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A Landesman-Lazer alternative theorem for a class of optimization
problems

JENs FREHSE

In [1] we proved an alternative theorem for the existence of minima of
functionals F, defined by F,(u) = F(u)—(l, u) on, say, a reflexive Banach space B.
Here | € B* and F satisfies the following conditions

(1) F:B — R U {o°} is lower semi-continuous in the weak topology of B.
(2) F is of polynomial type, i.e. if for some pair v, w € B

(i) sup t 'F(w+tv) <o (t>1t,>0) and
(ii) inf F(w+tv)> — (teR)

then F(w +tv) is constant in t.

(3) F satisfies a surrogate convexity condition, i.e. for all u,weB,a€|0,1],
F(w)<o
Fl—-a)w+au)<K, + K, aF(u)
with some constant K.

(4) F is semi-coercive, i.e. there exists a continuous projection Q:B — V onto a
finite dimensional subspace V such that for all K> K,

sup {lull/(1 +|Qul) | F(u) =K} <o
(5) F is bounded from below on B.
Introducing the set

D={veB | F(w+tv) is constant in teR for all we B, F(w) <}
we obtained the following

THEOREM 0. Under the conditions (1)-(5) the functional F, has a minimum
if and only if | L D. Furthermore, dim D <dim V.
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A simple corollary (cf. [2], §1) yields that if in addition F has a Gateaux derivative
T :B — B* then the range of T is linear and has finite co-dimension.

In this paper we consider pertubations F,+ G of the above functionals F;
where G has a so called weak sub-asymptote (cf. definition below). It then turns
out that the set of [ € B* for which F, + G has a minimum becomes ‘‘thicker”, i.e.
is open and contains the closed set D. Under additional conditions we can
characterize these elements | in the form of an alternative theorem. Our results
are in the spirit of the ‘“classical” Landesman-Lazer-alternative theorems, cf.
Landesman-Lazer [8]. For a rather complete list of references to this subject, cf.
[9] and also [4]. These theorems state that the range of perturbed semi-coercive
linear differential operators like —Au —Au +arctg u subject to boundary condi-
tions is open and can be characterized by the asymptotes of the perturbation.

If F,+ G is Gateaux-differentiable our result yields a Landesman-Lazer-type
theorem of the usual form but covers cases with strongly non-linear principal part
of polynomial type. Our proof of this result is very simple. The theorem has a
non-variational analogue which was presented in [3]. A Landesman-Lazer
theorem for a class of equations with strongly non-linear principle part was
presented by Hess in [5], [6], [7]. His approach and his results are rather different
from the setting in the present paper.

DEFINITION. A mapping a,: D — R is called a weak sub-asymptote of the

mapping G:B —R if for every sequence (y,€B, i=1,...,) with [[u]|— =,
lw|| 'u; = v e D weakly (i — »), v#0, we have

ao(v) <liminf uf| " G(w) <=  (i—>) (6)

We shall also assume for the pertubation G

sup [ul ' G(u)<x (ueB, u#0) (7)
and
F+ G is lower semi-continuous in the weak topology of B. (8)

THEOREM 1. Let B be a reflexive Banach space and F:B—>RUx», G:B —
R mappings such that G has a weak sub-asymptote a,: D — R and F, G satisfy
(1)~(5), (7) and (8).

Then the functional ®,: B — R defined by

@, (u)=Fu)+Gu)—( u)
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has a minimum on B for all l € B* for which

(I, v)<agy(v), veD, v¥0. 9)
If in addition

liminf t '(G(w +tv)—G(w))<ao(v)  (t— +0) (10)

for all we B and ve D,v¥ D, then (9) is also necessary for the existence of a
minimum of ®,.

Proof. We may assume that F#+ const=o0. Let (4;) be a minimizing sequence
for ®,. Suppose that (y;) were unbounded. Then we may assume that ||u;|| — « and
that ||u;||"'w; :=v; = v weakly in B(i — »). By (4) there is a constant C >0 such
that |Ju,||= C + C||Qu;|| and hence 1 =< C liminf ||Qu;|| (i — ). Since dim QB <~ we
have Qu; — Qu strongly and, therefore, 1= C|Qvl, and

v+0.

We intend to show that v € D. By the convexity condition (3)

F(1-a)w+aw) =<K, +aK,F(u) =K, +aK,[®/(u) - G(u)+ (1, u)]
for all w such that F(w) <.

Since ||u|| = © we may set a =t ||| for t>0, i>i(t). Passing to the limit
i — o we obtain in view of the lower semi-continuity of F.

F(w+t)=<K, —tK, liminf ||uill‘lG(ui)+tKw(l, v) (11)
and by (7)

t'F(w+tw)<K,, t>1.

From (5) and (2) we then conclude that F(w +tv) is constant in ¢t € R for all w with
F(w)<o and hence

veD.
Since G has a weak sub-asymptote a,: D — R, we obtain from (11)

(F(w)=)F(w+t)=<K, —tK, a(v)+tK,(l, v)
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and passing to the limit ¢t — o we arrive at the inequality

ao(v)=(1, v).
This contradicts (9) and hence the assumption of (i;) being unbounded leads to a
contradiction. The first statement follows in view of (8) and the reflexivity of B.
The necessity of (9) can be seen from the following simple argument: If u is a

minimum of ®, on B and if v € D, then

FuwW+Guw—-(Luw=Fu+tw)+Gu+tw)—(, u+tw)

Gw)=Gu+w)—t(, v)
since F(u+1tv) is constant in t. Hence, by (10),
(I, v) <liminf t (G (u + tv) — G(u)) < ao(v) (t —> +0)

as claimed. The theorem is proved.

EXAMPLES. In the following let () be a bounded connected open set in R"
and H'® the usual Sobolev space over (). The corresponding Sobolev space of
r-vector functions is denoted by [H'*]".

(i) Let B=H"*(Q), le B*, and

F(u) =;1)—j |VulP dx, G(u)={[u arctg u—31n (1+|ul>)] dx

Here and in the following [ denotes integration over (). Then D=
{ze H" | z =const.} and ay(v) = /2 § |v| dx. Since F and G satisfy the hypotheses
of Theorem 1, cf [1], §3, the functional F, defined by

F(u)=Fu)+Gu)—(, u)

has a minimum when

(1, )| <-’2-’- 0. (12)
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The minimum u of F; is a weak solution of the differential equation.

- Z 8;(0;u |[VulP?)+arctgu =1. (13)

i=1

It is a simple exercise to prove that the above functional G satisfies condition
(10); Hence (12) is also necessary for the existence of a minimum of F,. The
characterization of the range of the operator on the left hand side of (13) can be
obtained using the methods of Peter Hess, cf. references.

A non-differentiable variant of this example is obtained when F(u) is replaced
by

F(u)= J [% |Vul? +|Vu|] éx

and condition (12) remains as the necessary and sufficient condition for the
existence of minima of the functional F,.

(ii) Let B=[H"*(Q)J, le B* and

F(u)= J’ [Vu, P +ul+A sin u, +u, 8,u,+|Vu,|*] dx, u=(uy, U,),

G(u)= I [u, arctg u,—3 In (1 +|u,|>)] dx.
Again, F and G satisfy the hypotheses of the theorem. The surrogate convexity of
F follows by splitting the integrand into a sum of convex and bounded functions.
The set D has the form

D ={(0, c)e[H**(Q)F| ceR}.

The functional F, [ =(l,, ,) € B* has a minimum if and only if

e DI <T .
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