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A note on groups with torsion-free abelianization
and trivial multiplicator

Ralph Strebel

1. Introduction

1.1. A basic resuit on free groups F asserts that the factors {Fj/FJ+1}lâJ<<u of
successive terms of the lower central séries are free abelian (Magnus [4], Witt
[11]). This can be proved using Lie algebra techniques and a proof (e.g. [1], pp.
35-39; or [7], LA 4.10-4.13) will then rely on three corner stones:

* The canonical Lie algebra homomorphism a : Lx—> Assx from the free Lie
Z-algebra on the set X into the Lie algebra of the free associative Z-algebra
on X is injective.

* To every group G is associated a graded Lie algebra gr G. Its underlying
additive group is the direct sum © GJGJ+1 of the factors of successive terms
of the lower central séries of G. Its Lie bracket is on homogeneous

components induced by commutation in the group, se.

(g • GJ+1, h • Gk+1) -> (g-^gh) • GJ+fc+1 (g e Gp he Gk)

and then extended linearly.

Reverting to free algebras and groups, let y : Lx -» gr Fx dénote the Lie algebra
homomorphism defined by the assignments

Xsx^x •F2Ggr1FxçgrFx.

* There exists a Lie algebra homomorphism a :grFx—»Assx.
making the triangle

Lx > Assx

commute.
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148 RALPH STREBEL

1.2. In this note it is shown that the proof sketched above can be adapted to
the more gênerai situation in which Fx gets replacée by a group G whose

abelianization Gab is torsion-free and whose multiplicator H2(G, Z), i.e. whose

second homology group with intégral coefficients, is a torsion group. Such a group
will be referred to as being TFT. The place of the free associative Z-algebra Assx
will be taken by the tensor algebra T Gab. The main problem is the existence of a

Lie algebra homomorphism

a :gr G -^TGab

extending the identification gr G ^> TGab in degree 1.

THEOREM 1. If G is TFT then the identification gr1 G ^ T1 Gab, taking
g-G2egrG to g G2£TGab, extends (necessarïly uniquely) to a Lie algebra
isomorphism a :gr G ^ TGab from the graded Lie Z-algebra gr G associated with
G onto the Lie subalgebra ofTGab generated by Gab T1 Gab. Moreover, a induces

an isomorphism Ua:U(gr G)^ TGab between associative Z-algebras, thus pro-
viding a model for the universal algebra of gr G.

1.3. Since the additive group underlying the tensor algebra TGab is torsion-
free if Gab is so, Theorem 1 immediately entails the approved.

COROLLARY 1. The factors GJGJ+1, j 1, 2,..., of the lower central séries

of a TFT group G are torsion-free.

An application of Corollary 1 can be found in [10] (cf. 4.1.).
The next corollary indicates that even in the spécial case of a TFT group the

finer commutator structure gets lost in the passage from G to gr G. (Examples
testifying the loss will be given in 4.6.9.)

COROLLARY 2. The Lie algebra gr G of a TFT group is determined by its

first homogeneous component Gab.

1.4. Our second main resuit deals with subgroups of TFT groups. We state it
as

THEOREM 2. Let cp:G^> G be a homomorphism for which (p1 : Gab —» Gab is

injective. Suppose G is TFT and H2(G,Z) is a torsion group. Then gr<p:grG—»
grG is injective. Put differently, <p induces injective homomorphisms (p

G/G, for all]^2.
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If G and G in Theorem 2 are both free the claim reduces to a well-known
resuit of Malcev on subgroups of free nilpotent groups ([5]; cf. [6], 42.51).
Theorem 2 may also be compared with the following resuit:

THEOREM (Stallings [8], Stammbach [9]). Let <p:G^> G be a homomorphism

inducing an isomorphism ^-.G^ —» Gab and a surjection H2((p) : H2(G, Z) —»

H2(G, Z). Then gr <p : gr G —» gr G is an isomorphism of graded Lie algebras.

2. The proof of Theorem 1

2.1. Let Rbea non-trivial commutative ring with 1. If G is a group, let RG
dénote its group algebra (over R) and e :RG—» R the associated augmentation,
i.e. the R -algebra homomorphism sending every g e G to 1 e R. The kernel of e is

called the augmentation idéal I I(RG) and, as an R-module, it is freely
generated by the éléments g-1 (geG\{e}). The powers {IJ}o<J<to form an

intégral filtration of RG whose associated graded JR-algebra will be denoted by

grRG
Define a descending chain of subsets of G by setting

D>R(G) {geG\g-leF} (1</<co).

Then DR(G) G, each D'R(G) is a (normal) subgroup and for every pair (/, k) e
N2 the commutator [DJR(G), DR(G)] is contained in D£\G) (see, e.g., [2], §4.5,
Prop. 2, p. 42). Hence {£>R(G)}lêJ<a> is a central séries of G and we can form the
associated graded Lie Z-algebra gr{DR(G)}. The function g»-> g-1 induces then
an injective Lie algebra homomorphism

(It is clear that /3 is actually a natural transformation between functors from the

category of groups to the category of graded Lie Z-algebras.)
2.2. We specialize now to the case R Z. Then D|(G) G2 Gf and j3 gives

an isomorphism j81:G/G2^> I//2, gG2H-»(g-l) + I2. If TGab is the tensor
algebra on Gab G/G' the isomorphism /31 will extend uniquely to a

homomorphism fx:TGab -»grZG of graded associative Z-algebras, given in
degree / by
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Clearly jul is always surjective. For TFT groups it is even bijective according to the
following

LEMMA. If Gab is torsion-free and H2(G, Z) is a torsion group then

Ijl : TGab ^» grZG is an isomorphism of graded associative Z-algebras.

2.3. Proof. For every />0 the short exact séquence IJ+1 <=-> F JL^ FIF*1 of
right G-modules induces a long exact séquence. In dimensions 2, 1 and 0 it looks
like this:

fÇH2{G, F/F*1) <-^- H2(G, F)

W (1)

One readily vérifies that the composite

is the obvious multiplication map. Taking into account that F®GX—>
(P/IJ+1)®GZ is an isomorphism and using the universal coefficient theorem, the

séquence (1) can be rewritten as

Z)® I7P+10Toi? (Gab,

(2)

X{G, F) >W2®F/F+1 -^F+1/F+2 >0.

This exact séquence allows, first of ail, to prove that ail homology groups
Ht(G,F) (0</<(o) are torsion groups. To see this recall that H2(G,Z) is a

torsion group by hypothesis and Toif by nature, and that H^G, ZG) 0;
then use the exactness of (2). Secondly, (2) implies that ail multiplication maps
(1 : IIJ2®FIF+1 -» IJ+1/IJ+2 are bijective. As ail Ht(G, F) are torsion groups it will
do to show inductively that III2®FIF*1 is torsion-free. This follows from the
hypothesis that Gab III2 be torsion-free and the fact that the tensor product
(over Z) of torsion-free groups is again torsion-free. The proof is now easily
completed.



Groups with torsion-free abelianization and trivial multiplicator 151

2.4. The proof of Theorem 1. Assume Gab is torsion-free and H2(G, Z) is a

torsion group. By Lemma 2.2 the map jjl : TGab —> gr ZG is bijective so that we
can define a Lie algebra homomorphism a as the composite

gr G -U gr {DX(G)} > gr ZG < T Gab.

Hère t dénotes the Lie algebra homomorphism stemming from the inclusions

G, ç D}X{G). Note that gr G is generated by its first homogeneous component and
that a^gr1 G-+T1 Gab is the identity on Gab. Thèse facts, together with the
universal property of T Gab, imply that a : gr G-* T Gab is the canonical map of

gr G into its universal algebra and so prove the addendum to Theorem 1.

2.5. We are left with proving that a is injective. If Fx is free on the set X
then (Fx)ab is free-abelian and H2(FX, Z) 0. Hence a is defined and gives the
classical Lie algebra homomorphism

a : gr Fx -> T(Fx)ab Assx, x • F2 ^ % (xeX).

The theory of basic séquences (see, e.g. [1]) or the Poincaré-Birkhoff-Witt
theorem (see e.g. [7]) can then be used to prove that a is injective.

Now let <p1\Fab<z-^ Gab be a finitely generated free-abelian subgroup of our
torsion-free abelianization Gab. Lift the inclusion to a group homomorphism
(p:F-> G. The lift gives rise to the commutative square

grF-^TRb

r r
In it aF is injective, and because Fab and Gab are both torsion-free abelian groups
and ç1 is injective, Tcp1 is likewise injective. Consequently the restriction of aG
to the image of gr <p is injective. But gr G is generated by its first homogeneous

component Gab and Gab, being torsion-free, is a union of finitely generated
free-abelian subgroups. This proves that a is injective and establishes the claim of
Theorem 1. The proofs of the corollaries présent no problems.

2.7. Remark. The injectivity of a could atso hâve been inferred from a

(rather difficult) theorem of M. Lazard [3] asserting that the canonical map of a

Lie JR-algebra into its universal algebra is injective if R is a principal idéal
domain.
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3. The proof of Theorem 2

3.1. We first return to the set-up of Subsection 2.1 and choose R to be the
rational numbers Q. The commutative square

GID&G) ^ > III2
|c

G/D2Q(G) -^gr1 QG I/I2®Q

shows that D^(G) equals ker{G-> Gab(g)Q} whence

is an isomorphism. It extends uniquely to a homomorphism

of graded associative Q-algebras. Clearly jllq is onto. An easy modification of the

proof of Lemma 2.2 reveals that fiQ is also injective provided merely that
H2(G, Z) is a torsion group. For a group G whose multiplicator is a torsion group
one can therefore define a homomorphism

aQ : gr {DQ(G)} -&+ gr QG <^l. T(Gab ®Q)

of graded Lie Z-algebras.
3.2. Now let G be TFT, let G be a group with H2(G, Z) a torsion group and

let cp : G --» G be a group homomorphism. Then the canonical maps a (G), aQ(G)
and aQ(G) are ail three defined and they combine to produce the following
commutative diagram

TGab

In it t dénotes the canonical Lie algebra homomorphism stemming from the
inclusions G^D^G), and k : Gab -* Gab®Q is the obvious canonical Z-module
homomorphism.
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By assumption Gab is torsion-free. Therefore k and Tk are injective. By
Theorem 1 the same is true for a (G). If, as is required in the hypothèses of
Theorem 2, cp1 : Gab —» Gah is injective Ticp1®®) will also be injective. Hence the
composite t °grQ <p:gr G-»gr{DQ(G)} is seen to be injective and the claim of
Theorem 2 follows upon noting that i ° grQ <p factors through gr <p : gr G —> gr G.

4. Examples and counter-examples

4.1. E-groups. Let G be a group having torsion-free abelianization and trivial
multiplicator. If Gab is even free-abelian the Stallings-Stammbach theorem
quoted in 1.4 applies and proves that each GJG]+1 is isomorphic with the

corresponding factor FJFJ+1 of a suitable free group F and so, in particular,
torsion-free.

This argument breaks down if Gah is not free abelian, as it usually happens
when G is the derived group of a knot group or, more generally, when G is an

E-group in the sensé of [10]. A group G is there called an E-group if Gab is

torsion-free and if the G-trivial module Z admits a ZG-projective resolution
> P2 &> Pi -» Po -» Z -+ 0 for which the induced differential 1®d2 : Z(g)GP2 ->

Z®GPX is injective. The condition on l®d2 implies that H2(G, Z) is zéro; the

converse, however, is false (see 4.2).
E-groups hâve the following stability property: if GeE and N<G is a normal

subgroup with torsion-free, abelian factor group then NeE. In particular, the
terms of the derived séries of an E-group are E-groups and so are the terms of the
lower central séries.

4.2. Groups G with Gab torsion-free, H2(G,Z) 0 but GefeE. It suffices to

prove that G does not hâve the stability property enjoyed by E-groups. Let A be

an abelian group possessing an automorphism t for which t—1:A-»A is

bijective and tat-1a1:AaA-»AaA is onto. Let C (t) be an infinité cyclic

group and define G to be the split extension A*4C where t induces on A the

given t. Then A G2, Gab =Z and H2(G, Z) 0, although A is in gênerai neither
torsion-free nor has it trivial multiplicator (take e.g. A (Z/5Z)® (Z/5Z) and let r
opérate by multiplication by 2).

4.3. We give next two examples demonstrating that a : gr G -^TGab need

not exist if the hypothèses of Theorem 1 are weakened. Consider first an abelian

group A. Then gr A is a commutative graded Lie algebra concentrated in degree 1

and its universal algebra is the symmetric algebra S A of A. Hence a : gr A -* TA
can only exist if TA is commutative. The commutativity of & A, in turn, is

équivalent with the vanishing of the exterior square A2A H2(A, Z); for the
canonical map AaA-»A<8>A taking a/\b to a®b-b®a is injective. For a
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torsion-free abelian group we thus get the following conclusion: The identification
gr1 A^T1 A extends to a Lie algebra homomorphism a : gr A —» TA if and only
if H2(A,Z) 0.

4.4. Groups G with H2(G, Z) 0 but Gab not torsion-free. The exact séquence

H2(G,Z) >I/I2®I/I2-^*I2II3 >0

(cf. séquence (2) in 2.3.) shows that /a2:® Gah -=» I2/!3 is bijective. Consequently
the identification gr1 G^> T^G^ extends to

a2 : G2/G3 > I2//3 ^—& Gt'ab

taking [g, h] • G3 to g • G2<g>ft • G2- h • G2<8> g • G2. (The existence of a2 can also
be deduced from the 5-term séquence associated with the extension G2<G-^>
Gab, namely

H2(G, Z) -^ H2(Gab, Z) ^ G2/G3 -» Gab -> Gab -^ 0, (3)

and from the facts that H2(Gab, Z) Gab a Gab, that under this isomorphism x
becomes the obvious commutator map and that A2Gab maps canonically into
®2Gab.)

However, it is in gênerai not possible to extend the identification a1 igr1 G ^
T1 Gab to a Lie algebra homomorphism

: G/G2 0 G2/G3 8 G3/G4 ^ Gab 0& Gab Jab

of nilpotent Lie algebras of class two. To see this let G be a one-relator group of
the form

G (a,t; rxat am> <a, t ; [a, t] a^1) (m g Z\{0,1,2}).

Then G^ gp(aG2)xgp(fG2) (Z/|m-l|Z)xZ and H2(G, Z) 0. The iterated
commutator [a, [a, f]] represents the trivial élément in G3/G4, whereas the

corresponding Lie bracket in ®3 Gab, namely

[aG2, [aG2, rGJ] aG2®aG2® tG2-2- aG2® tG2®aG2 + tG2® aG2®aG2

has order |m-l|>l.
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4.5. Groups G, G with trivial multiplicator, <p:G-+ G with cp1 injective but Gab

not torsion-free. Our goal is to show that <p2:G2/G3-^> G2/G3 is not always

injective. Let G be the one-relator group (a, t; t~xat am) considered before and
let G arise out of G by adjoining a kth root of f, i.e.

G G * (u) (a, w,u-kauk am) (fc^2),

and let <p : G -» G be the canonical injection. Then H2(G, Z) H2(G, Z) 0 and
<P* • Gab —* Gab is injective. The map cp2: G2/G3—» G2/G3 can be identified with
the exterior square A2cp1:A2Gab-+A2Gab (consult (3) above). Both A2Gab and
A2Gab are cyclic of order |m-l| and A2y1 takes the generator aG2AtG2 to
aG2AukG2 k(aG2AuG2). Hence <p2 is injective if and only k and m are

relatively prime.
This example shows that the conclusion of Theorem 2 becomes faise if Gab is

not assumed to be torsion-free, everything else remaining unchanged. It is clear
that a strong assumption on H2(G, Z) is necessary to exclude cases like the
abelianization cp:F^> Fab of a free group. But I hâve not been able to détermine
to what extent the hypothesis on H2(G, Z) could be weakened without jeopardiz-
ing the claim. (The theorem of Stallings-Stammbach quoted in 1.4. bears also on
the issue.)

4.6. A family of 2K° non-isomorphic groups with trivial multiplicator having ail
the same torsion-free abelianization. Let {kF}keN be a séquence of free groups of
rank two, say kF is free on xk and yk, and let ab:kF^»> (kF)ab be the abelianiza-
tions. If

<P {<Pk : (kF)ab -* (k+iF)ab}keN

is a given séquence of homomorphisms it can be lifted to a séquence

so as to produce a commutative ladder

lF ^i^ 2p -âL* 3F -A* 4F > • - -

iab \ab \ab \ab

* * *
(\F)ab ^ (2F)ab ^ \3F)ab ^ (4F)ab > ' * " •

If the <pk are injective the lifts <Pk are likewise injective, e.g. because of Theorem
2 and the residual nilpotency of free groups. The direct limit G^=colim<P is
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therefore a locally free group with trivial multiplicator and torsion-free abeliani-
zation (G^)ab colim <p; and gr G& is isomorphic to the Lie algebra of T(G<p)ab

T(colim <p) generated by its first homogeneous component colim <p. In particular,

gr G& dépends only on <p and not on the choice of the lift 4>.

Next let F be an infinité set of odd rational primes and let À :N-^> P be an
enumeration of P. Define the séquence <p {cpk} by

<pk : xk - (kF)2 »-> x^+1 • (k+iF)2 and yk • (kF)2 >-* yj>+1 • (k+1F)2.

The direct limit colim <p can be identified with the direct sum Ax(BAy of two
copies of the subgroup of the rationals generated by the éléments 1/p (peP). For
each SçN define a lift <P(S) of <p by the formulae

<Êk(S):xk~] ** f and k
k+i, xk+1] if kèS

We shall prove that colim 4>(S) and colim 4>(S') are isomorphic if and only if the
symmetric différence of S and S' is finite. Since N can be written as a disjoint
union of infinitely many infinité subjects this will imply that there are 2K° many
non-isomorphic locally free groups whose associated graded Lie Z-algebras are
isomorphic.

4.7. If the symmetric différence of S and S' is finite then clearly colim <&(S)

and colim <&(S') are isomorphic. The converse will be established by showing that,
up to a finite error, S can be recovered from the nilpotent quotient of class two

Let F be free on x and y. The éléments of H F/F3 can be parametrized by
the lattice points Z3 via

The resulting group multiplication on Z3 is then given by

(a, b, c) • (a\ b\ c') (a + a', b + b', ba' + c + c').

Note that this group multiplication has an obvious extension to points of Q3.

For positive powers and roots of éléments of H Hz ç HQ one gets

(a, 5, c)m f ma, mb, me + f • a • b)

(a, fe, c)1/m (a/m, b/m, c/m -\ • (m -1) • (a/m) • (b/m))
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It follows that an élément of Hx is an mth power (m an odd integer) if and only if
ail three entries are intégral multiples of m.

The endomorphism <2>G of H corresponding to the lifts <J>k with keS has the
parametric description

It has the property that the image of an élément of H which is an mth power is at
least a (Àk • m)th power and that the image of an élément which is not a qth power
(q ^ Àk odd prime) is still not a qth power.

The endomorphism <P* of H corresponding to the lifts <Pk with kèS has the

description

(a, b, c)0ë (Ak • a, Ak • b, (Àk)2 -c + a).

If q^ Àk is an odd prime then the image under &* of an élément which is not a qth

power is still not a qth power. Moreover, if (a, b, c)<P* is a Àkth power then Àk | a.
4.8. Now let S^N and construct the group G^(s) colim0(S). Then the

nilpotent group N(S) — G^(S)/(G^(S))3 is the direct limit of the obvious chain

where each kH is isomorphic with the free nilpotent group H discussed above.
The isolators I(n) {ri e N(S) | n — (ri)1 some ] e Z} of an élément n e N(S) are of
two types: if n stems from an élément (ak, bk, ck)ekH with ak^0,-note the
choice of k does not matter-then J(n) gp{l/p | pe\(S)}, otherwise î{ri)
gp{l/p \peP}. The claim then follows from the classification of isomorphism
types of subgroups of the rationals.

Acknowledgment. I would like to thank F. R. Beyl for some helpful discussions

in connection with the last counter-example.
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