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Area preserving twist homeomorphism of the annulus*

by John N. Mather

Let / : A —> A be an orientation preserving and area preserving homeomorphism

of the annulus. The homeomorphism / is said to be a twist homeomorphism if
/ admits a lifting F : Â —» Â to the universal cover Â of A which moves one
boundary component in one direction and the other boundary in the other
direction. Such a lifting will be called admissible.

If x is a fixed point of /, and x is a point of Â covering x, then f(x) x + fc for
some integer k. The integer k dépends on / but not on x. The integer fc will be
called the Nielsen index of x. We let F dénote the set of fixed points of / of
Nielsen index 0. A celebrated theorem of Birkhoff states:

THEOREM. (Birkhofï). If f is an area preserving, orientation preserving, twist
homeomorphism of A and f is an admissible lifting, then F contains at least two
points.

This was proved (in a more gênerai setting) in [2]. An earlier paper [1] of
Birkhoff proves the existence of at least one point in F, and claims to prove the
existence of a second point in F, but the proof of the existence of the second point
was erroneous. A summary of Birkhoff's work on this problem, and a clear proof
of Birkhoffs theorem may be found in [3]. The way Birkhoff's theorem is usually
stated is that / has at least two fixed points, but the stronger condition we hâve
stated is proved in [3] (by essentially Birkhoff's method).

We can now state the main theorem which we will prove in this paper.
THEOREM 1. Let f be an area preserving, orientation preserving, twist

homeomorphism of the annulus A. Let U be an open set lying in the interior of A
and containing F. Then Uk=of(^) séparâtes the two boundary components of A.
In other words, the two boundary components of A lie in différent components of
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398 JOHN N. MATHER

§1. Beginning of the proof of Theorem 1

First, we show that it is enough to prove that Uk=-«>/*(£/) séparâtes the two
boundary components of A.

LEMMA 1. If Uk=-oo/k(l/) séparâtes the two boundary components of A, then

so does Uk=-Nfk(U) for sufficiently large N.

Proof. Let Cn A - Uk=-Nfk(U). M for any N, {J"Nfk(U) does not separate,
let BN be the component of CN which contains dA. Then JEL =Ç)nBn is

connected, since it is the decreasing intersection of compact connected sets. This
contradicts the hypothesis, and so proves the lemma.

Now suppose \Jk=-Nfk(U) séparâtes the boundary components of A. By
applying /N to \J^-Nfk(U)9 we see that Uk«o/*(U) séparâtes the boundary
components of A, and thus Uk=o/k(^) does likewise.

Let W be the union of Uk=-oo/k(£/) with ail points of A which are separated
from both boundary components by \Jk=-oofk(U). It is easily seen that W is an

open set in A.
Moreover, if W séparâtes the two components of the boundary of A, then

Uk=-oofk(U) already does so. For, if not, the connected component D of

A- Uk=-oo/k(L0 which contains one boundary component also contains the
other. However, no points of D are in W, so W would not separate after ail.

Thus, we hâve reduced the problem of showing that \Jk=ofk(U) séparâtes to
the problem of showing that W séparâtes. The topology of W is described by the
following resuit.

LEMMA 2. If W séparâtes the two boundary components of A, then one

component of W is homeomorphic to an open annulus, and ail other components are
homeomorphic to open disks. If W does not separate the two boundary components

of A, then each component of W is homeomorphic to an open disk.

Proof. Let D dénote the complément of W in A. By Lefschetz duality, there is

an isomorphism

where the left side dénotes singular homology with Z coefficients, and the right
side dénotes Cech cohomology with Z coefficients. (An exposition of Lefschetz

duality is given in [6]. See Chapter 6, §2, Theorem 19. The cohomology appearing
on the right side there is defined by means of a direct limit, but it is the same as

Alexander cohomology by the tautness property of Alexander cohomology, cf.
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Chapter 6, §6, and Alexander cohomolgy is the same as Cech cohomology,
Chapter 6, §8, Corollary8.)

It is easily seen that D is the union of the connected components of

A- Uk=-<x>/k(L0, which meet the boundary of A. Thus it has either two
components (in the case W séparâtes) or one component (in the case W doesn't).
In the exact séquence

É°(A) -* È°(D) -* H\A, D) -* H\A) -> H\D\

we see that H°(A) 0 and H1(A) —» H1(D) is injective (because D contains the
boundary components). Hence

H°(D)-*H\A,D)

is an isomorphism, and HX(A, D) Z or 0 according to whether W séparâtes or
not. Thus Ht(W) Z or 0 according to whether W séparâtes or not. But it is well
known that for any open connected set Wt in the plane, Wt is homeomorphic to
an annulus if H1(W1) Z and homeomorphic to a disk if H1(W1) 0.

To prove theorem 1, we may assume that each component of U meets F, since

in any case, we may replace U by a smaller open neighborhood of F having this

property. In this case each component of W meets F. Assuming this is the case,

we will complète the prooof by showing the no component of W is homeomorphic

to a disk. Thus, according to Lemma 2, W will hâve just one component
homeomorphic to an annulus and separating the two boundary components of A.

Since F is open and closed in the fixed point set of /, we may define the
Lefschetz index of F (with respect to /) just as we would define the Lefschetz
index of an isolated fixed point of /. Specifically, let A0 dénote the interior of A
and let v e H2(A° x A0, A0 x A0-A) dénote the Thom Class, where A dénotes
the diagonal of A°xA°. Let G be a neighborhood of F in A0 which contains no
points of the fixed point set of / other than F. We hâve a mapping

(1,/):(G,G-F)->(AOXA°,AOXA°-Zi)

Let tieH2(G,G-F) be the orientation class. The Lefschetz index of F with
respect to / is defined as

If F is finite this is just the sum of the Lefschetz indices of the points of F.

From the fact that f is a twist mapping, it follows easily that Lf(F) 0. Indeed,
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we may suppose that G contains no fixed points of / other than F. We let F* be a

compact neighborhood of F in G. We may compute Lf(F) using (G, G —F*) in
place of (G, G —F). For a sufficiently small pertubation /' of /, we hâve

where il e H2(G, G — F*) dénotes the orientation class. But the right side is

Lf>(F'), where F' is the set of fixed points of /' of Nielsen class 0. Thus, we hâve
shown that Lf(F) is unchanged by small pertubations of /. However, the set of
twist homeomorphisms has two components, each of which is easily seen to
contain an / for which Lf(F) 0. Thus Lf(F) 0 for every twist homeomorphism
/¦

LEMMA 3. Let Wx be a connected comportent of W and let F1 FHW1.
Suppose Ft 5* <f>. If Wx is homeomorphic to an open disk, then LfiF^ 1. If Wx is

homeomorphic to an open annulus, then Lf(F) 0.

Using this Lemma, we can finish the proof of Theorem 1 very easily. We hâve

seen that we may suppose, without loss of generality, that each connected

component of W meets F. In this case W has only finitely many connected

components, W= Wt U • • • U Wk and

where FC=FD Wc. But the left hand side is 0, and by Lemma 2 and 3 every
summand on the right side is 0 or 1. Thus, every summand on the right side must
be 0, which, according to Lemmas 2 and 3 is possible only if W is homeomorphic
to an open annulus. Thus Theorem 1 will be proved, once Lemma 3 is proved.

We hâve actually proved more than Theorem 1: If every connected component

of U meets F, then W is homeomorphic to an annulus.

§2. Caratheodory's theory of ends

We will develop that part of Caratheodory's theory of ends which we need for
the proof of Lemma 3. We will state définitions and quote theorems, but for
examples and proofs we will refer to Caratheodory's memoir [4] and a subséquent
development of the theory due to Cartwright and Littlewood [5].

Let G be a bounded open set in the plane. By a cross-cut of G, we will mean a

simple arc which lies in G, except for its endpoints, which are in the boundary of
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G. In the case the two endpoints coincide, so we hâve a simple closed curve with
one point on the boundary of G, and otherwise in G, the curve will still be called
a cross-cut, provided the two components it séparâtes the plane into both contain
points of the boundary of G.

A séquence ql9 q2,... of cross-cuts will be called a chain if qx Plq, <$> for i^j
(including endpoints), and each qn séparâtes G into two régions and qn+1

séparâtes qn from qn+2- H <lu Q2> • • • îs a chain of cross-cuts, we let gn dénote that
région of G, determined by qn, which contains qn+1. A séquence of open sets

gi> g2>• • • obtained in this way will be called a chain of open sets. Note that
gx z> g2 3 • • • => gn 3 • • • We will say that such a chain of cross-cuts, or, equival-
ently chain of open sets détermines an end Eg.

If Eg and Eh are ends, determined by chains gl9 g2,..., and hl9 h79... of open
sets we say Eg is contained in Eh and write Eg c Eh if for each n, there is an m(n)
such that gm(n)c: f^. If Eg c Eh and EK c Eg, we say Eg and Eh are the same end,
and write Eg Eh. If Eg is an end and for any end Eh such that Eh c Eg, we hâve
EH Eg, then Eg is said to be a prime end. Let Eg be an end of G and let U be an

open set in G. We will say U contains Eg if U => gn for some n, where gi ^ g2 3 * * *

is a chain of open sets defining Eg.

Let G be G and ail of its prime ends. We topologize G as follows. A subset

U will be open if U H G is open in the original topology of G, and for each prime
end Eg e U there is an open set V in G such that:

(2) V contains Eg,

(3) If V contains a prime end Eh, then Eh e U.

The principal resuit of Caratheodory's investigation leads to the following
Proposition.

PROPOSITION (Caratheodory). If G is simply connectée, then G is

homeomorphic to a closed disk.

See [4], Satz XIII and the footnote to Satz XV. In fact Caratheodory
formulated his results in terms of séquences, but what we hâve just stated is an

easy conséquence of Caratheodory's resuit. From the Proposition, we immediately
obtain the following resuit.

COROLLARY. If G is homeomorphic to an open annulus, then G is

homeomorphic to a closed annulus.

Now we suppose G is homeomorphic to an open disk or open annulus. We let
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h : G —» G be a homeomorphism which extends to a homeomorphism h:G-> G.

It is clear that h extends to a homeomorphism h:G-* G. We will need the

following resuit.

PROPOSITION (Cartwright and Littlewood). If h is area preserving, and h

has no fixed point on the boundary of G, then h has no fixed point on the boundary

ofG.

See Cartwright and Littlewood [5], Lemma 11. The hypothesis that h is area

preserving is essential.

§3. End of the proof of Theorem 1

In §1, we hâve reduced the problem of proving Theorem 1 to proving Lemma
3. To prove Lemma 3, we first consider the case W1 is homeomorphic to an open
disk.

For each n, let irn : An —» A dénote the n-fold covering of A. Thus, An is the
annulus. Let fn : An —> An dénote the mapping which covers / and is covered by /.
Let Wn dénote one component of Tr'n1W1. The inverse image in An of a point of
F is fixed under fn, since its inverse image in A is fixed under /. Since Fx ^ <£, there
is a point in Wn which is fixed under fn, and it foliows that fn(Wn)=Wn and

fn\Wn) Wn, since /(W) W and f~\W) W.
Since F<^W, FDdW1 <f>. In other words, any fixed point of / on the

boundary of Wt must hâve non-zero Nielsen index. Let n be any integer which
does not divide the Nielsen index of any fixed point ondW1. Then no fixed point
of fn lies on dWn.

By the Cartwright and Littlewood resuit (§2), there is no fixed point of fn on
the boundary of Wn, where Wn dénotes the Caratheodory construction (§2). But
Wn is a closed disk, so we hâve constructed a homeomorphism of a closed disk
with no fixed points on the boundary. But the set of fixed points on the interior
corresponds precisely to Ft. It is well known that the Lefschetz index of the set of
points on the interior with respect fn has Lefschetz index 1 when fn has no fixed
points on the boundary. Hence Lf(F1) 1, as asserted.

This is enough to prove Theorem 1. But to complète the proof of Lemma 3,

we must consider the case W1 is homeomorphic to an open annulus.
In case Wl is an open annulus, it clearly séparâtes the two boundary

components of A. We let Wn /n~1W1; this is connected. We may choose n so

that ail the fixed points of fn : Wn —? Wn are in the interior of Wn, and so they
correspond n to 1 to the points of Ft. Thus if we let Fn dénote the set of fixed
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points of fn in Wn we hâve

Lfn(Fn) nLf(Fl).

But fn : Wn -> Wn is a mapping of the closed annulus into itself, which does not
hâve any fixed points on the boundary, by the Cartwright-Littlewood resuit (§2).
Clearly

Lfn(Fn) LL(Fn) 0,

soLf(F1) 0.

§4. Remarks of the Proof

The only place in the proof where we hâve used the hypothesis that / is a twist
homeomorphism is to assure F^4>, and FndA <l>. Thus, our proof actually
shows a more gênerai resuit.

THEOREM 2. Let f be an area preserving, orientation preserving homeomorphism

of the annulus A and f : Â —> Â any lifting of f. Suppose F^ <fr and FHdA <£>.

Let U be an open set lying in the interior of A and containing F. Then U k=o fk(U)
séparâtes the two boundary components of A.

§5. The visiting set

If X is a closed invariant set of a homeomorphism f:A->A we define its

visiting set Vis (X) to be the set of ail x e A such that if U is any neighborhood of
x in A and V is any neighborhood of X in A then ftUJflV^^ for some integer
n. The visiting set is clearly closed and invariant.

If x is a periodic point of /, and f:Â —»Â is a lifting of /, then for any x
covering x, we hâve

for some integers p andq where T is a generator of the group of covering
transformations of Â. The rational number p/q dépends on / but not on x. We call

p/q the rotation number of x (with respect to /).

THEOREM 3. Let f be an orientation preserving, area preserving mapping of
an annulus A onto itself, and let /:Â ->Â be any lifting of f. Let a =plq be a
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rational number and let Fa be the set of periodic points of rotation number a (with
respect to f) and period q. If Fa7^<f> and FaC\dA= <f>, then Vis (Fa) H A0 séparâtes
the two boundary components of A.

Remark. Let a be the Poincare rotation number of f on the lower boundary of
A, and b the Poincare rotation number of / restricted to the upper boundary of
A. It is an easy conséquence of the Birkhoff fixed point theorem that if a lies
between a and b, then Fa^<f>. Clearly, in this case, FandA <f>.

Proof. The set Fa is the set of fixed points of /q of Nielsen index 0 with respect
to the covering transformation T~pfq. Therefore if V is any neighborhood of Fa in
the interior of A, Uk=-oo/kq(V) séparâtes the two boundary components of A.
Let Vl9 V2, V3,... be a neighborhood basis of Fa, and let

Xn=closure(fcU/(Vn)).

Clearly

Vis(FJ= fl Xn.
n l

However, since each Xn DA° séparâtes the two boundary components, it follows
easily that Vis(Fot)nA° does also.
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