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Classification of simple knots by Levine pairings

by SapavosHi Koima

§1. Introduction

An n-knot will be a smooth oriented submanifold K of $"*?, where K is
homeomorphic to S". By the Alexander duality theorem, the complement X =
S"*2—K is a homology circle. Abelianization defines an epimorphism ¢ : 7,(X) —
Z, and the covering space X — X associated to Ker € = 7;(X) is the universal
abelian covering of X. The group of covering translations of X is infinite cyclic,
generated by ¢, and this defines a unique module structure on H, (X :Z) over the
ring A =Z[t, t~']. We will use the notation A, = H, (X) and refer to it as the g-th
Alexander module of K.

An n-knot K is simple if X is [(n—1)/2]-connected. In this paper, we shall
study a classification of some simple knots. If n =2q —1, there is a linking form
(,): Aqg X A,—Q(A)/A satisfying the (—1)**'-Hermitian property, where Q(A) is
the quotient field of A. Moreover the isotopy class of the knot K is completely
determined by (A, (,)) when K is simple, [K1], [L2], [T]. In case n=2gq,
J. Levine has defined a more obscure linking form [, ] on the Z-torsion submodule
T, of A, with values in Q/Z, satisfying the (—1)*'-symmetric property. A simple
2q-knot K is odd-finite if 7, (X) is 2-torsion free and finite. The main result is

THEOREM 1. If K,,, K, are odd finite simple 2q-knots with isometric Levine
pairings and q =4, then K, is isotopic to K;.

Remark 1. A consequence of [B &Lj is that a simple 2g-knot is fibered if and
only if m,(X) is finitely generated. In particular, any finite simple knot is fibered.

Remark 2. Some results are known about the classification of even-
dimensional simple knots, [K2], [Ko]. They say that the isotopy class of a knot is
in general not determined by the pairing structure on the Alexander module if
m,(X) is infinite.

In §4, we shall state some geometrical properties of knots in case that 7, (X) is
finitely generated and 2-torsion free. Classification in Theorem 2 is established by
summing up Theorem 1 and [Ko].
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The author would like to express his hearty thanks to Professor J. Levine for
introducing him to this problem with a letter. He also would like to thank
Professor M. Kato and Professor C. Kearton for many useful comments.

§2. Levine pairings

We recall the definition of the Levine pairing, [L3], [L4]. The duality theorem
of [M] implies the isomorphism of right A-modules:

H,(X)=H:">%X, 0X) (1)

where fIq (X) denotes the right A-module defined from the original left A-
structure by the usual means. H¥(X, 3X) is the homology of the cochain complex
Hom, (C(X,8X), A). Then there is an exact sequence for 0=q=n:

0— Ext] (A,_, A) > A, > Ext} (A, ,1_, A)— 0. )

This follows from the isomorphism (1), the trivial nature of 98X, the universal
coefficient spectral sequence, the homological dimension of A, and the fact that
A, is a A-torsion module. For an Alexander module A, Ext; (A, A) is a
Z-torsion module and depends only on T, while Ext) (A;, A) is Z-torsion free and
depends only on A,/T;; therefore

T, ~Ext3(T,_,A) for 0=q=n. 3)
Now for any finite A-module T, there is a canonical isomorphism of A-modules:

Ext2 (T, A)~Homyg (T, Q/Z). 4)

In fact T,_, is finite, so that one derives the Levine pairing by combining the
isomorphism (3), (4):

[,]: T, xT,_,—Q/Z.

In case n =2q, it satisfies the following four properties:

a) Z-linear: [ma, B]=[a, mB]=m|a, BJ for meZ o« BeT,
b) conjugate self-adjoint: [Aa, B]=[a, AB] for A€A
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¢) non-singular: the adjoint to [,] is bijective as a homomorphism: T, —
Homgy (T,, Q/Z)
d) (-1)*"'-symmetric: |a, B]=(-1)""'[B, a].

Remark 3. This is an almost complete algebraic characterization of the Levine
pairing. In fact, for any pairing [, ] on T, satisfying a), b), c¢) and d), there exists a
2q-knot with the Levine pairing [, ] provided q =2, [L3], [L4].

We shall now give an alternative description of Levine pairings by making use
of the r-Seifert form defined by M. A. Gutiérrez.

A Seifert manifold V of a 2q-knot K is a smooth oriented submanifold of
$?9*2 which is bounded by K. Writing 7 for the torsion subgroup, we define the
T-intersection pairing (classically called the linking number) I:7H,(V)®
TH,(V)— Q/Z and the 7-linking pairing L : 7H,(V)® TH,(S****—- V) — Q/Z as
follows. Let @ € TH,(V) have order d. Represent a by a g-chain & and let { be a
(q +1)-chain such that 8¢ =d - & Then if B € 7H,(V) is represented by a g-chain
n, we have I(a, B) =Int({, n)/d (mod 1), where Int(,) is the usual intersection
number in V. And if y € TH,(S****>— V) is represented by a q-chain p with dp =
for some (q+1)-chain p in $?**2, we have L(a, y)=Int({, p)/d (mod 1), where
Int (,) is now the intersection number in $***2, Then the 7-Seifert form of V

0:7H,(V)® tH,(V) - Q/Z

is defined by letting 6(a & B) be the r-linking number L(a, B.) where B, is the
translate in the positive normal direction off V of the cycle B.

A finite abelian group G splits as the direct sum of its Sylow subgroups. Since
these are clearly orthogonal with respect to any form on G, the whole problem
splits also geometrically. This refers to arguments given later in the paper. Now,
we assume that TH, (V) is a p-group throughout this paper. Let {a;}}_; be a basis
of TH,(V) having order p, with elementary divisor p,|p,| ‘| p. and {8}, €
TH,(S****—V) be the Alexander dual basis of {o;}. The embeddings «, ¢: V —
$%9*2—V are defined by *e-pushes. Then, for the maps Ky, ty:7H,(V)—
TH,(S****— V) induced by «, t, we shall give the matrix presentations:

k

K*aizzm;;Bi j=1’27~~~)k
i=1
k

L*a,-=ngBi i=1,2,...,k.
i=1

Indeed, the matrices M, =(mj) are not uniquely determined as integral entries,
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but are uniquely determined modulo A, where A=P -J,

pl 1’ 15 ] 1
p2 Q 19
P= ) and J=
: Px 1, 1

And if M, =(p; - 0(o; ® «;)), then M, = M, (mod A) and M_ = M}, (mod A) where
M,=P ‘M, - P"'. The result of [G] is

PROPOSITION 1 (M. A. Gutiérrez). A presentation matrix of T, is given by
(t - My +(—=1)**'Mj}, P). More precisely, there is an exact sequence

2k d k
bDA— DPA—T,—>0

such that a matrix presentation of d with respect to suitable bases is given by the
above.

In general, the 7-Seifert form of V may be singular. But in our case, if V is
minimal, its Seifert form will be non-singular. Indeed, recall that a Seifert
manifold is minimal if kg, tx: H;(V)— H;(S****— V) are injective for all i. The
following is then implicit in [L1];

PROPOSITION 2 (J. Levine). Let K be a simple n-knot and n =4. Then there
exists a minimal Seifert manifold for K. Moreover, we can choose it as being simply
connected.

Let now K be a finite simple 2q-knot and let V be a minimal Seifert manifold
for K. Then H,(V) is finite, otherwise H,(V) would not be. As H,(S>***?>- V) is
abstractly isomorphic to H,(V) and as k4 and 4 are injective, they are necessarily
isomorphisms. This implies immediately that the 7-Seifert form is non-singular.

Therefore there is an inverse isomorphism «y'. H,(S****—V)— H,(V). Let
M," be the representation matrix of k' with respect to bases {;} and {a;}, then
M, -Mg'=M,'-M,=E (mod A) where E is the identity matrix. The square
matrix Iy = (I(a;, a;)) with entries in Q/Z is the r-intersection matrix. By Propo-
sition 1, an element of T, can be represented by a column vector of @* A. The
quotient form [, ], on T, determined by 6 with values in Q/Z is defined by letting

[a, B], = the constant term of ‘i - Up-v (mod 1)
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where u and v are representatives of a and B. Here U, is the square matrix with
entries in Q/Z [[t, ¢t ']] defined as follows: let U, be the Q/Z-matrix U, =
‘M¥ - I, - M¥, where MF¥=(M})"! and A, be the Z-matrix A, =(—1)"M}- M,
(mod A). Then U, =Y3__ . t" - CAp)" - U,.

We recall the formula [G]:

0(a®@B)+(-1)"""0(BR®a)=—I(a, B) (mod1).

So that M, +(—1)*"'M}=—P - I,, (mod A). This implies that the quotient form
[,]o is well defined and satisfies the four properties a), b), ¢) and d). And because
of Levine’s observation, it coincides with the Levine pairing [,] of K (see[L3],
Proposition 7.1).

Remark 4. The above computation method of the Levine pairing is essentially
due to the minimality of a Seifert manifold. And the simplicity of the knot, the
existence of a fibration and the finiteness of ,(X) are inessential.

§3. Proof of Theorem 1

From now on, we shall prove Theorem 1 in three steps. The first is devoted to
show that an isometry of Levine pairings induces an isometry of 7-Seifert forms.
And in the next step, we construct an isotopy between Seifert manifolds when q is
odd. The case q even is studied in the last.

3.1. Now, let K, and K, be odd finite simple 2g-knots with isometric Levine
pairings. V and W are minimal, simply connected Seifert manifolds of K, and K,
and 0, n are their 7-Seifert forms.

LEMMA 1. If the quotient form [, ], is isometric to [,],,, then 0 is isometric to .

Proof. Let T, and T/ be gq-th Alexander modules of K, and K,. Then by
assumption, there is a A-isomorphism f: T, — T such that [, B8], =[f(a), f(B)],
for each a,BeT, For some bases {a}, {af} of T, T, f is of the form
f(e&;) =3a,a!. Since it can be regarded as a group isomorphism: H,(V)— H,(W),
{f(a;)} is a basis of H,(W). If M, is a representative matrix of n with respect to
the basis {f(a;)}, then U, = U, and A, = A, because f is a A-isomorphism and an
isometry. We recall that M, +(—1)3*"'M}=—P - I,, (mod A), so that

Ag=E+P- L, - My' (modA)
=E+(—1)"M, - P- Uy - Ay (mod 4).
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Similarly A, =E+(—-1)°M, - P- U, - A, (mod A), thus we obtain the identity
My, -P-Uy-Ag=M, -P-U, A, (mod A). Now, A, is invertible in the sense of
modulo A. And so is P - U, because the 7-intersection form of V is non-singular.
Therefore we have that M, =M,. This implies that f:H_(V)— H, (W) is an
isometry, completing the proof.

Remark 5. In the argument above, simplicity, oddness and finiteness of knots
are not essential, but minimality of V is.

In the following, we shall constract the isotopy between Seifert manifolds V
and W, by virtue of the dimensional condition q =4. Indeed, if g =4 almost all
our arguments are in the metastable range and in that range homotopy implies
isotopy by Haefliger’s theorem [H].

3.2. Now we assume that q is odd. Then the r-intersection form of V is
symmetric and hence diagonal because H, (V) has no 2-torsion. Namely there is a
basis {a;} of H,(V) such that I(e;, ;) = 8;;¢;/p;, where ¢; is an integer co-prime to
p:;» and §; is Kronecker’s delta. A decomposition of V can be obtained as follows.
Let A; =S9xD*"" U, h where h is a (g + 1)-handle and f; is the attaching map of
h, ie., f;:0D"' x D% — 9(S“ X D**"). The homotopy group 7, (S*xaD"") is a
free abelian group generated by two elements x = S* X{pt} and y ={pt} x9D**!,
And the homotopy class of f; | 8D x{0} is pjx +q;y, where q; =¢; (mod p;). The
manifold A; is fundamental for V. In fact, it follows from the high connectivity
and the parallelizability of V that it is diffeomorphic to the boundary connected
sum HB_, A; (see [W]). The Seifert manifold W also admits a similar decomposi-
tion. More precisely, there is a basis {a/} of H,(W) such that 6(a; ® ;) =
n(a!® aj) because 0 is isometric to m. Then W has a decomposition H_, A’
associated to the basis {a!}.

We next show how to isotopically deform A; onto A/ in $***2. For this reason,
a number of preliminaries are necessary.

A g-annulus will be a smooth oriented submanifold R of $%>?*2, where R is
diffeomorphic to S*xD%*"!. A g-annulus has a trivial disc bundle structure on
S =89x{0}. Let v be the positive unit normal field to R on S% Then by the
tubular neighborhood theorem, R can be considered as the orthogonal comple-
ment of v in a normal disc bundle neighborhood of S? in S$**2 Let R, =
SIxD¢*, i=0,1, be gq-annuli. R, and R, are isotopic if there is an ambient
isotopy x, of R, to Ry such that x,=id, x,(S3)=S9 and x; is a bundle map.
However, by the unknotting theorem, the tubular neighborhood theorem and the
fact m,(S9"") =0, all the g-annuli are isotopic if g =1. The condition q odd is not
necessary for this. Next, we consider a q-annulus with a non-zero section (R, s),
where s is a section of the associated sphere bundle dR. We shall say that (R,, s,)
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is isotopic to (R,, s,) if there is an isotopy x, of R, to R, such that y; o s;=
$1° x1|S3. Isotopy~is an equivalence relation on (2, the set of g-annuli with a
non-zero section. Clearly it is a necessary condition for (R, s;), i=0,1, to be
isotopic that the characteristic class of the normal bundle of s, in R, coincides
with that of s,. If q is odd, # 1, 3, 7, the image of d: m,(S?) = m,_4(SO,) is Z,. So
that )/~ has at least two classes in this case. In fact:

LEMMA 2. There is a bijective map ¢ :Q/~—{0, 1} if q is odd and q=1.

Proof. First of all, ¢ will be defined as follows. We set S**?=
{(X0s X1y - + - » X2qs2) ER?I? | xJ4+ x5+ - - +x3,,,=1}, the equator S>*'=
{x€S%%*? | x,04,=0} and S*={x€S>**? | x, ;1 =X 2 =" * = X042 =0}. R is the
normal unit disc bundle of $% in $**!. For any q-annulus R’, there is an isotopy
x: of R’ to R. Then ¢((R’, s)) is the modulo two reduction of the linking number
between S? and x; © s ° x7'(S?) in $29*!,

We must prove two points: that ¢ is well-defined and that it is bijective.
Suppose that there is an isotopy f, of (R,,s,) to (R;,s;). Without loss of
generality, we may assume that (R, s,) = (R, s) where s is a suitable section of R.
Let g be the isotopy of R, to R with which we define the number ¢ ((R;, s,)).
Combining these,

_{fz, for O0=t=<1/2
" lg,, , for 12=t=1

is an isotopy of the g-annulus R to itself. Now, the following diagram will be
studied.

Tq(8Oq+1) = M4(SO,42) —> 0

p*

7, (S =Z

The framing of R differs from that of x,;(R) by an element of ,(SO,.,). But it is
null homotopic in SO, ,,. In other words, it is an element of Ker iy. If q is odd, a
generator of Ker iy is mapped to 2 by py, so that the difference between the
linking number of s(S?) and g, ° s, ° g7 '(S?) with S? in $%*! is even. Thus ¢ is
well-defined.

Conversely, we shall suppose that ¢((Ry, sg)) = ¢((R,, s,1)). Then by using a
generator of Ker iy, the isotopy between them can be easily constructed. There-
fore ¢ is bijective. This completes the proof.
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Now, we shall define two isotopies which play a key role to deform a
(q+1)-handle h to h'. Let a g-annulus R be as in Lemma 2 and N be the normal
disc bundle of S* in S?**?. Then we take a trivialization T: N — S% X D4*2 such
that p e T(R)=D“"' where p denotes the projection onto the second factor.
Here D ?={(y1,y2 ..., Yq+2)€R"?|yi+y3+---+y2,,=<1} and D"'=
{y e D***|y,.»=0}. As was seen before, a q-annulus R is the orthogonal comple-
ment of a positive unit normal field » to R on S? in N. When we regard v as a
map of S? to dD**? by composing T and p, it is a constant map to the base point
*=(0,0,...,0,1) of aD“*%. A homotopical deformation of v as a section induces
an ambient isotopy of R. Let F, : S xXI—9D%"?, i =0, 1, be homotopical defor-
mations of v which satisfy two properties.

(1) F,(x,0)=F.(x,1)=F,(b,t)="* for each xe S9%, t<[0,1] and i =0, 1, where
b is the base point of S9.
This property implies that F, can be considered as a map of S9*' to 9D**2,
(2) F,is a degree one map of S**'. Im F, is included in $% ={y e D%*?| y, =0}
and F, represents the non-trivial element of m,,(S%)=Z,, (q=3).

Let J; be the isotopy of R induced by F,. In case q is odd, J, is just the one which
is induced by a generator of Ker iy.

Coming back to our previous program, we shall isotopically deform A; onto

!, provided q=5. Using q-annuli, A, =R,;U; h;, and A|{=R}{U;, hi. There

always exists an isotopy from R; to R’. Then the attaching sphere of h,
represents a homotopy class p,;x+q,y € m,(dR;). By hypothesis, the attaching
sphere of h) represents pix+q}y, where p, =p} and q, =q} (mod p,). Since the
normal bundle of f,(8D**"! x{0}) is trivial, 8(Int (p,x, q,y)) = 0. Here, the intersec-
tion number is regarded as an element of =,(S?) and 9 is the boundary map:
7, (SY) — m,_1(SO,). If q is odd and #7, then the image of 9 is Z,, so that q, is
even because p, is odd. Therefore q,=q}; (mod 2p,). If q=7, this is true by a
general argument: namely Lemma 2 shows that the modulo two reduction of q; is
the primary obstruction to thickening the core of h, in $***>. Now, q,=q;
(mod 2p,) implies that there is an integer n such that q, +2np, =q}. By Lemma 2,
there is an isotopy (Jp,)" from (R, x) to (R;,x+2ny). Thus it changes the
homotopy class of f,(6D*"' x{0}) to p,(x+2ny)+q,y =pix+q}y. After all, we
can isotopically deform R, onto R/ so that the attaching sphere of h; coincides
with that of hj.

Next, we set the manifold M as being S***?-interior N. Then there is a
homotopy exact sequence:

0 - 7Tq+1(M) —* 7Tq+1(M’ S~q) -> wq(gq) -> 0

where $9 is the attaching sphere of h,. M has the same homotopy type as S**!, so
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that =,,,(M, $%) is free abelian of rank two. And the core C,(C}) of h,(h%)
represents an element c(c’) of m . (M, S9). Rounding the edge, C,UC} is
considered as an immersed (q+ 1)-sphere with some orientation in interior M.
Then the self-intersection number of it is identified with p, - (c—c') € m,,,(M)=Z
as an integer. On the other hand, the normal bundle of C; U C} is trivial because
C, and C are the core of (q +1)-handles. Therefore the self-intersection number
of it must be zero. Thus c is in fact the same element as ¢'. This shows that C, is
isotopically deformed onto Cj.

Let w(un') be a positive unit normal field to h,(h}) on C,(C)). The (q+1)-
handle h, is the orthogonal complement of p in a normal disc bundle of C, in
$%1*2_ Since p = p’ along 9C,, p differs from p’ by an element of 7, ,,(S*)=Z,.
If w—p' =0, there is a homotopy of u to w' relative to dC,, so that h, is
isotopically deformed to h4. If not so, we deform R; with an isotopy J;. It does
not change the homotopy class of dC,, but changes the homotopy class of u into
the other element if p, is odd. And then, for the new field u, w —u'=0. Thus
we obtain the required isotopy from A, to Aj.

Remark 6. While constructing the above isotopy, we only used the informa-
tion that I, (a;, a;)=Iy(a’, a}). But in fact, the identity 2:6(a; R a;)=
Iy (ay, a;) follows from Gutiérrez’s formula, and this implies that the diagonal
entry of the r-Seifert form is completely determined by its self 7-intersection
number, if p, is odd.

Next we shall construct the deformation of A, onto A% in S%**?>— A,. The
space $9"?— A, has the same homotopy type as A, so that 7, (S*9"?—A,)=Z, .
The core of the g-annulus R,(Rj%) of A,(Aj%) represents an element r(r') of
m,(S*7"?—A,) and r—r can be identified with 6(a; ® a,)—n(a;® a3)=0.
Therefore there is an isotopy from R, to R% by which the attaching sphere of h,
coincides with that of h5. Put M = S??*-interior A,V N, where N is the normal
disc bundle of R, and v denotes the one point union. Then there is an exact
sequence:

0 Bl ’n-q+1(M) - 7Tq+1(M, §q) - ,n.q(gq) - 0

where S$9 is the attaching sphere of h,. I have m . ,(A;)=0, because A,=
S$*U, D! and p, is odd (the left distributivity law applies). So ., ,(M)=~Z and
Ta+1(M, S9)~Z@Z. Using the same argument as before we can isotopically
deform h, onto h% and so that A, onto A% in S92 —A,.

Proceeding inductively, we finally obtain the required isotopy of V to W. This
completes the proof of Theorem 1 in case q is odd.

3.3 Here, we shall give a proof of Theorem 1 when q is even. If so, the
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T-intersection form of V is skew-symmetric and H, (V) has a basis {a; }{¥, such that
the order p,;_, = p,; and for i <j,

1/p, if i=2n—1 and j=2n
I(au a]_): .
- otherwise.

A decomposition of V can be obtained as follows. Let a fundamental manifold B;
be STIX DS X D U, hU; h, where h is a (q+1)-handle and f,;_, (f3;) is
an attaching map. Now, 7, (3(S? X D**'5S9 X D*")) is generated by the natural
four elements x,, y;, x, and y, of the first and the second factors. Choose the
attaching sphere of h,;_; (resp. hy;) to represent the element p,,_,x,+y,
(resp. pyx,—y,) of m,(3(ST X D 'hST x D*")). Then V is diffeomorphic to the
boundary connected sum b_, B; (see [W]).

To prove Theorem 1, we shall consider the fundamental manifold B; from an
alternative viewpoint. As a submanifold of $2*2, §9 X D"')hS¥ X D?*! is just a
qg-annulus R; with a q-handle H,. Moreover, we may assume that the image of
f2j—1 is on R, and the attaching sphere of H; is on the complement dR; —Im f,;_,.
After all, B;=R;UH,;U;,  hy_,U; h,; as a submanifold of $?*2. The manifold

W also admits a similar decomposition b, B} associated to an isometric basis

{af :221

We next show how to deform B, onto Bj. As was seen in 3.2, there always
exists an isotopy from R; to R/. The attaching sphere of h, (resp. h}) represents a
homotopy class p;x+q;y (resp. pix+qjy) of m,(dR,), where x =S* X{pt} and
y={pt}xaD*'. If q is even, the boundary homomorphism d:m,(S?)—
7,-1(SO,) is injective. Since the normal bundle of the attaching sphere of h,(h})
is trivial, o(Int (p,x, q,y)) =0 (resp. o(Int (p’x, q7y)) =0). This implies q, =q; =0.
Therefore, under this isotopy the image of f, coincides with that of f;.

Let N be a normal disc bundle of R, in $%**2, and put M = $***-interior N.
Then there is a split exact sequence:

0— 7Tq+1(M) - 7Tq+1(M S~q) - Wq(gq) —0

where $9 is the attaching sphere of h;(h}). Let u, v be a basis of m,.,(M, S9),
corresponding to the above splitting. The core C,(C%) of h,(h}) represents an
element u+q,v(u+qjv) of m,. (M, $9), where q,=p, 0(e; ® @;) (mod p,)
(qi=p; n(a; @ af) (mod p})). This shows that there is an integer n such that
q7=q,+np,. Then we deform R, by (J,)", so that it changes the homotopy class
of C, into u+(q,+np;)v=u+qjv. Thus we obtain an isotopy of R,UC; to
* U C4. The rest of the procedure to deform R, U h, onto R} U h/ is the same as
in 3.2.
The attaching sphere of H; is on dR,—Im f, and represents an element of
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Ma—1(0R, —Im f,)=Z, . It differs from that of H} by L, (a;, a,)— Iw(a}, a5) =0.
So that we may assume that these coincide. Using the previous decomposition of
B,(BY), the core C,(C%) of H,(H}) is naturally extended to a g-sphere S(S’). Let
S.(S%) be the translate in the positive normal direction off V(W) of S(S'). It
represents an element of wq(Sz“”——Rthl)zzpl, and the difference between
those is identified with 6(a; ® a,) —n(a; ® a4) =0. Therefore S, is isotopic to S,
in $%9*2— R, Uh,, and moreover C, is isotopic to C} keeping oC, fixed. After-
ward, using the same procedure as the one we have used in deforming A, onto
%, we obtain an isotopy of B, to Bj.

The rest of the proof is done inductively as in the case q odd. Thus we finally

obtain the required isotopy of V to W. This completes the proof of Theorem 1.

§4. Addendum

Here, we shall expose without proof some geometrical properties of some
fibered knots. By [B&L], a necessary and sufficient condition for a simple
2q-knot K to be fibered is that ,(X) is finitely generated, where X is the
complement of K. Throughout this section, a knot K is always fibered. Definitions
can be found in our previous article [Ko]. Then our result is

THEOREM 2. Let K be an odd simple fibered 2q-knot, and q=4. Then the
isotopy class of K is completely determined by the first, the second and the T-Seifert
forms.

The crux of the proof is how to choose a basis of H,(V), where V is a minimal
Seifert manifold of K. Namely, setting {«;} as being a basis of H,(V), we can
choose a basis {B;} of the torsion free part of H,(V) such that they are
null-homologous in the complement of the chains {;} in $?*? where 8, =p; * «;.
The reason why we can do this is the non-singularity of the 7-Seifert form of V.
Choosing a nice decomposition of V with respect to the basis {a;, B;} of H,(V), we
shall use the same procedure as in the proof of Theorem 1 and [ Ko]. This supplies
the proof of Theorem 2. Now, the following corollaries are immediately obtaina-
ble from Theorem 2.

COROLLARY 1. If a 2q-knot K is as above, then there is a unique splitting
K = K. # Ky such that m,(Xg) is torsion free and m,(Xr) is finite, where # denotes
the knot connected sum and Xg(Xr) is the complement of a simple knot Kp(Ky).

COROLLARY 2. Let K be as above and p, p': X — S* be fibrations of it. Then
there exists a diffeomorphism f of $**2 such that p’=p > f| X.
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