Zeitschrift:	Commentarii Mathematici Helvetici
Herausgeber:	Schweizerische Mathematische Gesellschaft
Band:	54 (1979)
Artikel:	A note on groups with torsion-free abelianization and trivial multiplicator.
	A note of groups with torsion-nee abenanization and trivial multiplicator.
Autor:	Strebel, Ralph

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. <u>Mehr erfahren</u>

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. <u>En savoir plus</u>

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. <u>Find out more</u>

Download PDF: 05.07.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

A note on groups with torsion-free abelianization and trivial multiplicator

RALPH STREBEL

1. Introduction

1.1. A basic result on free groups F asserts that the factors $\{F_j/F_{j+1}\}_{1 \le j < \omega}$ of successive terms of the lower central series are free abelian (Magnus [4], Witt [11]). This can be proved using Lie algebra techniques and a proof (e.g. [1], pp. 35-39; or [7], LA 4.10-4.13) will then rely on three corner stones:

- * The canonical Lie algebra homomorphism $\sigma : L_X \to Ass_X$ from the free Lie **Z**-algebra on the set X into the Lie algebra of the free associative **Z**-algebra on X is *injective*.
- * To every group G is associated a graded Lie algebra gr G. Its underlying additive group is the direct sum $\bigoplus G_i/G_{i+1}$ of the factors of successive terms of the lower central series of G. Its Lie bracket is on homogeneous components induced by commutation in the group, sc.

$$(g \cdot G_{i+1}, h \cdot G_{k+1}) \mapsto (g^{-1}h^{-1}gh) \cdot G_{i+k+1} \qquad (g \in G_i, h \in G_k)$$

and then extended linearly.

Reverting to free algebras and groups, let $\gamma: L_X \to \text{gr } F_X$ denote the Lie algebra homomorphism defined by the assignments

 $X \ni x \mapsto x \cdot F_2 \in \operatorname{gr}^1 F_X \subseteq \operatorname{gr} F_X.$

* There exists a Lie algebra homomorphism α : gr $F_X \rightarrow Ass_X$. making the triangle

$$\begin{array}{c} L_X \xrightarrow{\sigma} Ass_X \\ \downarrow^{\gamma} & \vdots & \alpha \end{array}$$

gr F_X commute.

1.2. In this note it is shown that the proof sketched above can be adapted to the more general situation in which F_X gets replaced by a group G whose abelianization G_{ab} is torsion-free and whose multiplicator $H_2(G, \mathbb{Z})$, i.e. whose second homology group with integral coefficients, is a torsion group. Such a group will be referred to as being TFT. The place of the free associative \mathbb{Z} -algebra Ass_x will be taken by the tensor algebra $T G_{ab}$. The main problem is the existence of a Lie algebra homomorphism

 $\alpha: \operatorname{gr} G \to T G_{ab}$

extending the identification gr $G \xrightarrow{\sim} T G_{ab}$ in degree 1.

THEOREM 1. If G is TFT then the identification $\operatorname{gr}^1 G \xrightarrow{\sim} T^1 G_{ab}$, taking $g \cdot G_2 \in \operatorname{gr} G$ to $g \cdot G_2 \in T G_{ab}$, extends (necessarily uniquely) to a Lie algebra isomorphism $\alpha : \operatorname{gr} G \xrightarrow{\sim} T G_{ab}$ from the graded Lie Z-algebra gr G associated with G onto the Lie subalgebra of $T G_{ab}$ generated by $G_{ab} = T^1 G_{ab}$. Moreover, α induces an isomorphism $U\alpha : U(\operatorname{gr} G) \xrightarrow{\sim} T G_{ab}$ between associative Z-algebras, thus providing a model for the universal algebra of gr G.

1.3. Since the additive group underlying the tensor algebra TG_{ab} is torsion-free if G_{ab} is so, Theorem 1 immediately entails the approved.

COROLLARY 1. The factors G_j/G_{j+1} , j = 1, 2, ..., of the lower central series of a TFT group G are torsion-free.

An application of Corollary 1 can be found in [10] (cf. 4.1.).

The next corollary indicates that even in the special case of a TFT group the finer commutator structure gets lost in the passage from G to gr G. (Examples testifying the loss will be given in 4.6.ff.)

COROLLARY 2. The Lie algebra gr G of a TFT group is determined by its first homogeneous component G_{ab} .

1.4. Our second main result deals with subgroups of TFT groups. We state it as

THEOREM 2. Let $\varphi: G \to \overline{G}$ be a homomorphism for which $\varphi^1: G_{ab} \to \overline{G}_{ab}$ is injective. Suppose G is TFT and $H_2(\overline{G}, \mathbb{Z})$ is a torsion group. Then gr φ : gr $G \to$ gr \overline{G} is injective. Put differently, φ induces injective homomorphisms $\varphi_*: G/G_j \to \overline{G}/\overline{G}_j$ for all $j \ge 2$. If G and \overline{G} in Theorem 2 are both free the claim reduces to a well-known result of Malcev on subgroups of free nilpotent groups ([5]; cf. [6], 42.51). Theorem 2 may also be compared with the following result:

THEOREM (Stallings [8], Stammbach [9]). Let $\varphi: G \to \overline{G}$ be a homomorphism inducing an isomorphism $\varphi^1: G_{ab} \to \overline{G}_{ab}$ and a surjection $H_2(\varphi): H_2(G, \mathbb{Z}) \to H_2(\overline{G}, \mathbb{Z})$. Then gr φ : gr $G \to$ gr \overline{G} is an isomorphism of graded Lie algebras.

2. The proof of Theorem 1

2.1. Let R be a non-trivial commutative ring with 1. If G is a group, let RG denote its group algebra (over R) and $\varepsilon : RG \to R$ the associated augmentation, i.e. the R-algebra homomorphism sending every $g \in G$ to $1 \in R$. The kernel of ε is called the augmentation ideal I = I(RG) and, as an R-module, it is freely generated by the elements g-1 ($g \in G \setminus \{e\}$). The powers $\{I^i\}_{0 \le j < \omega}$ form an integral filtration of RG whose associated graded R-algebra will be denoted by gr RG.

Define a descending chain of subsets of G by setting

$$D^{j}_{R}(G) = \{g \in G \mid g - 1 \in I^{j}\} \qquad (1 \le j \le \omega).$$

Then $D_R^1(G) = G$, each $D_R^j(G)$ is a (normal) subgroup and for every pair $(j, k) \in \mathbb{N}^2$ the commutator $[D_R^j(G), D_R^k(G)]$ is contained in $D_R^{j+k}(G)$ (see, e.g., [2], §4.5, Prop. 2, p. 42). Hence $\{D_R^j(G)\}_{1 \le j < \omega}$ is a central series of G and we can form the associated graded Lie **Z**-algebra gr $\{D_R(G)\}$. The function $g \mapsto g-1$ induces then an *injective* Lie algebra homomorphism

 $\beta: \operatorname{gr} \{D_{\mathbb{R}}(G)\} \to \operatorname{gr} RG.$

(It is clear that β is actually a natural transformation between functors from the category of groups to the category of graded Lie **Z**-algebras.)

2.2. We specialize now to the case $R = \mathbb{Z}$. Then $D_{\mathbb{Z}}^2(G) = G_2 = G'$ and β gives an isomorphism $\beta^1: G/G_2 \cong I/I^2$, $gG_2 \mapsto (g-1)+I^2$. If TG_{ab} is the tensor algebra on $G_{ab} = G/G'$ the isomorphism β^1 will extend uniquely to a homomorphism $\mu: TG_{ab} \to \operatorname{gr} \mathbb{Z}G$ of graded associative \mathbb{Z} -algebras, given in degree j by

$$g_1G_2 \otimes g_2G_2 \otimes \cdots \otimes g_jG_2 \mapsto (g_1-1)(g_2-1)\cdots (g_j-1)+I^{j+1}.$$

RALPH STREBEL

Clearly μ is always surjective. For TFT groups it is even bijective according to the following

LEMMA. If G_{ab} is torsion-free and $H_2(G, \mathbb{Z})$ is a torsion group then $\mu: TG_{ab} \xrightarrow{\sim} \operatorname{gr} \mathbb{Z}G$ is an isomorphism of graded associative \mathbb{Z} -algebras.

2.3. Proof. For every $j \ge 0$ the short exact sequence $I^{j+1} \hookrightarrow I^j \xrightarrow{\pi} I^j/I^{j+1}$ of right G-modules induces a long exact sequence. In dimensions 2, 1 and 0 it looks like this:

One readily verifies that the composite

$$\bar{\boldsymbol{\mu}} : \boldsymbol{I}/\boldsymbol{I}^{2} \otimes \boldsymbol{I}^{j}/\boldsymbol{I}^{j+1} = H_{1}(\boldsymbol{G}, \mathbf{Z}) \otimes \boldsymbol{I}^{j}/\boldsymbol{I}^{j+1} \xrightarrow{\sim} H_{1}(\boldsymbol{G}, \boldsymbol{I}^{j}/\boldsymbol{I}^{j+1})$$

$$\xrightarrow{\vartheta_{1}} \boldsymbol{I}^{j+1} \otimes_{\boldsymbol{G}} \mathbf{Z} \xrightarrow{\sim} \boldsymbol{I}^{j+1}/\boldsymbol{I}^{j+2}$$

is the obvious multiplication map. Taking into account that $I^i \otimes_G \mathbb{Z} \to (I^j/I^{i+1}) \otimes_G \mathbb{Z}$ is an isomorphism and using the universal coefficient theorem, the sequence (1) can be rewritten as

$$(H_{2}(G, \mathbb{Z}) \otimes I^{j}/I^{j+1} \oplus \operatorname{Tor}_{1}^{\mathbb{Z}}(G_{ab}, I^{j}/I^{j+1}))$$

$$(2)$$

$$H_{1}(G, I^{j+1}) \longrightarrow H_{1}(G, I^{j}) \longrightarrow I/I^{2} \otimes I^{j}/I^{j+1} \xrightarrow{\tilde{\mu}} I^{j+1}/I^{j+2} \longrightarrow 0.$$

This exact sequence allows, first of all, to prove that all homology groups $H_1(G, I^i)$ $(0 \le j \le \omega)$ are torsion groups. To see this recall that $H_2(G, \mathbb{Z})$ is a torsion group by hypothesis and $\operatorname{Tor}_1^{\mathbb{Z}}(?, ?)$ by nature, and that $H_1(G, \mathbb{Z}G) = 0$; then use the exactness of (2). Secondly, (2) implies that all multiplication maps $\overline{\mu} : I/I^2 \otimes I^i/I^{i+1} \to I^{i+1}/I^{i+2}$ are bijective. As all $H_1(G, I^i)$ are torsion groups it will do to show inductively that $I/I^2 \otimes I^i/I^{i+1}$ is torsion-free. This follows from the hypothesis that $G_{ab} \cong I/I^2$ be torsion-free and the fact that the tensor product (over \mathbb{Z}) of torsion-free groups is again torsion-free. The proof is now easily completed.

2.4. The proof of Theorem 1. Assume G_{ab} is torsion-free and $H_2(G, \mathbb{Z})$ is a torsion group. By Lemma 2.2 the map $\mu: T G_{ab} \to \text{gr } \mathbb{Z}G$ is bijective so that we can define a Lie algebra homomorphism α as the composite

$$\operatorname{gr} G \xrightarrow{\iota} \operatorname{gr} \{D_{\mathbf{Z}}(G)\} \xrightarrow{\beta} \operatorname{gr} \mathbf{Z} G \xleftarrow{\mu} T G_{ab}.$$

Here ι denotes the Lie algebra homomorphism stemming from the inclusions $G_j \subseteq D^i_{\mathbf{Z}}(G)$. Note that gr G is generated by its first homogeneous component and that $\alpha^1 : \operatorname{gr}^1 G \to T^1 G_{ab}$ is the identity on G_{ab} . These facts, together with the universal property of $T G_{ab}$, imply that $\alpha : \operatorname{gr} G \to T G_{ab}$ is the canonical map of gr G into its universal algebra and so prove the addendum to Theorem 1.

2.5. We are left with proving that α is injective. If F_X is free on the set X then $(F_X)_{ab}$ is free-abelian and $H_2(F_X, \mathbb{Z}) = 0$. Hence α is defined and gives the classical Lie algebra homomorphism

$$\alpha: \operatorname{gr} F_X \to T(F_X)_{ab} \cong \operatorname{Ass}_X, \qquad x \cdot F_2 \mapsto x \qquad (x \in X).$$

The theory of basic sequences (see, e.g. [1]) or the Poincaré-Birkhoff-Witt theorem (see e.g. [7]) can then be used to prove that α is injective.

Now let $\varphi^1: F_{ab} \hookrightarrow G_{ab}$ be a finitely generated free-abelian subgroup of our torsion-free abelianization G_{ab} . Lift the inclusion to a group homomorphism $\varphi: F \to G$. The lift gives rise to the commutative square

In it α_F is injective, and because F_{ab} and G_{ab} are both torsion-free abelian groups and φ^1 is injective, $T\varphi^1$ is likewise injective. Consequently the restriction of α_G to the image of gr φ is injective. But gr G is generated by its first homogeneous component G_{ab} and G_{ab} , being torsion-free, is a union of finitely generated free-abelian subgroups. This proves that α is injective and establishes the claim of Theorem 1. The proofs of the corollaries present no problems.

2.7. Remark. The injectivity of α could also have been inferred from a (rather difficult) theorem of M. Lazard [3] asserting that the canonical map of a Lie *R*-algebra into its universal algebra is injective if *R* is a principal ideal domain.

3. The proof of Theorem 2

3.1. We first return to the set-up of Subsection 2.1 and choose R to be the rational numbers Q. The commutative square

$$G/D^{2}_{\mathbf{Z}}(G) \xrightarrow{\beta^{1}_{\mathbf{Z}}} I/I^{2}$$

$$\downarrow^{\operatorname{can}} \qquad \downarrow^{\operatorname{can}}$$

$$G/D^{2}_{\mathbf{Q}}(G) \xrightarrow{\beta^{1}_{\mathbf{Q}}} \operatorname{gr}^{1} \mathbf{Q}G \cong I/I^{2} \otimes \mathbf{Q}$$

shows that $D^2_{\mathbf{Q}}(G)$ equals ker $\{G \rightarrow G_{ab} \otimes \mathbf{Q}\}$ whence

$$\boldsymbol{\beta}_{\mathbf{Q}}^{1} \otimes \mathbf{Q} : G_{ab} \otimes \mathbf{Q} \cong G/D_{\mathbf{Q}}^{2}(G) \otimes \mathbf{Q} \to \operatorname{gr}^{1} \mathbf{Q}G$$

is an isomorphism. It extends uniquely to a homomorphism

 $\mu_{\mathbf{Q}}: T(G_{ab} \otimes \mathbf{Q}) \to \operatorname{gr} \mathbf{Q}G$

of graded associative **Q**-algebras. Clearly $\mu_{\mathbf{Q}}$ is onto. An easy modification of the proof of Lemma 2.2 reveals that $\mu_{\mathbf{Q}}$ is also injective provided merely that $H_2(G, \mathbf{Z})$ is a torsion group. For a group G whose multiplicator is a torsion group one can therefore define a homomorphism

$$\alpha_{\mathbf{Q}}: \operatorname{gr} \{D_{\mathbf{Q}}(G)\} \xrightarrow{\beta_{\mathbf{Q}}} \operatorname{gr} \mathbf{Q}G \xleftarrow{\mu_{\mathbf{Q}}} T(G_{ab} \otimes \mathbf{Q})$$

of graded Lie Z-algebras.

3.2. Now let G be TFT, let \overline{G} be a group with $H_2(\overline{G}, \mathbb{Z})$ a torsion group and let $\varphi: G \to \overline{G}$ be a group homomorphism. Then the canonical maps $\alpha(G)$, $\alpha_{\mathbf{Q}}(G)$ and $\alpha_{\mathbf{Q}}(\overline{G})$ are all three defined and they combine to produce the following commutative diagram

In it ι denotes the canonical Lie algebra homomorphism stemming from the inclusions $G_j \subseteq D^i_{\mathbf{Q}}(G)$, and $\kappa : G_{ab} \to G_{ab} \otimes \mathbf{Q}$ is the obvious canonical **Z**-module homomorphism.

By assumption G_{ab} is torsion-free. Therefore κ and $T\kappa$ are injective. By Theorem 1 the same is true for $\alpha(G)$. If, as is required in the hypotheses of Theorem 2, $\varphi^1: G_{ab} \to \overline{G}_{ab}$ is injective $T(\varphi^1 \otimes \mathbf{Q})$ will also be injective. Hence the composite $\iota \circ \operatorname{gr}_{\mathbf{Q}} \varphi : \operatorname{gr} G \to \operatorname{gr} \{D_{\mathbf{Q}}(G)\}$ is seen to be injective and the claim of Theorem 2 follows upon noting that $\iota \circ \operatorname{gr}_{\mathbf{Q}} \varphi$ factors through $\operatorname{gr} \varphi : \operatorname{gr} G \to \operatorname{gr} \overline{G}$.

4. Examples and counter-examples

4.1. **E**-groups. Let G be a group having torsion-free abelianization and trivial multiplicator. If G_{ab} is even free-abelian the Stallings-Stammbach theorem quoted in 1.4 applies and proves that each G_j/G_{j+1} is isomorphic with the corresponding factor F_j/F_{j+1} of a suitable free group F and so, in particular, torsion-free.

This argument breaks down if G_{ab} is not free abelian, as it usually happens when G is the derived group of a knot group or, more generally, when G is an **E**-group in the sense of [10]. A group G is there called an **E**-group if G_{ab} is torsion-free and if the G-trivial module **Z** admits a **Z**G-projective resolution $\cdots \rightarrow P_2 \xrightarrow{\partial_2} P_1 \rightarrow P_0 \rightarrow \mathbf{Z} \rightarrow 0$ for which the induced differential $\mathbf{1} \otimes \partial_2 : \mathbf{Z} \otimes_G P_2 \rightarrow$ $\mathbf{Z} \otimes_G P_1$ is injective. The condition on $\mathbf{1} \otimes \partial_2$ implies that $H_2(G, \mathbf{Z})$ is zero; the converse, however, is false (see 4.2).

E-groups have the following stability property: if $G \in \mathbf{E}$ and $N \triangleleft G$ is a normal subgroup with torsion-free, abelian factor group then $N \in \mathbf{E}$. In particular, the terms of the derived series of an **E**-group are **E**-groups and so are the terms of the lower central series.

4.2. Groups G with G_{ab} torsion-free, $H_2(G, \mathbb{Z}) = 0$ but $G \notin \mathbb{E}$. It suffices to prove that G does not have the stability property enjoyed by \mathbb{E} -groups. Let A be an abelian group possessing an automorphism τ for which $\tau - 1: A \to A$ is bijective and $\tau \wedge \tau - 1 \wedge 1: A \wedge A \to A \wedge A$ is onto. Let C = (t) be an infinite cyclic group and define G to be the split extension $A \prec C$ where t induces on A the given τ . Then $A = G_2$, $G_{ab} \cong \mathbb{Z}$ and $H_2(G, \mathbb{Z}) = 0$, although A is in general neither torsion-free nor has it trivial multiplicator (take e.g. $A = (\mathbb{Z}/5\mathbb{Z}) \oplus (\mathbb{Z}/5\mathbb{Z})$ and let τ operate by multiplication by 2).

4.3. We give next two examples demonstrating that $\alpha : \text{gr } G \to TG_{ab}$ need not exist if the hypotheses of Theorem 1 are weakened. Consider first an *abelian* group A. Then gr A is a commutative graded Lie algebra concentrated in degree 1 and its universal algebra is the symmetric algebra SA of A. Hence $\alpha : \text{gr } A \to TA$ can only exist if TA is commutative. The commutativity of $\bigotimes^2 A$, in turn, is equivalent with the vanishing of the exterior square $\Lambda^2 A \cong H_2(A, \mathbb{Z})$; for the canonical map $A \wedge A \to A \otimes A$ taking $a \wedge b$ to $a \otimes b - b \otimes a$ is injective. For a torsion-free abelian group we thus get the following conclusion: The identification $\operatorname{gr}^1 A \xrightarrow{\sim} T^1 A$ extends to a Lie algebra homomorphism $\alpha : \operatorname{gr} A \to T A$ if and only if $H_2(A, \mathbb{Z}) = 0$.

4.4. Groups G with $H_2(G, \mathbb{Z}) = 0$ but G_{ab} not torsion-free. The exact sequence

$$H_2(G, \mathbb{Z}) \longrightarrow I/I^2 \otimes I/I^2 \xrightarrow{\tilde{\mu}} I^2/I^3 \longrightarrow 0$$

(cf. sequence (2) in 2.3.) shows that $\mu^2 : \otimes G_{ab} \xrightarrow{\sim} I^2/I^3$ is bijective. Consequently the identification $\operatorname{gr}^1 G \xrightarrow{\sim} T^1 G_{ab}$ extends to

$$\alpha^2: G_2/G_3 \longrightarrow I^2/I^3 \xleftarrow{\mu^2} \otimes^2 G_{ab}$$

taking $[g, h] \cdot G_3$ to $g \cdot G_2 \otimes h \cdot G_2 - h \cdot G_2 \otimes g \cdot G_2$. (The existence of α^2 can also be deduced from the 5-term sequence associated with the extension $G_2 \triangleleft G \twoheadrightarrow G_{ab}$, namely

$$H_2(G, \mathbb{Z}) \to H_2(G_{ab}, \mathbb{Z}) \xrightarrow{\chi} G_2/G_3 \to G_{ab} \xrightarrow{\sim} G_{ab} \to 0,$$
(3)

and from the facts that $H_2(G_{ab}, \mathbb{Z}) \cong G_{ab} \wedge G_{ab}$, that under this isomorphism χ becomes the obvious commutator map and that $\Lambda^2 G_{ab}$ maps canonically into $\otimes^2 G_{ab}$.)

However, it is in general not possible to extend the identification $\alpha^1: \operatorname{gr}^1 G \xrightarrow{\sim} T^1 G_{ab}$ to a Lie algebra homomorphism

 $\alpha_{\ast}: G/G_2 \oplus G_2/G_3 \oplus G_3/G_4 \to G_{ab} \oplus \otimes^2 G_{ab} \oplus \otimes^3 G_{ab}$

of nilpotent Lie algebras of class two. To see this let G be a one-relator group of the form

$$G = \langle a, t; t^{-1}at = a^m \rangle = \langle a, t; [a, t] = a^{m-1} \rangle \qquad (m \in \mathbb{Z} \setminus \{0, 1, 2\}).$$

Then $G_{ab} = gp(aG_2) \times gp(tG_2) \cong (\mathbb{Z}/|m-1|\mathbb{Z}) \times \mathbb{Z}$ and $H_2(G, \mathbb{Z}) = 0$. The iterated commutator [a, [a, t]] represents the trivial element in G_3/G_4 , whereas the corresponding Lie bracket in $\otimes^3 G_{ab}$, namely

$$[aG_2, [aG_2, tG_2]] = aG_2 \otimes aG_2 \otimes tG_2 - 2 \cdot aG_2 \otimes tG_2 \otimes aG_2 + tG_2 \otimes aG_2 \otimes a$$

has order |m-1| > 1.

4.5. Groups G, \overline{G} with trivial multiplicator, $\varphi: G \to \overline{G}$ with φ^1 injective but G_{ab} not torsion-free. Our goal is to show that $\varphi^2: G_2/G_3 \to \overline{G}_2/\overline{G}_3$ is not always injective. Let G be the one-relator group $\langle a, t; t^{-1}at = a^m \rangle$ considered before and let \overline{G} arise out of G by adjoining a k^{th} root of t, i.e.

$$\bar{G} = G_{\substack{t=u^k\\t=u^k}}(u) = \langle a, u; u^{-k}au^k = a^m \rangle \qquad (k \ge 2),$$

and let $\varphi: G \to \overline{G}$ be the canonical injection. Then $H_2(G, \mathbb{Z}) = H_2(\overline{G}, \mathbb{Z}) = 0$ and $\varphi^1: G_{ab} \to \overline{G}_{ab}$ is injective. The map $\varphi^2: G_2/G_3 \to \overline{G}_2/\overline{G}_3$ can be identified with the exterior square $\Lambda^2 \varphi^1: \Lambda^2 G_{ab} \to \Lambda^2 \overline{G}_{ab}$ (consult (3) above). Both $\Lambda^2 G_{ab}$ and $\Lambda^2 \overline{G}_{ab}$ are cyclic of order |m-1| and $\Lambda^2 \varphi^1$ takes the generator $aG_2 \wedge tG_2$ to $aG_2 \wedge u^k G_2 = k(aG_2 \wedge uG_2)$. Hence φ^2 is injective if and only k and m are relatively prime.

This example shows that the conclusion of Theorem 2 becomes false if G_{ab} is not assumed to be torsion-free, everything else remaining unchanged. It is clear that a strong assumption on $H_2(\bar{G}, \mathbb{Z})$ is necessary to exclude cases like the abelianization $\varphi: F \to F_{ab}$ of a free group. But I have not been able to determine to what extent the hypothesis on $H_2(G, \mathbb{Z})$ could be weakened without jeopardizing the claim. (The theorem of Stallings-Stammbach quoted in 1.4. bears also on the issue.)

4.6. A family of 2^{\aleph_0} non-isomorphic groups with trivial multiplicator having all the same torsion-free abelianization. Let $\{{}_kF\}_{k \in \mathbb{N}}$ be a sequence of free groups of rank two, say ${}_kF$ is free on x_k and y_k , and let $ab: {}_kF \rightarrow ({}_kF)_{ab}$ be the abelianization. If

 $\boldsymbol{\varphi} = \{\varphi_k : (_k F)_{ab} \to (_{k+1} F)_{ab}\}_{k \in \mathbb{N}}$

is a given sequence of homomorphisms it can be lifted to a sequence

$$\boldsymbol{\Phi} = \{\boldsymbol{\Phi}_i : {}_k F \to {}_{k+1} F\}_{k \in \mathbf{N}}$$

so as to produce a commutative ladder

If the φ_k are injective the lifts Φ_k are likewise injective, e.g. because of Theorem 2 and the residual nilpotency of free groups. The direct limit $G_{\Phi} = \operatorname{colim} \Phi$ is

therefore a locally free group with trivial multiplicator and torsion-free abelianization $(G_{\Phi})_{ab} = \operatorname{colim} \varphi$; and gr G_{Φ} is isomorphic to the Lie algebra of $T(G_{\Phi})_{ab} \cong$ $T(\operatorname{colim} \varphi)$ generated by its first homogeneous component colim φ . In particular, gr G_{Φ} depends only on φ and not on the choice of the lift Φ .

Next let *P* be an infinite set of odd rational primes and let $\lambda : \mathbb{N} \xrightarrow{\sim} P$ be an enumeration of *P*. Define the sequence $\varphi = \{\varphi_k\}$ by

$$\varphi_k: x_k \cdot ({}_kF)_2 \mapsto x_{k+1}^{\lambda_k} \cdot ({}_{k+1}F)_2 \quad \text{and} \quad y_k \cdot ({}_kF)_2 \mapsto y_{k+1}^{\lambda_k} \cdot ({}_{k+1}F)_2.$$

The direct limit colim φ can be identified with the direct sum $A_x \oplus A_y$ of two copies of the subgroup of the rationals generated by the elements 1/p ($p \in P$). For each $S \subseteq \mathbb{N}$ define a lift $\Phi(S)$ of φ by the formulae

$$\Phi_k(S): x_k \mapsto \begin{cases} x_{k+1}^{\lambda_{k+1}} & \text{if } k \in S \\ x_{k+1}^{\lambda_{k+1}}[y_{k+1}, x_{k+1}] & \text{if } k \notin S \end{cases} \text{ and } y_k \mapsto y_{k+1}^{\lambda_k}.$$

We shall prove that colim $\Phi(S)$ and colim $\Phi(S')$ are isomorphic if and only if the symmetric difference of S and S' is finite. Since N can be written as a disjoint union of infinitely many infinite subjects this will imply that there are 2^{\aleph_0} many non-isomorphic locally free groups whose associated graded Lie Z-algebras are isomorphic.

4.7. If the symmetric difference of S and S' is finite then clearly colim $\Phi(S)$ and colim $\Phi(S')$ are isomorphic. The converse will be established by showing that, up to a finite error, S can be recovered from the nilpotent quotient of class two $G_{\Phi(S)}/(G_{\Phi(S)})_3$.

Let F be free on x and y. The elements of $H = F/F_3$ can be parametrized by the lattice points \mathbb{Z}^3 via

$$\mathbf{Z}^{3} \ni (a, b, c) \leftrightarrow x^{a} y^{b} (y^{-1} x^{-1} y x)^{c} \cdot F_{3} \in F/F_{3} = H.$$

The resulting group multiplication on \mathbb{Z}^3 is then given by

$$(a, b, c) \cdot (a', b', c') = (a + a', b + b', ba' + c + c').$$

Note that this group multiplication has an obvious extension to points of Q^3 .

For positive powers and roots of elements of $H = H_{\mathbf{Z}} \subseteq H_{\mathbf{Q}}$ one gets

$$(a, b, c)^m = \left(ma, mb, mc + \binom{m}{2} \cdot a \cdot b\right)$$
$$(a, b, c)^{1/m} = (a/m, b/m, c/m - \frac{1}{2} \cdot (m-1) \cdot (a/m) \cdot (b/m))$$

It follows that an element of H_z is an m^{th} power (*m* an *odd* integer) if and only if all three entries are integral multiples of *m*.

The endomorphism Φ^{ϵ} of *H* corresponding to the lifts Φ_k with $k \in S$ has the parametric description

$$(a, b, c) \Phi^{\epsilon} = (\lambda_k \cdot a, \lambda_k \cdot b, (\lambda_k)^2 \cdot c).$$

It has the property that the image of an element of H which is an m^{th} power is at least a $(\lambda_k \cdot m)^{\text{th}}$ power and that the image of an element which is not a q^{th} power $(q \neq \lambda_k \text{ odd prime})$ is still not a q^{th} power.

The endomorphism Φ^{ϵ} of *H* corresponding to the lifts Φ_k with $k \notin S$ has the description

$$(a, b, c)\Phi^{\epsilon} = (\lambda_k \cdot a, \lambda_k \cdot b, (\lambda_k)^2 \cdot c + a).$$

If $q \neq \lambda_k$ is an odd prime then the image under Φ^{\notin} of an element which is not a q^{th} power is still not a q^{th} power. Moreover, if $(a, b, c)\Phi^{\notin}$ is a λ_k^{th} power then $\lambda_k \mid a$.

4.8. Now let $S \subseteq \mathbb{N}$ and construct the group $G_{\Phi(S)} = \operatorname{colim} \Phi(S)$. Then the nilpotent group $N(S) = G_{\Phi(S)}/(G_{\Phi(S)})_3$ is the direct limit of the obvious chain

$$_{1}H \xrightarrow{\Phi_{1^{*}}} _{2}H \xrightarrow{\Phi_{2^{*}}} _{3}H \xrightarrow{\Phi_{3^{*}}}$$

where each $_kH$ is isomorphic with the free nilpotent group H discussed above. The isolators $I(n) = \{n' \in N(S) \mid n = (n')^j \text{ some } j \in \mathbb{Z}\}$ of an element $n \in N(S)$ are of two types: if n stems from an element $(a_k, b_k, c_k) \in _kH$ with $a_k \neq 0$, – note the choice of k does not matter – then $I(n) \cong gp\{1/p \mid p \in \lambda(S)\}$, otherwise $I(n) \cong$ $gp\{1/p \mid p \in P\}$. The claim then follows from the classification of isomorphism types of subgroups of the rationals.

Acknowledgment. I would like to thank F. R. Beyl for some helpful discussions in connection with the last counter-example.

REFERENCES

- [1] BAUMSLAG, G., Lecture Notes on Nilpotent Groups; Regional Conference Series in Mathematics, Vol. 2; Amer. Math. Soc. 1971.
- [2] BOURBAKI, N., Groupes et Algèbres de Lie, Chapitres 2 et 3; Éléments de Mathématique, Fascicule XXXVII; Actualités Sc. et Ind. 1349, Hermann 1972.
- [3] LAZARD, M., Sur les algèbres enveloppantes universelles de certaines algèbres de Lie; Publ. Sci. Univ. Alger (A)I (1954), 281-294.

- [4] MAGNUS, W., Über Beziehungen zwischen höheren Kommutatoren; J. reine angew. Math. 177 (1937), 105-115.
- [5] MALCEV, A. I., Two remarks on nilpotent groups; Math. Sb. (N.S.) 37 (79) (1955), 567-572.
- [6] NEUMANN, H., Varieties of Groups; Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 37; Springer 1967.
- [7] SERRE, J.-P., Lie algebras and Lie groups; Benjamin 1965.
- [8] STALLINGS, J., Homology and central series of groups; J. Algebra 2 (1965), 170-181.
- [9] STAMMBACH, U., Anwendungen der Homologietheorie der Gruppen auf Zentralreihen und auf Invarianten von Präsentierungen; Math. Z. 94 (1966), 157–177.
- [10] STREBEL, R., Homological methods applied to the derived series of groups; Comment. Math. Helv. 49 (1974), 302-332.
- [11] WITT, E., Treue Darstellung Liescher Ringe; J. reine angew. Math. 177 (1937), 152-160.

x.

Mathematisches Institut Universität Heidelberg Im Neuenheimer Feld 288 D 6900 Heidelberg West Germany

Received February 20, 1978