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On the first eigenvalue of the Laplacian
for compact submanifolds of Euclidean space

Robert C. Reilly*

1. Introduction

This paper was inspired by récent work of D. Bleecker and J. Weiner [3]. The
following results are typical examples of those we obtain in this paper.

THEOREM. The first eigenvalue of the Laplacian for a compact n-manifold
isometrically immersed in Euclidean space is bounded above by n times the average
value of the square of the norm of the mean curvature vector. Moreover, if the

eigenvalue achieves this bound, then the submanifold is actually a minimal
submanifold of some hypersphere in the Euclidean space. (See the case r 1 in
Theorem A.)

COROLLARY. If a compact connected n-manifold is immersed as a hyper-
surface in Rn+1 50 as to hâve the same constant mean curvature and same first
eigenvalue as an n-sphere of radius R, then it is immersed as an n-sphere of radius
R.

Among our results are included generalizations of Theorems I and II of [3].

2. Notation and preliminary results

Throughout this paper M dénotes a smooth (that is, C°°), compact, oriented
connected n-dimensional manifold without boundary and Y dénotes a smooth
immersion of M into Euclidean space Rn+P. We always assume that M is endowed
with the Riemannian structure induced by Y from the inner product on Rn+P.

We dénote the volume form, volume and Laplace-Beltrami operator on M

* Research for this paper was complétée! while the author was on sabbatical leave from the

University of California (Irvine) and in résidence at the Mathematics Institute of the University of
Warwick.
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526 R C REILLY

(defined relative to this Riemannian structure) by dA, A and A (respectively). We
dénote the second fundamental form, which is normal-vector valued, by B, and its
matrix relative to an orthonormal frame ei,..., en by (b,,). If u is a unit normal
vector at a point of M, we dénote the (real valued) second fundamental form
(B, u) along u by Bu. We dénote the square of the length of B, which can be

computed as L^b^b,,), by |B|2. Similarly, we set |JBm|2 2»j <bip u)(bl/5 u). Thèse

quantities do not dépend on the choice of orthonormal frame. If p 1, we dénote
the unit normal to M (determined by the orientation on M) by N, and we dénote
the support function (Y, N) by P. Next we define the mean curvatures and prove
the Hsiung-Minkowski formulas for arbitrary codimension p. (We hâve already
done this in an earlier paper [6], but the book in which it appears does not seem
to be readily available. Our dérivation of the formulas hère is simpler than that in
[6].)

DEFINITION. If r is an integer, 0< r< n, then the r-th mean curvature on M
is the quantity

^ I £0'i>..., «V; h,..., jr)(Kn> *O • • • <b«,-ur-i> Kr)if r is even>

r H ^ £ ^iu ' ' ' ' *rî *u ' ' * ' ir^bl1'15 bl2'2^ ' ' ' 0**-*-» hl iir-i>b'rM if r is odd-

Hère the e's are the usual permutation symbols, and the sums are taken over ail
values of the indices from 1 to n. We set ao= 1.

Note that if r is odd, then the r-th mean curvature is normal-vector valued; we
dénote it by crr. For example, ai (£; bw)/n. In contrast, if r is even, then the r-th
mean curvature is real-valued; we dénote it by o>. One can readily show, by using
the skew-symmetries of the permutation symbols, together with the Gauss curvature

équations, that when r is even, 07 is a polynomial in the components of the

curvature tensor. For example, n(n-l)a2 is the scalar curvature.
When the codimension p is 1, it is convenient to define real valued mean

curvatures of odd order by the rule crr (07, N). We also set cr_i -P.

PROPOSITION 1. (a) J/p>l and r is an odd integer, l<r<n, then

«Y,crr)4-(rr_1)dA 0 (1)L
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(b) If p 1 and r is any integer, 0 ^ r < n, then

JM
(2)

Proof. Essentially the same proof works for either case; since (b) is proved in
[4], we'll do only (a).

Consider a tangent vector field X on M whose components Xu Xn relative
to an orthonormal frame field d,..., en are given by

x2 (iiî
(The sum is over the indices i1?..., ir_i, i and /1?..., /r_i.) (It is easy to check that
this formula for X, like those for the mean curvatures, does not dépend on the
choice of frame field.) One readily checks, using the Codazzi équations b^k bIfc)i

(where the comma dénotes covariant difïerentiation in the normal bundle) and the

skew-symmetries of the permutation symbols, that div X is a constant multiple of
the integrand in (1). Then Stokes' theorem yields the resuit.

The next three propositions are well known; we state them, without proof, for
future référence.

PROPOSITION 2. (Minimum principle) 1/ Ai is the smallest positive eigenvalue

of the Laplace-Beltrami operator A on M and if /:M—? R is a C1 function
such that $MfdA 0 then JM |grad/|2 dA>\x JM/2 dA; equality implies âf
-Ai/. (See [1].)

PROPOSITION 3. (Averaging principle) Let SN~X be the unit sphère in
Euclidean space RN and let dX dénote the standard (SO(N)-invariant) volume
élément on SN-1, normalized so that Js^-i 1 * dX= 1.

If B, C are any vectors in RN, then

XXC,X>dXf <B,
JSN-1

PROPOSITION 4. (Newton9s Inequality) If (al}) is a symmetric nxn real
matrix then Xw a\^. l/n(X, an)2; moreover, we get equality if and only if (ati) is

proportional to the identity matrix.
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3. Upperbounds for Ai

AH of our results flow from a simple lemma.

MAIN LEMMA. If Y:M-*Rn+p is an immersion for which JMYdA 0,
then

f |Y|2dA
JM

(3)

Equality in (3) implies Y is a minimal immersion of M into a hypersphere of Rn+P.

Proof. We restate the hypothesis as: for any unit vector XeRn+p,
JM<Y,X)dA 0.

Thus, for any such X, the function / (Y, X) : M -> R satisfies the hypothèses of
Proposition 2, so we can assert that

f <Y,X>2
Jm

dA. (4)

Now if ei,..., en is an orthonormal frame field at a point q e M, one easily checks

that, at q, |grad (Y, X)|2 I, <e,, X)2. Thus, by Proposition 3 we hâve (at q)

f |grad<Y,X)|2dX=Z f <et,X)2 dX= S <eo et)/(n + p) n/(n + p).

Similarly, we hâve (at q) Js»+*-1 (Y, X)2 dX= |Y|2/(n + p).Then if we integrate both
sides of (4) with respect to X, switch the order of the intégrations (allowable by
Fubini's theorem) and multiply both sides by (n + p), we obtain (3). Equality in (3)

implies (by Proposition 2) that, for each X, 4<Y,X) -Ai(Y,X>. By Takahashi's
Theorem ([7, Thm. 3]) this implies that Y minimally immerses M into a

hypersphere.
Let us now state our main results. We continue with the notation of the

preceding section.

THEOREM A. (a) If p > 1 and r is an odd integer, 1 < r < n, then

\ |<rr|2 dA^ÀiU ar-t
JM WM

nA\ |<rr|2 dA^ÀiU ar-t dA (5)
JM /
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If, for some such r, we hâve equality in (5) and if crr does not vanish identically,
then Y immerses M minimally into some hypersphere in Rn+P and crr is parallel in
the normal bundle of M in Rn+P. In particular, if r 1 and we hâve equality in (5),
then Y immerses M as a minimal submanifold of some hypersphere in Rn+P. (We
don't hâve to assume that cri does not vanish identically.)

(b) If p 1 and r is any integer, 0 < r < n, then

nA\ o^dA^ÀiM av-! dAj. (6)

We get equality in (6) for some r, 0 < r < n, if and only if Y immerses M as a

hypersphere in Rn+1. If, in addition, n>2, Y will be an imbedding.

Proof. Since ail the quantities appearing in (5) and (6) are independent of the
choice of origin, we may, without loss of generality, assume that the center of
gravity of Y is located at the origin; that is, JM YdA 0. (The only expression
that appears to dépend on the choice of origin is JM P dA, which shows up in (6)
when r 0 (recall that <r_i -F). In fact, it does not dépend on that choice. For if
we translate Y by a constant vector C, then the new support function is

P' (Y + C, N) P + (C, N). However, it is well known that for a compact hyper-
surface in Rn+1, JM N dA 0). With this assumption in force, we can apply the
main lemma, i.e., (3) holds.

To prove (a), first multiply both sides of (3) by the quantity JM \&r\2 dA. Then,
after using the Cauchy-$chwarz inequalities for intégrais and for vectors in Rn+P,

we obtain the following string of inequalities:

nA I |crr|2 dA > àJ I |Y|2 dAj( [ |ar|2 dA)

|ar| dA^ Ax(| (Y,<rr)dA)2. (7)

We get the desired inequality (5) by applying the Hsiung-Minkowski formula (1)
to the rightmost intégral in (7).

If we get equality in (5), then ail the inequalities in (7) must in fact be

équations. By the basic facts for Cauchy-Schwarz inequalities, this implies that
crr C • Y for some constant C. Since, by hypothesis, ar does not vanish identically,

we must hâve C=f=O. Thus, since crr is normal-vector valued, Y is always
normal to M. Since d |Y|2 2{Y, dY) 0, it follows that |Y| is constant, so Y maps
M into a hypersphere of Rn+P. Similarly, since dY is tangent to M and crr CY,
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we see that 07 is parallel in the normal bundle. In addition, equality in (7) implies
equality in (3) which, by the final part of the main lemma, implies that Y
minimally immerses M into a hypersphere. If r=l then ai cannot vanish

identically, since (by (1)), JM (Y, aj dA -A+ 0.

The proof of (b) follows in much the same way, so we'll omit it, except to note
that when r 0 we use the inequalities

COROLLARY 1. If p= 1 and Y imbeds M as the boundary of the domain
DcRn+1, then mA2>à1(m +1)2V2, where V is the (n+l)-dimensional volume of
D. Moreover, we get equality if and only if D is a bail

Proof. Apply (b) of Theorem A in the case r 0, after observing that, by
Stokes' theorem, \lMPdA\ \D (n + 1) dV=(n +

COROLLARY 2. If, in the preceding Corollary, we further assume that n 1,

then we obtain the classical isoperimetric inequality in the plane: if A is the length of
the boundary of a domain D in R2 and V is the area of D, then A2>4ttV, with
equality if and only if the domain is a dise.

Proof. Use the inequality provided by Corollary 1 when n 1 and recall that
for a closed curve of length A the first eigenvalue can be computed explicitly:
A1 (2tt/A)2.

Remark. Our proof of Theorem A is nothing but a simple modification and

generalization of the well known proof of Corollary 2 due to A. Hurwitz (1902).
(For a discussion of Hurwitz' proof, see [2, esp. pp. 43-45].)

THEOREM B. Using the notation of Section 2, we hâve the following
inequality:

(8)I

JM

Moreover, we hâve equality if and only if Y immerses M as a hypersphere in some

l)-dimensional linear subspace of Rn+P.

Proof. By Newton's inequality (Proposition 4) one sees that if u is any unit
normal vector (at a given point of M) then |Bu|2>:n(cri,u)2, with equality if and

only if Bu is proportional to the identity (Le., if and only if "M is umbilic in the
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normal direction 11"). If we integrate this inequality over ail such unit normals u,
Proposition 3 implies |B|2> n |cri|2, with equality if and only if each Bu is

proportional to the identity. Thus, if we integrate over M we get

I |B|2 dA>\ n
Jm Jm

(9)

which, together with (5) (in the case r=l) implies (8). Moreover, if we hâve

equality in (8), we must also hâve it in (9), and thus, by the preceding remarks, Y
must be umbilic in ail normal directions and at ail points. It is well known that this
implies that Y maps M into a hypersphere of some (n + l)-dimensional linear
subspace of Rn+P.

THEOREM C. If cri is never 0, then

J \Bu\2dA>XxA (10)

where u cri/|cr1| is the unit normal field in the direction of cri. Moreover, if we
hâve equality in (10) then Y immerses M as a minimal submanifold of some

hypersphere in Rn+P.

Proof. Apply Theorem A and Proposition 4.

Remarks. Theorem B is the same as Theorem I of [3]; however, because of
the availability of Theorem A, our proof of the second part of Theorem B is easier

than that in [3]. Theorem C is a strengthening of Theorem II of [3]; Bleecker and
Weiner require the additional hypothesis that cri be parallel in the normal bundle.
The following resuit generalizes their proof of Theorem II in [3].

THEOREM D. Suppose that for some odd r, l<r<n, arr is parallel in the

normal bundle and is nonzero. Let ii crr/|crr| be the unit normal field in the

direction of crr. Then we hâve the following inequality:

[ \Bu\2dA>\xA. (11)
Jmi

Proof The Hsiung-Minkowski formula (1) holds, independently of the choice

of origin. Thus if we replace Y by Y + X in (1), where X is any unit vector in R"+p,

we still hâve a valid formula. It follows that for ail such X, JM (X, crr) dA 0.
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Thus we may apply Proposition 2 to the function /=(X, crr), which we can also
write as / (X"L, <rr), where Xx is the normal component of X. Then one readily
checks (using covariant differentiation in the normal bundle on X± and ar) that,
because ov is parallel,

|grad f\2 |crr|2

(We hâve introduced the orthonormal frame field e,,..., en for thèse calcula-
tions.) Thus Proposition 2 implies that

[ ()J (12)

Theorem D follows by integrating both sides of (12) with respect to X over the
unit sphère Sn+P~\ applying Proposition 3 and cancelling the appropriate
constant factors.

Remark. Professor Weiner informs me that he can prove a resuit stronger
than Theorem D for any nonzero parallel normal section.

Our final application of the main lemma is quite unlike the preceding ones.

THEOREM E. Suppose that Z:M-> Sn+P is a minimal immersion of M into
the unit sphère Sn+P. For any vector CeSn+p let Lc: Sn+P ~{C}-^ Rn+P be stereog-
raphic projection via the pôle C. Suppose that CeSn+p ~Z(M) and that the

composite immersion Y LC°Z:M —» Rn+P has the property that, in terms of the

metric induced on M by Y, JMYdA 0. Then \l9 the first eigenvalue of the

Laplacian induced by Y on M, satisfies the inequality Ài<n. Moreover, \x=n if
and only if X maps M into the totally géodésie equator of Sn+P perpendicular to C.

Proof. The main lemma says that nA > \x JM |Y|2 dA. However, by Theorem 1

of our paper [5], the hypothèses of Theorem E imply that JM |Y|2 dA ^ A, with
equality if and only if X maps M into the equator perpendicular to C.

The desired resuit now follows easily.
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