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Poincaré Algebras Modulo an odd Prime

R. E. Stong

§1. Introduction

Being given a closed orientée manifold M, of dimension w, and an odd prime /?,

the modp cohomology of M, H* (M; Zp), forms the generic example of an w-dimen-
sional Poincaré algebra over the modp Steenrod algebra A.

If M is the boundary of a compact oriented (« + l)-dimensional manifold with
boundary V, one obtains an exact triangle

H*(V;Zp)±H*(M;Zp)

H*(V,M;ZP)

which is the generic example of a (w + l)-dimensional Lefschetz algebra over A.
Abstracting the properties involved, one may form a cobordism group Q%, where

Ql is a set of équivalence classes of w-dimensional Poincaré algebras over A in which
the boundaries of (/î-f l)-dimensional Lefschetz algebras are zéro.

The purpose of this note is to analyze Poincaré algebras over A and to détermine
Q£. In essence, this follows the work of J. F. Adams [1] who studied the characteristic
ring of Poincaré algebras and Brown and Peterson [2] who studied Poincaré algebras
over Z2.

There is another approach to Poincaré algebras, completely unrelated to this one
which may be found in A. S. Miscenko: Homotopy invariants ofnonsimply connectée!

manifolds, I Rational Invariants, Math USSR-Izvestia, 4 (1970), 506-519.
The author is indebted to Professors Charles Giflfen and Gordon Keller for several

helpful conversations and to the National Science Foundation for financial support
during this work.

§2. Axiomatics

Throughout this paper ail algebras and modules will be graded, will be of finite
type, and will hâve Zp9 p a fixed odd prime, as ground field. The moàp Steenrod

algebra will be denoted A, with /? denoting the Bockstein and £?* the i-th reduced/?-th

power.
A left A module X is said to be unstable if ^fx=0 for xeXs and 2i>j. X is a left

algebra over the Hopf algebra A if X is a commutative algebra (in the graded sensé)
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and a left A module so that the Cartan formulae hold; i.e.

0>i(xy)= £
j 0

(with &*°x x). Zis an unstable left algebra over A if it is an unstable left A module,
a left algebra over the Hopf algebra A, and if ^lx=xp if xeXj and 2i=j. Thus, an
unstable left algebra over A is the algebraic analogue of the modp cohomology of a

topological pair.
The analogue of the modp cohomology of a space is an unstable left algebra over

A with unit. (Note: If the unit coïncides with 0, the space is the empty set).

LEMMA 2.1. IfXis an unstable left algebra over A with unit, then X° has a basis

over Zp consisting of the minimal idempotents.

Proof. eeX°is an idempotent if e2 — e. If e,/are idempotents, e^fi(e ef where

efis idempotent. More generally, if e,/are idempotents, so are e/and e — ef By finite
dimensionality of A"0, one may write 1 =et -\ Yer where the et are the minimal
idempotents, and are linearly independent. Zthen décomposes as the direct sum X=etX®
•~®erX as algebras over A. To show that the et span X°, consider the case in which
X has a unique minimal idempotent 1 (i.e. any etX which has unique idempotent et
which is its unit). If ueX°, u 0>°u up, and so (up~1)2 up~2-up up~i. If w^O,
u=up wup~1ï0 and so up~ V0, so that wp-1 l being an idempotent. If 1, xeX°
are linearly independent and teZp, the équations (1 +tx)p~1 1 give

for / 1,..., p — 1. Since the Vandermonde déterminant is non-singular, j xJ=0
for each j, so x=0, giving a contradiction, and 1 spans X°. * \ J /

Note. If dimx 0, j3x=0, for xp 0*°x x and px pxp=pxp~i-px=0. This fact
will be used without further mention.

While not much explicit use of this will be made, it will be implicit in most of what
follows. It is the algebraic analogue of the décomposition of a space into its compo-
nents.

An n-dimensional Poincaré algebra M is an unstable left algebra over A together
with a homomorphism (j)M:Mn-+Zp$o that

defines a non-singular pairing for each /. (Note: Ml=0 for /<0 since ^°x=^x and
0>°x=O ifxeM* i<0, and from the pairing M'=0 for i>n. Further, M has a unit for
there is an élément 1 so that #M(1 '*)=0m (•*) f°r a^ x m Mn).
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An (n +1) dimensional Lefschetz algebra is a 8-tuple (M, M', Af ", /,y, <5, 0M, </>M»)

in which M, M', M" are unstable left algebras over A and M" is an M' module
for which

j3(m'm") pm'-m" + (- l)degw' m'-£m"

for m'eM\ m"eM". Also i:M'-+M,j:M"-+M\ ô:M-+M" are homomorphisms
of left >4 modules of degrees 0, 0, 1 respectively, such that

M"

is exact. In addition, i and j are algebra homomorphisms, j(m'm")=m'j{m"), m'o-ml
=j(mo)#^ï (f°r m'ieM") and ô(im'-m) (— l)degm' m'-Sm. (Using commutativity
rules this could be written ô(m-im') (ôm)-m', except that M'is chosen to multiply
on the left of M " - one may easily introduce right multiplication by using the sign

convention). Finally <\>M:Mn-+Zp and <£M»:M"n+i -*Zp are homomorphisms so that
<t>M (l)M'à with <f>M making M an «-dimensional Poincaré algebra and 0M» defining a

dual pairing

for each /.

Notes. 1) Brown and Peterson would not assume M" to be an algebra, but the

multiplication can be defined by m'om'l=j(mo)*ml. There is no unit, however, which
they assume for algebras.

2) <l)M,,:Mffn+1-+Zp gives a unit in M'° by ^m-O-jO^m-OO and *1 1.

Hopefully, this has described ail of the properties needed for the algebraic for-
malism. There is one property of oriented manifolds or Poincaré duality spaces which
is definitely to be avoided : specifically, ifM" is an oriented «-manifold, p'.H"'1 (M; Zp)
-*Hn(M; Zp) is the zéro homomorphism. This follows from the underlying intégral
structure which will not be assumed.

§3. Right Action and the Characteristic Ring

Following J. F. Adams, one now defines a right action of A in an w-dimensional
Poincaré algebra M. Given xeM1 and <xeAJ, xaeMi+J is the unique class so that
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Followmg Brown and Peterson, one may deflne a right action of A on M' for an
(« + l)-dimensional Lefschetz algebra (M, M\ M\ i,j, ô, 0M, <j>M Given
and oceAJ, xaeMn+J îs the unique class so that for ail jeM"(w+1)~(l+j),

LEMMA 3 1 i: M'' —> M is a homomorphism of right A modules.

Proof ïf xeM'\ <xeA\ yeMn~il+j\

(-ir*M (x-(-lYS*y)
(l>M (ô(ix-ay))

<Ï>m (('*) ' ocy) 4>M (((ix) a) • y\
so i(xa)~(ix)cc *

Returning to Adams, one defines a class of "words" W, by the rules:
1) Theletter «fis a word
2) If w is a word and aeA, then aw and wa are words.

3) If w, w' are words, then ww' is a word.
4) If w, w' are words and A, /ieZp, then >Ih>+/w' is a word.
Being given a left algebra H over the Hopf algebra A, with unit lH9 which is also

a right A module, one may define a fonction 9H W-+H by the obvious rules:
1) 0h(*)=1h
2) 0H(awO a0H(w), 0fl (wa) 0fl (w) a

3) Mhw') 0h(h'Hh(h'/)
4) 0H(Aw+/iwO AMw)+A*MvO
One now divides W mto équivalence classes by letting w be équivalent to w' if

^M(v^) 0M(w') for every Poincaré algebra M The équivalence classes form the
éléments of a universal domain U. Dénote by q: W-* U the fonction assigning to w îts

équivalence class

It is easy to see that Uis a graded algebra over Zp, with both left and right A actions
and îs an unstable left algebra over A.

The fonction 0m:W->M,M2l Poincaré algebra, clearly defines a homomorphism,

preserving ail structure, d'M:U-*M

LEMMA 3 2 If(M,Mf, M\ i, j, ô, <j>M9 <j>M is a Lefschetz algebra, thefunction
#m': W->M' induces a homomorphism 9rM.:U-*Mf with 9fM=i6'M<.

Proof One forms the analogue of the double of a manifold with boundary by
letting L=M'®M" with {m'09mn0). (m'uml) (mom'1,mro

where as before m£-m/1 (-l)degm od0«"'1 mi-mj, with
<^L(m', m")=4>M (m"), making L into a Poincaré algebra. Then r :L->M':(m', m")
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-*m' is a homomorphism, preserving ail structure, so that 6M, factors through 6L

(i.e. 9M>=r0L) and one may let O'M>=r0'L. *
Notes. 1) M" actually admits a right A action and in L, (m', m") a (m'(x9 m"oc).

2) Thought of as doubling, the double of V is the boundary of V x [0, 1]. The

maps Fx0-*d(Fx[0, l])-^Fx[0, 1] induce r and the inclusion of M ' in L, while
d(Vx [0, 1])-+ (d(V x [0, 1]), F x 0) induces the inclusion of M" in L.

The algebra £/ will be called the algebra of characteristic classes. Given a Poincaré
algebra M or Lefschetz algebra, the image of O'M or d'M, will be called the characteristic
ring. If M is an n-dimensional Poincaré algebra and ue Un, <J>'m{^m{u)) wiH be called
the characteristic number of M associated with u.

§4. On Being a Boundary

Let M be an n-dimensional Poincaré algebra. If there is a Lefschetz algebra
(M, M\ M", i, j, ô, (j)M, 4>M») for which M is the lead term, then M will be said to
bound.

LEMMA 4.1 IfM bounds, there is a homogeneous subalgebra RcM closed under

left and right A action and containing the unit for which R is Us own annihilator

Proof Let R=iM'. Then R is the direct sum of its subspaces RJ RnMJ (i.e. is

homogeneous) and is a subalgebra closed under left and right A actions (since i is a

homomorphism preserving the actions) and containing the unit. Further if r, r' eR,
' im'u <t>M(rr^) <t>M"à(im'o*i>wi) <\>M"^{m'om'i) but <5/=0, so r'eR1; i.e.

fmei^ then for ail m'eM^ #M» (m'^^
=0, so ôm—0 and meR=ima,ge i. *

LEMMA 4.2. If M contains a homogeneous subalgebra R closed under left and

right A action and containing the unitfor which R is its own annihilator, then M bounds.

Proof Being given R, let M'^R and i:M'-*M the inclusion. Let (M*)1
=Mi~i/Ri~1 and ô:M-+M" the map Af'-^M'/il1 obtained by the quotient map.
Let j:M"-+M' be the zéro homomorphism. Then for reR, 0M(r)=0M(l#r)=O
for leR and reR1, so <jfeM induces a homomorphism (j)M»:(M")n+l=Mn/Rn-+Zp
with 4>m 4>m"^- The required properties are easily verified. *

Notes. 1) In M" as constructed, the product is trivial; i.e. xy=0 for ail x, y.
This is produced by x-y=j(x)ty and j(x)=0. The module structure of M" as M'
module cornes from M" as M module and is non-trivial - M' is not an idéal.

2) This Lemma is the crux of the Brown-Peterson argument. It is very well hidden.

LEMMA 4.3. IfM bounds s then ail characteristic numbers ofM are zéro. Further
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ifn dimM is even, there is a subspace BaMn/2 which is its own annihilator with B
containing the characteristic classes of dimension n/2.

Proof. If M is the boundary of (M9 M' 9 M" 9
i9 j9 <j)M, <f)M>)9 then every characteristic

class lies in i'(Af'), and is killed by $M. Letting B=i(M'tt/2) gives the second

part. *

LEMMA 4.4. IfM is a Poincaré algebra ofpositive dimension having ail charac-
teristic numbers zéro and letting n dimM, there is a subspace BczMn/2 which is its
own annihilator with B containing the characteristic classes of dimension n/2, then M
bounds.

Proof Let iîcMbe defined as follows. If i<n/29 Rl is the /-dimensional part of
characteristic subring of M. If i>n/2, R* is the annihilator of Rn~l. If i=n/29 R* B.

CLAIM. jR is a homogeneous subalgebra which is its own annihilator containing the

unit, and closed under left and right A action. Thus M bounds.

To see this, let xlczMl be the image O^U*); i.e. the characteristic classes of
dimension L Clearly R is homogeneous and its own annihilator. Since 1=0m(<^), R
contains the unit. Every other step requires a tedious case by case check, and proceeds
as follows.

Step 1. ^lc^ for ail L If i^n/2, this is by définition. If i>n/2, it follows from the
fact that / is self annihilating (i.e. xi'Xni<=:Xn and ^m(zw) 0)-

Step 2. Bc (xn/2)L. Since xn/2cz£, taking annihilators gives B=B1cz(xn/2)1.
Step 3. R is a subalgebra; i.e. R'-R^tf-RJcRt+J (i^j). If iJ<n/29 tf-Ri

cxi+J and xi+J^Ri+J- If i=0,j=n/2 R°B=x°'B and £*kZp with base the unit, so

X°BczB. If 0<i<n/2, j=n/2 or z<«/2, j>n/2, then R

(Note. If xeX\ ye{xL)j, then for zeXn-(i+J\ <t>M((xy) z)=tM((xy)z)=
±cj)M(y(xz))=Q for xzex)- If U j=nj2> B is self annihilating so BBa {l}1^^0)1

Rn. Ifi=n/2,j>nl2, Mi+J 0 and similarly, ifiJ>n/2, Mi+j=0.
Step 4. R is closed under left action of A; i.e. AlRj<zRuK If j<nj29 AlRj

and if i=0, j=n/29 A°^ZP with base ^° 1, so A°Bc:B.
'Rjc:Ai(xL)Jczxu+jczRi+J(i{aeA\xe(xly92ind

<I>m((<*x)y)= ±<l>M(x-y<x) but yccexn'J so this is 0).
Step 5. jR is closed under right action of A; i.e. RJAlc:Ri+J. If j<n/2, RjAl

=X^c^^cjRi+J' while if /=0, j=«/2, A°^ZP with base ^°=1 so BA°<zB.
If i>0 j=/i/2 or j>n/29 Rj'Aic:(xL)i'Aicz(x1)i+Jc:Ri+j (if ae^f, xe^V and

yexn~(i+J\ ^M(^-j)=0M(^-aj) but ctyexn~J so this is 0). *
Note. If n=0 there is an analogous statement: namely, M must contain a «ywô-

algebra B with the unit which is its own annihilator.
To détermine when M bounds thus rests on knowing when one can find BcMnl2
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which is its own annihilator and which contains the self annihilating subspace %*/2.

The easiest case is when n 2 (mod4). Then Mn/2®Mn/2 -+Zp:x®y-+ <t>M(xy) is

a nondegenerate skew symmetric (yx— —xy) bilinear form. Being given %nl2 which is

self annihilating, choose a base eu..., er for xn/2 and find /i,...,/r in Mn/2 with
^m(^j) 0, (t>M(fifj)=O, <f>M(eifj) O if i#y and 1 if 1=7. (Since Mn/2-*Hom
(xw/2; Zp) is epic, one may find ft. Supposing fl9...9fa found, let T be spanned by

eu...9 er, fu..., fs and then Mn/2-*Hom(T; Zp) is epic to find fs+±. Let Fbe spanned

by*i,...,<?„ fl9...9fr and let F1={jceÂfw/2 |0M(^)=Oforall.};6F}.Then F1® Fx->

-?Zp is a nondegenerate pairing. If F1^0, one may take any e^O and its span is a
self annihilating subspace so one may find an / with 4>M{e'e) ^'> $m(/'/)=0>
0M(e-/)=l and take the annihilator of {e, /}. Proceeding in this way, one finds a
base {ef,/J Ki^r+s1 for Mn/2, with ^1,...,er spanning xn/2 and satisfying the

symplectic base conditions. B may be taken to be the span of et,..., er+s. Thus one has :

Remark. If « 2 (4), B always exists.

The case n 0 is next easiest. Given M°, one has a base eu...9er formed ofminimal
idempotents, and one has r éléments of Zp given by at=(f)M (ef) ¥" 0. If one may reorder
the base so that it is el9 e2, •.., e2s-i, e2s with a2j= —aij-u then taking B to be spanned

by the éléments e2i+e2i-1 gives a subalgebra of the desired form. Conversely,
given a subalgebra with unit BœM° which is its own annihilator, B has a base con-
sisting of idempotents. Specifically, if xeB, one may write x <x1(e\ + '-'+ell) +
—has(ei +••• +^s) where the af are distinct éléments of Zp and the e) are distinct.
Then ^=ar1(e} + -+^I) + -+aî(es1 + --+4), and 1=jc° has a? l. The ^x^
matrix of coeflBicients of x°,..., x?'1 is a Vandermonde déterminant - hence invertible,
so each e{ H he£, belongs to the span of 1, x,..., x5"1 and so to B. Thus i? has a
base consisting of idempotents which may be written e{ H he^ (with no common
entries). Since B is self annihilating, no ps can be 1, for ai=(j)M(ei)¥:0. Since 5 is its

own annihilator, dimB=(i) dimM° and each/?j is 2. Reordering, one may suppose

el9 e2,..., e2s-l9 e2sisabaseofAf with e2i+e2*~iforminga base ofB.Thena2i+a2i^l
==(l)M(e2i+e2i-i) ^ since ^ îs self annihilating. This gives

Remark. If «=0, 2? exists if and only if M ° has a base of minimal idempotents

*!, e2,..., ^2s with ^M(^2j)= -^m(^2/-i).
Now turning to the case «>0 and «==0 (4), Mnï2®Mnl2 -+Zp\x®y-*$M(xy) is

a non-degenerate symmetric (xy=j^x) bilinear form. Being given such a form
< >:F®F~>ZP, <x,;c>=0 for ail x implies F=0 (for <x, j>=|{<jc+7, jc+j>
-<*•->>, x-j>>}). Thus if F#0, there is an x with <x, x>#0 and let F'cF be

{y | <*>>>>=0}. Then < y:V'®V -+ZP is again such a form. Proceeding in this
fashion, one may find a base vi9...9 t>rfor Fsothat<t?h t;J>=Oif f#yand <î;f, i>f>#0.
Then <at), ût?>=a2<t?, t;> if aeZp and by taking scalar multiples of the v{ one may
change <% Vj) by any square factor.

The nonzero éléments of Zp form two disjoint classes: the squares (quadratic
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residues) and the non-squares (quadratic non-residues). Let P be the number of
(vl9 vt} which are squares, and Nthe number which are not squares. One defines an
invariant of the form < > on V by

To see that this dépends only on the form, not on the base, take any base and look
at the déterminant D det«xl, Xj}) ({xj being the base). In any other base, with
change of base matrix U9 one has det (£/«*„ jc,» C/T) (det U)2 D, where UT is the

transpose, and thus D is either a square or nonsquare independently of basis. N is

then determined mod2 by D; i.e. if D is a square N is even and if D is not a square
N is odd. SinceP+N= dim V, P is then determined mod 2 and also P-N= (P+N)-2N
is determined mod 4.

Now let Wa F be a self annihilating subspace and choose a base wl9..., wr of W.

One may then find tu...,tr in F so that

(WvWjy=0 for ail i,j

(thèse will ail be linearly independent for tt cannot lie in the span of the others since

it alone does not annihilate wt). Thèse may be found inductively for V-+ Hom(!T; Zp)
is epic if T is spanned by W and tl9...9tv Then letting S be the span of W and tl9...9tr9
< >:*S®5-^ZJ,isa dual pairing and S1 is a complementary subspace which is also

dually paired by < >.

Now considering the span of wt and tl9 suppose <ff, tl} ar If a(^09 tt and

tl — alwl=sl form a base with <f,, sty O, (tl9 tty=al9 <j,, 5if>= — a{. If^=1 (mod4),
— 1 is a square so at and —ax are both squares or both nonsquares. Ifp 3 (mod4),
— 1 is not a square, so one is a square and the other is not.

Thus /(F,< »=/(S1,< ». In particular, if Fcontains a subspace which is

its own annihilator, (a W as above with dim W= 1/2 dim V) then I(V9 < » 0 (for
S1 is zéro).

Conversely, if/(K,< »=0 and Wis a self annihilating subspace then W lies in
a subspace which is its own annihilator. If dim W= 1/2 dim V9 one is done; otherwise
S1 #0 and I(SL9 < »=0 and it suffices to show there is an s^O in S with <£, ^> =0
since adding s to W builds a larger W.

Choose a base vt of SL with <»,, i>,>=0 /#./ and (taking scalar multiples)
<t;f, vty=a2 or a' where a' is a non-square.

If p l (mod4), one may find v9 w in the base with <t>, i?> <h>, w>. If j82s — 1

(mod/?) <0+/?w, t;+j8w>=0.
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If /?==3 (mod4), a'= -a2. If there are v, w in the base with <t?, v}= -<w, w>,
then <t?+w, t;+w>=0. If not then <#;, vty=b for ail i and there are at least four vt.
Consider (xv1+fïv2 + yv3=x. Then <jc, ;c>=ft(a2-f/?2+y2) and there is a non-trivial
solution of a2+J?2+y2=0. (If not u2 + v2 is always a square so t/2 + l is always a

square, but 1 is a square and inductively everything is a square).
Thus one has:
Remark. lfn>Q,n=0 (mod4), B exists if and only if J(Mn/2)=0, where / is the

invariant in Z2®Z2 (/?= 1 (4)) or Z4 (p=3 (4)).
Spécial note. Nothing about A has been used far except that A°^ZP with base

^°= 1. One could consider Poincaré algebras over A together with a homomorphism
f:X-+M where X is a fixed unstable left algebra over A with unit. If X is connected

(X°^ZP)9 adjoining to A the left multiplications by f(x), xeX, créâtes a larger oper-
ator algebra A' with (A')°^Zp9 and the arguments apply to Poincaré algebras over
A'. If X is not connected, then the minimal idempotents eteXo induce maps
fi\ei9X-*f(eï)'M2coÀ f bounds if and only if each ft bounds. This reduces one to
the direct sum of "connected" cases. Thus the techniques given can be used to solve
the algebraic "bordism" problem with no (or little) additional work.

§5. Algebraic Cobordism Groups

Being given an n-dimensional Poincaré algebra M, with homomorphism 0M : Mn -»
-» Zp, one defines — M to be the Poincaré algebra M with a new homomorphism
<t>(.M):Mn-*Zp given by <Ê(-M)(»0= ~<M™)-

For Mx and M2 two w-dimensional Poincaré algebras, M=Ml@M2 is the Poincaré

algebra obtained from the direct sum with ^mC^i* w2)==^Mi(mi)+0M2(m2)-
Similarly one may form direct sums and négatives of Lefschetz algebras. If

V=(M9 M\ M"y iy jy à9 (^My (j>M")y dénote by dV the Poincaré algebra M, with
homomorphism $M.

DEFINITION. Two /i-dimensional Poincaré algebras M and M' are cobordant

if there are (« + l)-dimensional Lefschetz algebras F and V with

(Note. S dénotes the rather obvious définition of isomorphism).

LEMMA 5.1. Cobordism is an équivalence relation.
This is completely trivial. It is very hard to prove transitivity if you use Brown-

Peterson's type of définition (M~Mf ifM© (—M') bounds) although it can be done

using the results of section 4.

One now defines an opération on the set of cobordism classes of n-dimensional
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Poincaré algebras by [M] + [M'] [M®M']. Withthis opération, theset of cobord-
ism classes of «-dimensional Poincaré algebras forms an abelian group, which will
be denoted Qp.

Note, [-M] -[M], for M®(-M)®dO O®dV where 0 dénotes the zéro
algebras; i.e. M©( — M) bounds. Specifically the diagonal in M®M provides the

subalgebra R required in Lemma 4.2.

One now lets Q% be the direct sum of the groups Qp.

Being given M and N, Poincaré algebras of dimension m and n, one forms their
product MxNon the algebra M®N with <i>M^^{m®n) — (t)M(m)*^jv(w)- The homo-
morphism e;M®N-*N®M given by 0(m®«)=(-l)degindegl1 n®m gives MxN^
ç*(-l)mn NxM. Extending this to products MxV with V a Lefschetz algebra, it
is immédiate that the product x makes Q% into a commutative ring (in the graded
sensé).

The resuit of section 4 détermine much of the structure of Q%.

PROPOSITION 5.1. Qp0 is afree abelian group ofrank (p-1)/2.
Proof. Define a function

iP - l)/2

by c(M) (ci(M),..., c(p_1)/2(M)) where ct(M) is the number of minimal idem-

potents e in M with (j)M (e) / minus the number of minimal idempotents e in M with
(j)M(e)=-L Clearly c(M1®M2) c(M1) + c(M2) and c(M) 0 if and only if M
bounds, so c defines a homomorphism of Q$ into Z®-~®Z9 which is in fact monic.
To see that c is epic, one forms the Poincaré algebra Ma^Zp with base the unit 1 and

with (f)Ma(l) a for a#0 in Zp. Then M_fl=-Mfl5 and if l^a^(p-l)/2, c(Ma)
(0,..., 0, 1, 0,..., 0) where the 1 occurs in the a-th position. *
One may describe the ring structure in Q$ as follows: Letting xa= [Mj, a^O in

Zp, xt is the unit in Q%, x-a=—xa and xa-xb xab.

For «>0, one defines a homomorphism x^«-^Hom(C/w; Zp) where Un is the

«-dimensional part of the algebra of characteristic classes by x(M) (u) <j>M(6'M(u)).

Since B'M{u) {etMl(u\ O'M2(u)) if M=Ml®M2 this is additive, and if M=dV,
(w))==0m"^(^m'(w)):=:O, showing that x induces a homomorphism on OJ.

For «>0 and « 0(4), one defines a homomorphism

by assigning to M the invariant /(Mn/2). This is easily seen to be additive and sends

boundaries to zéro, and so induces a homomorphism on Qp.
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PROPOSITION 5.2. lfn>0,thehomomorphisms

x:npn->ïlom(Un;Zp) a #0(4)

and

are monic. Thus, for n=£0 (4), Qp is a Zp vector space andfor «==0(4), Qpn is the direct
sum ofa Zp vector space and either Z20Z2 (/?= 1) or Z4 (/? 3).

Proof. That x and x®/are monic follows from section 4 immediately. For the
last part, one needs to see that /is epic. Consider M4 H* (CP(2); Zp). Dimensional
considérations show that M4 has trivial A action (^° 1,^ 0 i>1, jS=O), and
J(M4)=(1, 0) if/> l(4) or /(M4) l if/?=3(4). Given two Poincaré algebras M4'"
and N4\ (MxN)2U+k) is the direct sum ®(Mr®Ms) for r+^=2(;+A:) and the
terms with r < 2j give a self annihilating subspace W with 5* formed of the terms with
r#2/. Thus /((MxiV)2a+lc))=/(M2-/eiVr2k). From the tensor product of two
"diagonal" bases, this is I(M2Jyi(N2k).

Note, In Z2®Z2 {P»Niy{Pl9N2) {P1P2+N1N1,P1N2+P2N1). Then, (M4)*
=M4 x • • • x M4 (k copies) has trivial A action, so x ((-W4)*)=0 and I((M4)fc) (1,0)
or 1. Ifa^O in Zp, and Mfl is the 0-dimensional algebra with </>Ma(l)=a and M4k is a
4&-dimensional algebra with diagonal basis vi9 MaxM4k has diagonal basis l®vi9
with <l®t?i, l<g)t?i> a<i?i, i?f>. Thus if a is a square, I(MaxM*k)=I(M4k) and if #
is not a square, J(M4*)=(P, N) or P-iV gives /(Mfl x M4k)=(N9 P) or #-/>. Thus

/ is epic. *
This permits the description of the multiplicative structure in the 2-primary part

of QZ*. One has a 4 dimensional generator y4 with 2j4=0 (p 1) or 4j>4=0 (^=3)
and xay4=y4 if a is a square.

Note. It is no coïncidence that x((M4)*)=0. Multiplication by p2 defines a
projection onto the 2 primary part of Q*., since p2 1 (4), killing the/7-torsion, and
multiplication by 1 -p2 defines a projection onto the p primary part of Qpn killing the 2

torsion.

§6. Construction of Poincaré Algebras

In order to complète the calculation of Q% one must find the image of x:O£-+
->Hom((711; Zp). For this one may show how to construct Poincaré algebras.

Let X be an unstable left algebra over A with unit and let $ : Xn -* Zp be a homo-
morphism. Let IJ=* {xeXJ j <l>(xy)=Q for ail yeXn~J}9 with /c=iT being the sum of
the P.
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Ifx, x'elj, A, A'eZp^hen<l)((Xx+X'xyy)=X<t)(xy)+X'<l>(xy)==Ofor!ÙlyeXn-Ji
so/Lx+rjc'e/Ufjte/^ze^thenforanyjyeX^
=0, so zxelj+k. Thus / is an algebra idéal in X, and M=X/I is a commutative Zp
algebra, with n:X~* M the quotient homomorphism.

<f>\Xn-+Zp sends /" to zéro, for if xeln9 $(x)=$(;rl)=0, and so <£ induces a

homomorphism <j)M:Mn-+ Zp.
If meM1 and 0M(wm')=O for ail m'eMn~\ then letting jceX* represent

w, tt(;c)=w, (/>(;c*A:') <^Af(/W7r(x'))=0 for ail jc'eZ""* and so xel1 orm=0. Thus

Mi®MH~i->Zp:m®m' -+(j)M(mm') is a nonsingular pairing for each /.

Clearly, if / is an A idéal, M becomes an unstable left A algebra, with k a
homomorphism of left A modules. This being the case, there are éléments beM1 and

</>M(P™)=<l>M(t>-™) for ail

and

*

for ail

Hence there are éléments b'eX1 and v\eXli{p"^ with <t>(Px-b'x)=0 for ail xeXn~l
and ï^x-v'tx)^ for ail xeJf""21^"^.

Conversely, suppose there are éléments b'eX1, i;{e-X'2<(p"1) with (j)(px-b'x)=09
xeX*'1, and (j>(^iix-vfix)=0, xeXn'2i{p~l\ Then /is an ^-ideal. To see this pro-
ceed as follows: Let xeP and yeXn~u+1) and (t>((px)-y)=<l)(p(xy)-(--iy x-py)

^(6/(^)) + (-l)-/+1^(x-(j8j))=O+O=O so pxelj+1. If xelj\0>°x=xelj9 so

suppose inductively that if i<k9xelj implies 0lixeIJ+2i(p~i\ Then for jce/y,

-Zî-o 0((^'*)-(^*"W)=O, so

DEFINITION. In any unstable left A algebra with unit which is a right A module,
let 6=1)8 and t?,= 10".

LEMMA 6.1. a) IfM is a Poincaré algebra and meM, then

i-i

b) IfueU.then
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Proof. (l>M(bmn) cl>M(nmn)) cl>M((pm)nH--^degmm(pn)) and

for ail n of appropriate dimension, giving a). Applying Q'M to the formulae of b) gives
an identity in any Poincaré algebra, and by universality the formulae hold in U. *

LEMMA 6.2. Let FnczUn be the subspace spanned by the éléments Pu —bu,

ueUn-\ and 0**14-vp, ueU"-2^-». Then (j>eHom(Un; Zp) lies in x(Qpn) ifandonly

Proof. If M is an H-dimensional Poincaré algebra and </> x(M), then

~4>M{0'M(Pu-bu))=<l>'M(f!9M^
and similarly (j>(^iu-viu) 0. Thus 0(Fn) O.

If <f>:Un-*Zp with (j)(Fn) 0, let M be the «-dimensional Poincaré algebra U/I
formed from $ by the above construction, with n:U-+M the quotient map. Since

0(jPb)=O, n(b) b and n{vi)=Vi. n is a homomorphism of algebras with unit and
left A modules, and by the formulae of Lemma 6.1 is a homomorphism of right A
modules (use induction on /to get n(u£?l) n (u) &1). Since 9'M: U-* Mis characterized

as the unique homomorphism of algebras with which is a right and left A module

homomorphism, n=0'M. This being the case, %(M) (u) 4>M(0rM(u)) (l)M(n(u))

0(4 *
This is, of course, the analogue of Dold's formulation of relations among charac-

teristic numbers. In an algebraic context, the Brown-Peterson formulation will be

more convenient.
Let A+ aA dénote the augmentation idéal consisting of éléments ofpositive degree.

The quotient homomorphism U-+U/UA+ induces a monomorphism Hom
((U/UA+)n; Zp)-+Jïom(Un; Zp\ and identify Hom((U/UA+)n; Zp) with the homo-

morphisms (j>: Un-*ZP with <l>((UA+)n)=O.

PROPOSITION 6.1. x(^n)=^om((U/UA+)n; Zp).

Proof. The identities
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give Fnc(UA + )n. Using the some identities an induction on i to prove u^leFn gives

§7. The Structure of U

In order to calculate /(OJ) explicitly, it will be necessary to know U precisely.
Adams has done most of the work, and one need only repeat his arguments.

First, recall that A is a Hopf algebra with a diagonal map A :A -+A®A. As
convention one writes

and if x, yeX, X an unstable left A algebra,

<*y) Z (- l)deg*degfl'v (a'rx) «;>).
r

The canonical antiautomorphism x '• A -> A is defined inductively on degree by

(*;K O (dima>0).

One now defines classes in U by b= ljS and qt= Ix^1). Using Adam's methods,

it will be shown that

PROPOSITION 7.1. U is multiplicatively generated by the classes b, qh and Pqt.
The proof proceeds by a séquence of lemmas.

LEMMA 7.2. a) Ifdima>0 and ueU, then

{U)-u au + £(- l)degu -dega'v (a'ru) a"r + (- l)de««de^ ua,

beingfor those terms other thon a®\ and \®a in Aa.

b) If dima>0, then

a(lb) + X(- l)deg6deg^

Just as in Lemma 6.1 or Adams' Lemma 8. *

LEMMA 7.3. U is multiplicatively generated by the éléments la, aeA.
Proof. Adams' proof of Lemma 9 goes through Verbatim, except for the signs in

his formula for Wa, which are immaterial.
Let D(U) dénote the decomposables in U.
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LEMMA 7.4. IfueD(U),aeA, then uaeD(U).
Proof. Adams' Lemma 10.

LEMMA 7.5. //dimft>0, then

a(lb) (- )i*i--«» lbX(a) modD(U).

Proof. Adams' Lemma 11 with the appropriate sign convention. *

LEMMA 7.6. U/D(U) is spanned by the éléments 1, b, qh fiqt.
Proof. From Lemma 7.3, U/D(U) is spanned by the éléments la, aeA9 and it

clearly suffices to consider only a set of éléments asA which span A.
Let St\ /=0, 1 mod2(p-l) be the éléments St2k(p'l}=^\ St2k(p~1)+1=p0>k.

If J=(/l5..., ir)9 i.sO, 1 (2(p-l)), St'=Sth... Stir. The set S of éléments Sf7 with
' î ^Ph ,Î2^Ph>-->ir-i ^Ph sPan ^ » and in fact form a base of >4, by the Adem relations.

The set S contains the éléments St \ and every other élément of S is of the form
St*c with 0<dimc<i/(p-1) (ixS* (p-1) (i2 + ••• +if)+ir). The set /(5) also spans A
x(S) contains the éléments x(^0 and every other élément of x($) ls °f the form
dx(Stl) with 0<dinu/<i/(p-l). By Lemma 7.5,

lrfx(5/<)as ±Sti{ld) modD(U),

but 5rri(ld)=0 since dim(lJ)<//(Jp~l), so 1^(5^) is decomposable.
Thus U/D(U) is spanned by the éléments lx(Stl). Since 1/(^0=^ (or if «=0)

and lX(P)= -b, and l/(j8^)= W) x(P) <îiX(P>Mi (modZ)(C/)), one has the
resuit. *

This complètes the proof of Proposition 7.1.

Let V dénote the free associative, commutative algebra generated by éléments

b, qi9 and Pqt; i.e. the tensor product of polynomial algebras Zp[^f] and exterior
algebras E[ti] and E\fiqï\. One then has defined an epimorphism o:U'-+U.

One now wishes to show that a is an isomorphism.
For this, form an unstable left A algebra £=£[>]£;#* (S1; Zp) with trivial A

action. Form a Thom space B for B with B2^ZP with base ux and B3^ZP with base

m2 and with ^4 action 0>°ut i/lf ^°m2 u29 Put — w2 (making 5 a left A module) with
&B;B-+B a Thom isomorphism given by #B(l)=Ml5 <PB(b)=u2=bul.

Following Peterson and Toda [6], let BSF=BSG be the classifying space for
oriented spherieal fiber spaces, and MSF the associated Thom spectrum, with
(I>:H*(BSF; ZP)-*H*(MSF; Zp) the Thom isomorphism.

Then B®H* (BSF; Zp) isanunstableleft>4 algebraand#B<g)<£ : B®H* (BSF; Zp)-+
-+B®H*(MSF;ZP) is taken as Thom isomorphism. B®H*(MSF;ZP) is a left



Poincaré Algebras Modulo an odd Prime 397

v4-module, and one defines a right A module structure on B®H*(BSF;ZP) by
ua=(-l)d**°'àimu (^(g)^)-1 X(a) (*j®0) (u).

Note. A sign has been added to this équation since the order of a and u is reversed.

Thus, there is the canonical function

0 0B®H.(BSF): W-+B®H*(BSF; Zp).

Now let q'eH*(BSF; Zp) be the class defined by gi 0~1^(l). Then Peterson-
Toda show that H*(BSF; Zp) contains the free associative, commutative algebra on
the classes q\ and fiqrh and it is implicit in their paper that this subalgebra is closed un-
der left and right A action. Further, /?$(l) 0.

Now consider the subalgebra B®Zp[q'i"]®E[Pq'i'] contained in B®H*(BSF; Zp).
This clearly contains 1 and is closed under left ^-action. Further, it contains b=\p

b®\ and ^=1®^,-, so ^=1®^.
Now make use of the fact that #B®0 is a Thom homomorphism; i.e. 5®H*

(MSF; Zp) is a B<g>H*(BSF; Zp) module. One then has

(-l)dimu (~Pu + (-l)dimu ub) (~l)dimu (bu-Pu).

and

1 Z ^I"it<

Thus B®Zp[q'i]®E[pq'i~] is closed under right A action. Since

is the free associative, commutative algebra on b, qh and pqh

Thus, identifying V with 0(W), Ur becomes an unstable left A algebra with unit
and a right A module. /

In addition, U ' is a connected coalgebra in which the diagonal map A : U ' ~> U'® U '

isgivenby^(&)=6®l+l®M(^.)=Z^^^
®pqr Under the Thom homomorphism, this corresponds to the usual coalgebra
structure in H* {MSF; Zp) induced by the Whitney sum of oriented spherical fibra-
tions, and the coalgebra structure on B given by A^u^ — u^Ux, J(m2)=W2®wi +
+«1®w2. This coalgebra structure on B®H*(MSF; Zp) forms a coalgebra over the

Hopf algebra A.
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Ifone now considers the action v : A -» B®H* (MSF; Zp) given by v (à) — a

(1), v is monic. To see this, Peterson-Toda hâve shown that v:A-+H*(MSF; Zp):a
-+a<f>(\) has kernel precisely A0. Now v:Ap~*B®H*(MSF; Zp) sends ap to
a(-buî®(p(l)) (-l)dcga+1 {bux®a(i){\)) and is monic, for if v(ap) 0, aeAp and
aP 0. Then v induces a homomorphism

v:A/Ap-*B®H*(MSF; Zp)/B3®H*(MSF; Zp)

which may be identified with v, so is monic. Thus v is monic.
By Theorem 4.4 of Milnor and Moore [5], B®H* (MSF; Zp) is a free A module.

Applying the inverse of the Thom isomorphism, or working directly with $ : A -» U ' : a -»

-> lx(a), one sees that U' is a free right A module.
Let us summarize thèse facts.

LEMMA 7.7. IfU' is thefree associative, commutative Zp algebra on b, qh Pqh U'
can be made into an unstable left algebra over A and a right A module with b \p, qt

lx(^1)' Further, as a right A module U' is free, and the right A module structure
satisfies the identifies

In order to compare U' with U, one must relate U' with Poincaré algebras.

Unfortunately, U' is expressed in terms of qt with ail formulae involving xi^*) while
Poincaré algebras are expressed in vt with formulae involving 0ki. First thèse must be

reconciled.
Dénote by q the class l+ql+q2 + -'-, and similarly, let v=l+v1+v2 + -~9

)=^"1, Le.

LEMMA 7.8. In U' and in any Poincaré algebra the classes q= lx(^) andv=
are related by

Proof. In a Poincaré algebra M, 4>M{q-{^v)-x)=<
<j>M(0>-1&>v&>-1x) <t>M(v0>-1x) <l>M(0>&>-lx) <t>M(l-x) for ail x, so
1. In U', ($B®$) (?-(^»))=(^»)-î(*a®0) (0=W-0»(*B®0(1))

so j-(^»)=l. *

LEMMA 7.9. In any Poincaré algebra
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Proof. For any jc,

j=0

but Yfj=kX(0fj~~k)0>i~k is 0 if /-ik>0, 1 if i-k=0, so this is <MW'X(^)*)- *
Now consider pairs (M, /) where M is a Poincaré algebra and /:£/'-? M is a

homomorphism of algebras with unit and A modules with f(b)=*b.

CLAIM. Thefollowing are équivalent:

a) f{qi) qt foralli.
b) f(Vi) Vifor ail i.

c) / is a homomorphism ofright A modules.

Proof. b) implies a) for f(v) v gives f(0>v) 0>v and f(q)=f(l/0lv)=l/f(0fv)
v q. a) implies c) for

and

Finally c) implies
Now following Brown and Peterson [3] (Note: Part I of this séries is restricted to

Z2 but has the results needed, Part II covers Zp but does not apply hère), one lets

^n(^)1 be ^e set of classes in (£/')* sent to zéro by every homomorphism f:U'-+M
of left A algebras with unit and right A modules where M is an n-dimensional Poincaré

algebra.
Let K(Zp9n-i) dénote the Eilenberg-MacLane space and let ieH^^KiZ^

n — i); Zp) dénote the fundamental class. Being given any unstable left A algebra with
unit Xand class xeXn~ ', there is a unique homomorphismq (jc) : H* (K(ZP, n—i); Zp)
-? X of left A algebras with unit for which q(x) (i)=x.

Let F?cz {U'®H*(K(ZP, n-i); Zp)}n be the subspace spanned by ail éléments of
the forms f}x-(b®l)-x, dimx=n-l, and &Jx-(Vj<g)l)-x9 dimx=n-2j(p-l).

LEMMA 7.10. In(Uj is the set of classes ue(Ujfor which u®ieFl
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Proof. If u®ieF? and f:U'-+M is any appropriate homomorphism, then for

any xeMn~\ one has a homomorphism of left A algebras with unit g=f*Q(x):U'
®H*(K(ZP, n-i); Zp)^>M:u'®z-+f(iï)-Q(x) (z).g(b®l)=f(b) b andg(vj®l)
=f(Vj) Vj, so g(FÎ) 0 and thus/(w)-x=g(w®/)==0. Thus 0m(/(w)'*) ° for ail
xeM"-1 and/(w)=0. Thus ueIn(Uf)\

If u®i$F?, there is a homomorphism (f):(Uf®H*(K(Zp, n-i); Zp)n-+Zp with
(f>(F?)=O and (f)(u®i)^O. As in section 6, there is an w-dimensional Poincaré algebra
M with an epimorphism n:U'®H* (K(ZP, n — i); Zp) -> M which is a homomorphism
of left A algebras so that ^M(7r(x)) ^>(^), and with n(b®l) b, n(Vj®l) Vj. Let

f:U'-+Mby f(u') n(u'®l). Then / is a homomorphism of left A algebras with
unit and f{b) b,f{vj) vj so a homomorphism of right A modules. Since

Thus */£/„(£/')*. *
Since U' is a right ^4 module and H*(K(ZP, n-i); Zp) is a left A module, one

may form their tensor product over A, U'®AH* (K(ZP, n — i); Zp), which is obtained
from the tensor product over Zp by dividing out the subspace spanned by ail ua®v — u

®av, aeA.

LEMMA 7.11. F" is the kernel of the quotient homomorphism

q:(U'®H*(K(Zp9n-i);Zp))n^(U'®AH*(K(Zp9n-i);Zp))n.
Proof. To see that ksrqcFÏ, let <j):(U'®H*(K(Zp,n-i); Zp))n^Zp be any

homomorphism with 0(Ff) O and form the associated Poincaré algebra M as in
section 6. Using the notation of the last lemma,

<t> (ua®v) (j)M (tt (ua®v)) (j)M (n (ua® 1 • n (1 ®v))
(l®»)) *Jf(/(«)«-«(l®»)) *

' w (1 <8>av))=4>M n (u<S>av)=<j> {u®av).

Thus ua®v-u®ave)uzr<f>. Since this holds for ail <j), ua®v-u®aveF".
To see that /""ckerçr, it suffices to show that a(u®v)-(la<g>l) (u®v)ekerq

where a=JÎ or 0>}, for the m®d span U'®H*(K(Z2, n-i); Zp). Now

£a;w(8) - l)dimB dima'" a> - (la-u ® »

I(- 1)"—dI-«"' (a» < ® v - (la-u) ® « (modkerg)
~ l)dimu dima"' (a» < - la-«} ® p (modker<z)

When a=jî, this is

{(-1)°
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which is zéro When a=&\ ît îs

Now m U' one has

cw(<2>B (g) <*>(!))}

fc=0 s=0

and as m Lemma 7 9, this is

ThusF"c:ker# *

LEMMA 7 12

Proof Consider the composite

U'^U'®H*(K(Zp,n-i),Zp)-^U'®AH*(K(Zpin-i),Zp)

where r(u) u®i
In dimensions less than 2(n — i), ZpÇ$A^>H*(K(Zp, n — i); Zp) sending (1, 0) to

1 and (0, à) to ai is an îsomorphism of left A modules, where A acts tnvially on Zr
Thus U'®AH*(K(Zp,n-i),Zp)^U'/U'A + ®U' m dimensions less than 2(n-i),
and under this identification, qr(u) (Q, u) In particular, qr is monic on {U')J if
j + (« — i)<2{n — i) Since 2i<n, i-\-{n — i)<2(n — i) and qr is monic on (£/')*> but
/„ Uy is the kernel of qr *

PROPOSITION 7.2 U is thefree associative, commutative algebra over Zp on the

classes b, qt, and f$qi Further, U is a free nght A module and is a coalgebra with
A (b) b(g) 1 +l®è, A (qi) Y, Qi-j®Qj With this coalgebra structure and the nght A
action, U is a coalgebra over the Hopf algebra A

Proof It suffices to show that a: U' -> U is an îsomorphism and a homomorphism
of left and nght A modules, since U' has the properties descnbed.

Let f:U' -+M be a homomorphism of left A algebras with unit and nght A
modules with M a Poincaré algebra. Then f(b) b=\p 9'M{o (b)), f(qt) qt 1% (&l)

d'M (a (qt)) and /(/?#,)=Mi ®'m {? (Md) Since / and Q'Ma are algebra homomorph*
isms agreemg on generators, f=Q'Mo Thus, if (t(w/)=0, /(m')=0 for ail such (M, /).
Smce IH(U')l=0 if n>2i, /(w/)=° for al1 such (^/) unplies w'=0, and thus cj is

monic. Since a was epic by Proposition 7 1, a is an isomorphism
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Now let xeU', aeA, and suppose aa(x) <r(y), yeU'. Then for ail (M,/),
/Cp-«)=/CvW(x)=0^^
so y=ax. Thus ao(x) o(ax).

If xeU\ aeA and a(jc)<i=ff(;y),j>e(7', then for ail (M,/), /0>-xa)=/(}>)
-/Wû=9M^W)-4(^W)« ^((rW-(T(x)a)=^(0)=0 and so y xa.
Thus a (x) a=c (xa). *

§8. Structure of Qp*

In section 7, it was shown that U is a coalgebra. Since one wants to use this
structure heavily, let us review it briefly.

LEMMA 8.1. For each u in U there is a unique élément Au ^ u's®u"s in U®U
such that

for ailpairs M', M" ofPoincaré algebras. The map A:U-+ U® U makes U into a Hopf
algebra, andfor aeA

à (au) X (- l)dim^-dimû"" a'ru's ® aX
* (ua) S(- l)dimuVdiraflV i#X ® u"sa"r.

Proof (This is Adams' Lemma 14). Make U® U into a left A algebra and right A
module by using the diagonal in A. One then has a function from W into U® U.

No nonzero class in U1 goes to zéro in ail n dimensional Poincaré algebras if
»>2ï, so there is an w-dimensional Poincaré algebra M' with d'M> monic on U1 (To
see this let Mt be any n dimensional Poincaré algebra. If 6'Ml(u) 0 choose M2 with
B'M2(u)t£0, then ^TOfMl^Mlczk&Td'Ml properly. Since U1 is finite dimensional, this

process is finite, giving M'), and then Q'M> is monic in dimensions less than or equal to
ï. #m'®#m'.#U®U-+M'®M' is then monic in dimensions less than L

=0 and so 0u®u(w)=0. Thus 6V(g>u induces a homomorphism A: t/-> £/®£/ of left
A algebras and right A modules. *

Note. This is the same coproduct as previously discussed for the rule for A (ua)
gives the previous formulae.

The coproduct in U makes Hom(C/;Zp) into an algebra and A(UA+)aUA+
® 17+ U® UA+ so U/UA+ becomes a coalgebra with Hom(U/UA+ ; Zp) a subalgebra
of Hom ((7; Zp). The rule for Q'M. x M» shows that x : O* -? Hom (U/UA +

; Zp) is a ring
homomorphism.
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For any œ (il,...i ir), let *SWbe the polynomialexpressing thesymmetricfunction
£ t\l... tlrr in terms of the elementary symmetric functions <rf of the f's: i.e. £ r}1... f,!r

S(O((jl,...,an,...). Let jwet/ be the class sm^Sœ(qu...9qH9...). Then Ay^^v
®*V', the sum being over pairs œ\ co" with co'ua/' G). The classes sm form a base

for Zp [<?,].

The classes Si€U2i(p x) (corresponding to a> (/)) are primitive, and satisfy
Newton's formula

Thus, if i^éO modp, Pst is also a nonzero primitive, being congruent to — (— 1)' iPqt
modulo decomposables. (If /=#/, si (sj)p and J3si—p(sj)p~1 /fay 0). This gives

nonzero primitives in each dimension 2i(p — 1) and also 2i(p— 1) +1 if i
If i 0, ^et/1 is a nonzero primitive of dimension 2i(/?—1) + 1. If /=/>*,

- 1 ng

is a primitive of dimension 2i(p— 1) +1. To see that it is nonzero, consider U as U'
and map into if* (BSF; Zp) by killing ft. According to Peterson and Toda (proof of
Proposition 3.1) ^7^s= (-1)1 (r(P~1}) ^s+f + decomposables. Thus, modulo
decomposables, this class is (—iyj*-lCp-1)+-" + -/Cp~1>-(—1V+1 yj^ which is nonzero.

In the following, let éP^Sj dénote the nonzero primitive élément of dimension

2i(p—1) + 1, understanding for i 0 that this is the class è.

Since ^fisj is always indécomposable, the éléments so)-(0>Ilpsjl)...(0>Irl}Sjr)

(ii<~'<ir) form a base for £/. In Hom((7; Zp) let x2f(p-i) anc^>;2i(p-i)+i (ï#>0 and

respectively) be the éléments of the dual base with si(x2i(P-.i))=l and

)=l. Then for œ (kl9...9 ks),

is the base élément of Hom((7; Zp) dual to s(O{0>Ilpsh)...(<&>IrPsjr).

PROPOSITION 8.1. Hom(t/;Zp) w the free associative, commutative algebra

over Zp on the classes x2iip-i) (^>0) andy2i(p-1)+1 (*>0).
Proof. The given free associative commutative algebra maps into Hom(£/; Zp)

and the monomials forming its base are sent to a base of Hom(t/; Zp).
Now one foliows Liulevicius [4] to détermine the structure of Hom (U/UA+; Zp).

Dénote by U* the algebra Hom(C/; Zp) and by A* the dual of the Steenrod algebra.
In addition to its algebra structure, U* has the structure of an A* comodule.

Dualizing the right A action U®A -* U gives this coaction U* -> C/*®^4*.
Let /f be the free associative commutative algebra over Zp on generators
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and J2i(p-.1)+1 with i not of the form (pr-1 )j(p-1). Let f:U*-*H be the algebra
homomorphism given by

Let g: U*-*H®A* be defined by (/® l)ojx.
Giving H®A* the obvious algebra structure and the "free" >4* comodule structure,

g is a homomorphism of algebras and A* comodules according to Proposition 2 of
Liulevicius.

As algebra, A* is the free associative commutative algebra on generators xifcp-i)
(i>0) andj>2j(p-i)+i O'^O) where i is of the form (pr—l)/(p—l) dual to primitive
éléments of dimensions 2(pr— 1) and 2{pr—1) + 1 in ^4.

To prove that g is an isomorphism, it suffices to prove g is epic (since everything
is of finite type and has the same dimension as Zp vector space in each dimension).
For this, it suffices to show that g(x2io>-i)) and ^(^2i(p-i)+i) are indécomposable.
Since ail generators hâve différent dimensions, it is sufficient to show that

and

are epic.
Now 4>i is just the composite

and xo fi is dual to U*-+ U*:u-+ l(w), le^f being the unit, so to^=1 and 01=
epic. The map 02 is just the composite

and is dual to v:A-+U:a->a(l) which is monic, so <£2 v* is epic.
Thus g: U*-+H®A* is an isomorphism of algebras over A*. Dually U

is an isomorphism of coalgebras over A, and UjUA+ is isomorphic to //* ascoalgebra,

or Hom(ï//{L4+ ;ZP)^H as algebra. This gives:

PROPOSITION 8.2. Hom (17/ K4 +
; Zp) is thefree associative, commutative algebra

over Zp on generators x2»a>-i) ^d j2î(p-i)+i wft* ^(pp- l)/(p-1).
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PROPOSITION 8.3. (2J is the associative commutative algebra over Z gênerated
by classes

xa9ai^0 in Zp, of dimension zéro, y4 of dimension 4,
x'2i(p _ andy'2i{p-l)+lforiï(pr-l )/(/? -1 ofdimension 2/ (p -1 and 2i (p -1 +1

respectively.
The relations among thèse classes are:

xl \ is the unit. x_a= -xa. xa-xb xab.

2y4 0 ifp=l (mod4) or 4j4 0, ifp 3 (mod4).
=>;4 if ci is a square. px2i{p.X) ^. Mi(ri)+i=0.

Proof This has ail been proved except for the rules xfl*2É(p-i)=a;(:2i(p-i)>
similarly for y'. Thèse foliow at once from the fact that the characteristic numbers of
Ma x M are precisely a times those of M. *

Note. The epimorphism U*-+H gives a monomorphism H*-+ U. The image of
H* has as basis the classes

S(O\^ PSjl)'"\^ PSjr)

with(o (ku..., ks) where A:a and ia are not oftheform (pr— 1 )/(/?— 1). (Recall ^Jj3^
has dimension 2ia(p—1) + 1. Thus, thèse characteristic numbers suffice to detect the

/?-torsion in Q%.

§9. Image of Oriented Bordism

Being given a closed oriented «-dimensional differentiable manifold Mn, one may
assign to M its mod/? cohomology, //* (M; Zp), giving an w-dimensional Poincaré

algebra. This assignment induces a forgetful homomorphism

where &5f dénotes the oriented bordism ring studied by Wall [7].

PROPOSITION 9.1. The image of F\Q%->Ql is the (polynomial) subalgebra

gênerated by the classes y4 and x2i(P-iy
Proof According to Wall, the torsion subgroup of Q™ is a Z2 vector space and

(in his notation) is generated as Q™ module by the classes ô(x2ki... x2kr), kii^2s,
which are odd dimensional. Since Qp* has no odd dimensional 2-torsion, F annihilâtes
the torsion of Q™. Thus F induces F' :O5f/Torsion -» Q%. Now ^/Torsion is the
polynomial ring over the integers on generators z4j.
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Considering first just the 2 primary part (Q%/Torsion)®Z2 is the Z2 polynomial
ring on the complex projective spaces CP(2j), and hence the image of F in the 2

primary part of O£ *s generated by the CP(2j). Since the middle dimensional pairing
in CP(2j) has P= 1, N=0, CP(2j) hits (y^)j in the 2 primary part of ûj.

Now looking at the /?-primary part, let M be a closed oriented manifold and let

^fe//4l(M; Zp) dénote its /-th. normalPontrjagin class reduced modulop. Let s^iy?)
dénote the class Sa(&l9..., ^n,

If the total Pontrjagin class 0>=1+0>1 + — is written formally as 77(1 +xf)
(dimjc,=2), then 4f=l+^ + is given by 77(l+xf+1). Thus O'M:U-^H*(M; Zp)
sends jo into v(^) where for co (il9..., ir), ©'«(j'^/j-I)^,..., zr(/?-l)/2).

Since j8 into the top dimensional cohomology of M is zéro, O'M(b) Q, and since

&{ is the réduction of an intégral class, O'M kills ail Bocksteins.
Thus x°F'(Qs*) is detected by the characteristic numbers s^ where co (i1,..., /r)

and no ia is of the form (pr— 1 )/(/?— 1).
Since there are oriented manifolds M4n with 5n(^) [M4n] £0 (modp) except when

2n + l=/?s, there are manifolds M2l(p"1} with </>m(^m(^))^° except when/(/?-l)
+1 =/>s. One may then take some multiple (divisible by 4) of M2î(p~1} as a generator

x2i(P-iy Thèse classes generate xoF'(O**), which is then the subalgebra generated by
the X2i(p-ly *

Note. The invariant IF(M) in Z2@Z2 or Z4 is easily seen to coincide with the
Hirzebruch index of M reduced mod2 or 4. Thus, the Hirzebruch index modulo 4 can
be computed from the Zp cohomology ifp 3 mod4. Modulo 2, the Hirzebruch index
is just the Euler characteristic and may be computed with any coefficients.

Letting A'aÀ dénote the algebra of reduced powers, one may consider Poincaré
algebras over A', as studied by Adams, with corresponding bordism ring Q'£.
Considering an A' algebra as an A algebra with j3=0 (i.e. A' is isomorphic to A mod the

two sided idéal generated by jî) and considering an A algebra as an A' algebra by
restriction gives algebra homomorphisms a:Q'£^Qi and q:Q%-+Q'£ with qg=1.
It is easy to compute Q'£ using Adams' results and one has

u (p se ij or

It is immédiate that F:Q%-+Q* has the same image as a, and that qF is epic.

It should be noted that there are classes in ŒJ which cannot be represented as

H* (M; Zp) for any oriented Poincaré duality space. For an oriented Poincaré duality
space Mn of dimension n,$\Hn~x(M\Zp)-+Hn{M\Zp) is zéro. Thus, if
«=2/(p—1) + 1 with iféO (mod/?), the characteristic number /fa,- must vanish, and

H*(Mn; Zp) is decomposable in Q%.
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