dimensional element in H*(T,_; AK,) not in the image of ¢’ is U® (A1 U Sq‘A}),
an element of dimension =2s + 3. Hence ¢ is an epimorphism for q <2s+2. The
lowest dimensional elements in the kernel of ¢’ are 1 ¢ v, ;A% or (Sq™ ° 1)A]
where m=|A1|+1. For 1>2, (I,s)#(2,2), Al>s+1 and hence these elements
occur in dimensions >2s +3. For (1, s) =(2, 2), ¢(vsA*?) =¢'(v:A*)=0. For =1

0='((sa™ > DA) = (X Sa' = v 1°)

This proves the last part of 6.3.
Proof of 5.2: We must show that

(80)* = ¥r6:(AQU)* — H*" ((T,_,/T})

is an epimorphism for g =2s+2 and (L,)? is the kernel for q=2s+2. By 2.5, 0 is
an isomorphism. Let ¢ be the map in 6.3 and ¢ the map in 6.2. Lifting ¢ to the
Thom space level we obtain a map

T(c): T,-,/T{— T, nK,

Furthermore ¥ = T(c¢)*. Thus by 6.2 and 6.3, ¥ is an epimorphism for g <2s+1
and since r is an epimorphism, (g})* is an epimorphism for q=2s+1. For I>1
and (I, s) #(2,2), T(c)* and ¢ are monomorphisms for q=2s+2 and L{ is the
kernel of r. When (I, s) = (2, 2) r(L,) ={vsA"?}. This completes the proof of 5.2 for
1>1.

Suppose I =1. Then r = identity. We wish to show that L, = ¢ *(ker T(c)*). In
6.2 a basis for ker ¢* was given for q <2s+2. Since image ¢ =image ¢’ cannot
involve cup products (except squares) in H¥*(K;), the above basis shows that the
following is a basis for image ¢ Nker T(c)*:

0, U+ URSq S
Wi URA +w, URSq" A5
U, .1 URSG'AS +(Sq v, ) URAS
V1 URA T +0,,, U}

Thus a basis for ¢ (ker c*) is ¢ ' of these elements and (3. Sq* ° v,,,_;)A® from
the kernel of ¢. A simple calculation shows that these elements form a basis for
1, q=2s+2, completing the proof of 5.2.
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