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The invariance principle

MARTIN SCHECHTER

Abstract. We prove the invariance principle under weaker conditions and discuss applications.

1. Introduction

Let H,, H be self-adjoint operators on Hilbert spaces #,, #, respectively. We
assume that there is a bounded linear map J from #, to . Put

W(t) = e"HJe *Ho (1.1
and let M = M(H, H,, J) be the set of those fe ¥, such that the limit

Wf =lim W(0)f (1.2)

exists. It has been shown by several authors that under certain conditions on f and
the real valued function ¢(s) that

Wf = lim e D Je e H1o'f (1.3)

(cf., e. g., Birman [1], Kato [2], Kato—Kuroda [3], Donaldson—-Gibson-Hersh [4],
Mateev [5], Sakhnovich [6], Matveev-Skriganov [7], Schechter [8], Chandler-
Gibson [9]). When (1.3) holds, it is known as the invariance principle. The
purpose of this paper is to prove it under conditions weaker than previously used.
Applications are discussed in Section 5.

We shall make only one assumption on ¢({), namely that

for each bounded interval I. It was shown in [10] that (1.4) is satisfied if ¢'(s) is
piecewise continuous, positive and locally of bounded variation. Our assumptions

2

ds—0 as t—» (1.4)

J e—iS«f—it«o ©® d§
T
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on f are also simpler and weaker than previously considered. Our theorems are
stated in Sections 2, 6 and proved in Sections 4, 6. Lemmas which are used in
their proofs are given in Section 3. We employ ideas from [3, 4, 8, 9].

2. The general theorems

Let #,.(H) be the subspace of absolute continuity of H (for the definition cf.
[10]). Our main theorems are

THEOREM 2.1. Let ¢ (s) be a real valued function satisfying (1.4) and let f be
an element of M N ¥,.(H,) such that

(2.1) d(Eo(s)f, f)lds is bounded, E, and E are the spectral measures belonging to
H, and H resp. and

j:n[w— W(s)IfP ds <oo 2.2)

Then fe M(¢ (H), ¢ (H,), J) and (1.3) holds.

THEOREM 2.2. Let ¢ (s) satisfy (1.4) and fe 3,.(H,) satisfy (2.1). Assume
also that for some p>1

[ Iworte d<e .3
and
an'(ofn(mog ) di <o 2.4

Then fe M(¢(H), ¢(H,),J) and (1.3) holds.

3. Some Lemmas

In this section we give some lemmas used in the proofs of Theorems 2.1 and
2.2.
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LEMMA 3.1. If ue ¥,.(H) and

d(E(s)u, u)/ds <m? (3.1)
then
Jl(e“““u, V)2 dt<2mm?|v|? (3.2)

Proof. Cf. [10].
LEMMA 3.2. Ifue #,.(H), v € ¥ then (E(s)u, v) is absolutely continuous and
|d/ds(E(s)u, v)|*< d/ds(E(s)u, u)d/ds(E(s)vg, vo)
where v, is the projection of v onto #,,..
Proof. Cf. [10, p. 517].

LEMMA 3.3. If (1.4) holds, then

L@

for each Bochner square integrable vector valued function w(§).

2

ds—>0 as t— o (3.3)

J e~y (£) dg‘

Proof. Clearly (1.4) implies (3.3) for all step functions w(&). But these func-
tions are dense in the space of Bochner square integrable vector valued functions
(cf [11]). Since the left hand side of (3.3) is bounded by

2| Iw@P e

the result follows.

LEMMA 3.4. If (1.4) holds, then

J’e*“‘"“)h(g) dé—>0 as t—o® (3.4)
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for all Bochner integrable vector valued functions h(§).

Proof. Put h,(¢&)=||h(&)|F when h(£)#0 and h,(£)=e* when h(£€)=0. Take
hy (&) = h(&)/h(€). Then h(&) = h(&)h,(€) and h,, h, are square integrable. Now
the left hand side of (3.4) equals

le,t(S)WZ,t(S)* ds (3.5)
where

wi,.(s)= (2w)_5J e‘“’f‘%“‘"‘g’hl(f)~df

War()= @)t [ e i@ (6) d
But by Lemma 3.3

Lmlwlit(s)lz ds—>0 as t— o
and

0
I ”W2,z(S)”2dS—>0 as t—w

Thus the expression (3.5) tends to 0 as t — .

LEMMA 3.4. Put

g¢(5)=(2w)"”2I eist1e) dg (3.6)
U= [ g (@ u(e) de (3.7)
and

G(s) = (2m) 2 Lwe“u(ad.g (3.8)
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If G(s) is Bochner integrable, then

jul= [IGe)ds 39)

and

U(t)—0 as t— o (3.10)

Proof. Cf. [9].

4. The proofs

Now we are ready for the proofs of the theorems of Section 2.

Proof of Theorem 2.1. Let € >0 be given and take the bounded interval I so
large that |E,(CDf||<e. Put

N(t)=Qm) A [W—J]le "o 4.1)

Then

(N(f,v)= (2w)_1’2je—i‘sh(8) ds

where

h(s) = d(Eo(s)f, [W*—T*Jv)/ds (4.3)
Define

(Z(f, v)= j’ e **®n(s) ds (4.4)

By (4.2), (N(t)f, v) is the Fourier transform of h(s). Hence

h(s) = (2m) [ (N f, 0) de (4.5)
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By Parseval’s identity, (4.4) becomes

(201, v) = [ 2 ON@F, v) dt

where g,(&) is given by (3.6). Thus

zwf= [@N®)de (4.6)
Put

zof- | sN@raE (47)
and

z.0f= | a@N©fde (4.8)
Now

(Z0fof<| la@F d| IN@F wP de

By Lemma 3.1, the last integral is bounded by 2mm?|[W—-J]*v|?<
27m? ||W—J| ||v|[*. Thus

0
2.0 fP <2mm W= [ 1a(O)F de 4.9)

and this tends to 0 as t — o by (1.4) (note that the integral in (4.9) can be put in
the form (1.4) by changing & to —£). Next we note that

Z,(Of= J' e "*Dw(s) ds | (4.10)

where

w(s)=Qm) 2 Lme‘sgN (&)f d¢ (4.11)
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Since the limit (1.2) exists, we have

e“HWf = WeFof (4.12)
for each real s. Hence

(2m) 2" IN(t) f =[W - W(1)]f
and consequently

IN®fll=@m) 2 [W - WDl
Thus N(t)f is square integrable in (0, ®) by (2.2). Hence w(s) is in L* by (4.11).
Since I is a bounded interval, w(s) is integrable in I. If we now apply Lemma 3.4

to (4.10) we see that Z,(t)f — 0 as t — o,
Next we note that by Lemma 3.2

d

[ moras<[ (E1EmP) (S lEmw-1ro) " ds

= ”EO(CI)f” ”prO] of (W— ])*U onto %Oac”

Hence if we put

(Y()f,0) = j e 1 Oh(s) ds

CI

we will have
1Y@ fl<2|El(CDfl|<2e
Now

([(W—TJ]e eHIf v) = ée‘“‘"‘”h(s) ds

Hence

[W—Jle®f = Y(O)f + Z(0)f

Since € >0 was arbitrary, we have

[W—Tle "*H)f >0 as t—oo
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But
J[W — et @0 Je e 31| = [ W~ TJe- o]
This gives (1.3).

Next we turn to the

Proof of Theorem 2.2. All of the hypotheses of Theorem 2.1 are assumed with
the exception of (2.2), and this was used only to prove that

Z,()f >0 as t—o» (4.13)

Thus it suffices to prove (4.13). Let o(£) be a function which equals 1 for £¢=2
and vanishes for £<1. Put

Z0f = | a(@r@N©de
and

2,0f= | s(@1-o@IN@fde
Then Z, = Z,+ Z,. Also

Z.f = | eteoM(s) as
where

M(s) =) e 1o (@IN()f de

Since 1—o(£) vanishes for £=1, we see that [1—o(£)IN(€)fe L2, Thus M(s)e L2
and consequently M(s) is integrable on I. By Lemma 3.4 we see that Z,(t) — 0.
Now

Z,(0)f = fg,(ae**“u(a dt
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where

u(é)=a(HIW-W(&If

Thus
u'(E) =o' (OIW-W(EIf—a(E)W'(&)f

Since o'(¢) vanishes for ¢=2, (2.3) and (2.4) imply that u'eL® and
[1+1log (1+]¢t])Ju’ e L'. Since fe M and o(0)=0, we see that u(0)= u(x)=0. Let
G(s) be given by (3.8). Then

5G(s) = @) 7| (e~ ') dg
Thus

s1IG= | Isin sellu'(e)] de
and consequently

| 166 ds=<2] 11+1og 1+ &0l de

Moreover, since

sG(s)= (217)‘”21'Lwe“5u’(§) dé

[[1ownas=([sa) ([bowir @)
<(p- 1)‘1(J||u,(§)|lp dg) p

Hence G(s)eL'. Now we can apply Lemma 3.4 to conclude that Z;(t)f — 0.
Finally, we note that fe M by a well known theorem of Cook [12].
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5. Applications

Condition (2.4) is not much stronger than a sufficient condition for the
existence of the wave operator (1.2) due to Cook [12]. Condition (2.3) is close to
it as well. Thus Theorem 2.2 states that the invariance principle holds under
slightly stronger conditions than those usually used to prove the existence of the
wave operators. As an illustration, let Hy=—A, H=H,+ V(x) on L*(E"). For
each ye E" put

U, (&) = exp {—|¢|* — igy}

The linear combinations of such functions are dense in L?, (2.1) holds and

_x=yP }

—itH, Gl |2 = (1 4 £2)"/2 {

where F denotes the Fourier transform. Thus a sufficient condition for the
existence of the wave operators is

r(l + 27TV (t) dt <oo (5.2)

for each y € E", where

T,(t)* = J|V(x)|2 exp {_ZL%} dx (5.3)

Conditions (2.3) and (2.4) reduce to

r(l + 2 PVAT, ()P dt <o (5.4)

and

r(1+ t2)™*1log (1+1)T,(t) dt <oo (5.5)

respectively. Thus we have

THEOREM 5.1. If ¢(s) satisfies (1.4), and (5.4), (5.5) hold, then the wave
operators exist and the invariance principle holds.
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In particular, (5.4) and (5.5) both hold if
T,(H)=0(t") as t—o (5.6)
for some a>1—3n for each y. Thus we have

COROLLARY 5.2. If ¢ satisfies (1.4) and V satisfies (5.6), then the in-
variance principle holds.

Finally we note that (5.6) is implied by
(1+|x])*V(x)e L? (5.7)
for some a>1—%n. This is the condition for existence of the wave operators

derived by Kuroda [13]. We have shown that it is also sufficient for the invariance
principle to hold.

6. Another approach
Now we consider hypotheses that differ from those of Section 2. We shall

assume that there are a Hilbert space X and closed operators A from #, to i
and B from  to & such that

(W'(1)f, 8) = (Ae™""f, Be""g)% (6.1)
We shall prove

THEOREM 6.1. Assume that (1.4) and (6.1) hold. Let fe MN¥,.(H,) be
such that

[ Qe sflp +BWe-wpip de <o ©2)
and
lim sup e~ <[ Wy ©3)

Then fe M(¢ (H), ¢ (Hy), J) and (1.3) holds.
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Proof. By (6.1) we have

[(W—J1f, )= Lw(Ae‘““% Be~ig) ds
Now

(AR(2) - Ro(2)If, £)=~27i 8,0 —5) d(AE,W)f, ©)

—2mi d(AEy(s)f, g)/ds a.e.

where z=s+ia, a>0 and §,(n) = a/m(u*+a?). On the other hand
[1ATRy(2) - Ry@f = fS)F ds—0 a5 a0

where

f(s)= ——iJ e Ae "Hof dt
Hence

27d(AEy(s)f, g)/ds =i(f(s), g) a.e.

Consequently, if a(A) is any Borel function, we have

(Aa(Hy)f, g) = j «(Wd(AEMNY, g)

- i(zwr‘ja()«)(m), ¢) dA

or

Aa(Hy)f=iQ2m)™" I a(\)f(A) dA

In particular, we have

J [Ae~Hom#eHOf|12 gdor =
0

J'e~—im\~iup()\)f()‘) d)\

(2m) f

(6.4)

as al0

(6.5)

(6.6)

(6.7)

2
do—(0 as t«o
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by Lemma 3.3. Similarly,

[1BWIRA() - R~ R ds—0 a5 a—0

where

h(s)= —ij e ' BWe "Hofdt

Hence
o oo 2
j “Be—io-H-iup (H)WfHZ do = (217)—2J Je—iak—irq: ()\)h()\) d\ do
0 0
oo . . 2
— (277)-2J’ Je"lcl‘)\‘-lkp(/\) h()\) dA dO'
0
<@m [IROP ax = IBWerfIF do

Now by (6.4)

e o)

((W—Tle 0, o< | A Hoteto e do

0
XL “Be—iaH—itcp(H)WfHZ do

The first integral converges to 0 as t — while the second is bounded. Thus
(Wf, eittp(H)Je—itﬂD(Ho)f)__) ”anz as t—>o0 - (6.8)

Hence

[[ets P ge~e 0 — WIf|P = e~ 1|
itp(H) _ —ite (H)

+||WF|? —2Re (e Je f, Wf)
‘ (6.9)

By (6.3) and (6.8), the right hand side of (6.9) converges to 0. This gives the
desired result.

It should be noted that (6.3) holds if [J*J— W*W]E(I) is a compact operator
for each bounded interval I. To see this, let € >0 be given and take I solarge that
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|Eo(CIf||<e. Now e **HPE(I)f converges to 0 weakly since -

(e HE(Df, g)= | e (By(M)f, g) dh

1

This converges to 0 by Lemma 3.4. Thus [J*J— W*W]e " HIE(I)f converges
strongly to 0. Hence

g Eo(D P~ WEW(D P =
([7*T = WOW]e ™+ HOE(I)f, e M Eo(I)f) — 0

On the other hand
e~ E(CDf|| <|Jlle
IWEo(CDfl|<|Wle
Thus

”JC_W(H")f“—"”Wﬂl as t—oo
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