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Introduction

A subset of a Hausdorff topological space will be called nearly relatively compact
(resp. relatively countably compact) if any filter (resp. any séquence) on this subset has

a nonempty adhérence in the space. Any relatively compact set (i.e. a subset of a

compact set) is nearly relatively compact and any nearly relatively compact set is

relatively countably compact. For regular spaces the relatively compact and nearly
relatively compact sets coincide. A subset of a Hausdorff topological space will be

called sequentially dense if every point of its closure is the limit point of a convergent
séquence in this subset. The theorem of Smulian (resp. Eberlein) gives a sufficient
condition for a relatively countably compact set to be sequentially dense (resp. nearly
relatively compact). Many generalizations of thèse important theorems were given,
the most gênerai by J. D. Pryce [4]. In order to study thèse problems D. H. Fremlin
defined a Hausdorff topological space as angelic [4] ifany relatively countably compact
set is relatively compact and sequentially dense.

In potential theory there exists a theorem proved by A. Cornea [2], which deals

with the convergence of harmonie functions, and which is closely related to the theorem
of Eberlein. Because of the order relation appearing in the theorem of Cornea,
neither of thèse theorems can be deduced from the other. In order to obtain a more
gênerai resuit, containing at the same time the theorems of Pryce and Cornea, we hâve

introduced the notions of Eberlein space and Smulian space. On an Eberlein (resp.

x) This paper was elaborated during the period the author visited the ETH Zurich Forschungs
institut fur Mathematik and the EPF Lausanne, Département de Mathématiques.
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Smulian) space any relatively countably compact set is nearly relatively compact
(Theorem 2.13) (resp. sequentially dense (Theorem 3.22)), so that aregular Smulian-
Eberlein space (i.e. a regular space which is both a Smulian and an Eberlein space) is

angelic. But there exist completely regular spaces such that any relatively countably
compact set is relatively compact which are not Eberlein spaces (Example 2.15),
Eberlein spaces for which any subset is sequentially dense which are not Smulian spaces
(Example 3.23) and completely regular spaces for which any relatively countably
compact set is sequentially dense and which are not Smulian spaces (Example 3.24).

Nevertheless many of the usual topological spaces are Eberlein or Smulian spaces.
For instance the paracompact (Corollary 2.4), Lindelôf (Corollary 2.5) and topological
spaces underlying a complète uniform space (Theorem 2.7) are Eberlein spaces. The

product of any family of Eberlein spaces is an Eberlein space (Theorem 2.8) (the

category of Eberlein spaces possesses inductive and projective limits (Corollaries 2.11

and 2.9)). Any topological space on which there exists a coarser metrizable topology
is a Smulian-Eberlein space (Corollary 3.19 and Proposition 3.1 ; generalization of [3]
Théorème 3). In particular the topological groups for which the one-point sets are of
type Gô are Smulian-Eberlein spaces (Corollary 3.20 and Proposition 3.1). A topological

space which may be injected continuously in a Smulian (resp. Smulian-Eberlein)

space is a Smulian space (Corollaries 3.6 and 3.7) (resp. a Smulian-Eberlein space

(Corollaries 3.17 and 3.18))

If Xis a Hausdorff topological space which contains a dense cr-compact set and if Y
is a regular space on which there exists a coarser metrizable topology, then the space

^(X, Y) of continuous maps of X into Y (endowed with the topology of pointwise
convergence) is a Smulian-Eberlein space (Corollary 5.16; generalization of [4],
Theorem 3.2). Suppose X is a Hausdorff topological space with the property that a

real valued function / on Xis continuous if for any cr-compact set A oîX there exists a

continuous real valued function g on X such that f=g on Â; then ^(X, Y) is an
Eberlein space for any completely regular Eberlein space Y (Corollary 5.19; generalization

of [4], Theorem 2.4). l(^(X, Y) is an Eberlein space, Fis a separated uniform
space, and S is a covering of X, the #e (X, Y) (i.e. V (X, Y) endowed with the topology
of uniform convergence on the sets of S) is an Eberlein space (Corollary 5.2.). Let X
be a Hausdorff topological space, S be a covering of X such that any set of © is

contained in the closure of a cr-compact set, Y be a separated uniform space, IF be a

subset of^(X, Y) and let ^e dénote the uniform space obtained by endowing IF with
the uniform structure of uniform convergence on the sets of S. If any Cauchy filter 5
on &% which has the property that the intersection of any countable family in g
belongs to 5 is convergent, then !F endowed with the topology of pointwise convergence

is an Eberlein space (Theorem 5.23.).

Applying thèse results to locally convex vector spaces, we get:
a) Let E, F be locally convex vector spaces such that there exists a cr-compact
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dense set in F and such that the one point sets ofF are of type Gô. Then the set 3? (F, F)
of continuous linear maps of E into F is a Smulian-Eberlein space for any topology
finer than the topology of pointwise convergence (Theorem 6.2.).

As a corollary we get:
b) If E is a locally convex vector space such that {0} is a Gô-set in the Mackey

topology, then E endowed with any topology, finer than the weak topology, is a
Smulian-Eberlein space (Corollary 6.3.; generalization of [3] Proposition 6 and [4]
Theorem 4.2.).

c) Let E, Fbe locally convex vector spaces such that Fis an Eberlein space, S be a

covering of E with bounded sets such that any set of S is contained in the closure of a

tr-compact set of E and !F be a set of continuous linear maps of E into endowed with
the uniform structure of uniform convergence on the sets of S. If any Cauchy filter gf

on & is convergent to an élément of& if it possesses the property that the intersection
of any countable family in g belongs to g then & is an Eberlein space for the topology
of pointwise convergence (Proposition 6.6.).

As a corollary we get:
d) Let F be a locally convex vector space, E' be its dual and A be a subset of E

with the property that any Cauchy filter g on A converges to a point of A if the
intersection of any countable family in 5 belongs to 5- Then A is an Eberlein space
for any topology consistent with the duality <F, F'> (Corollary 6.7.; generalization
of [3] Proposition 2 and [4] Theorems 4.3. and 4.4.).

e) Let F be a bornological locally convex vector space, S be a covering of E and F
be an Eberlein locally convex vector space. The S£ (F, F) endowed with the topology of
uniform convergence on the sets of © is an Eberlein space (Theorem 6.8.).

f) If X is a locally compact space, 3f(X) is the vector space of continuous real
valued (resp. complex valued) functions on X which hâve compact carrier and-^pQ
is the vector space of Radon real (resp. complex) measures on X, then Jf(X) is a
Smulian-Eberlein space with respect to the weak topology g (pf (X), Jt (X)) (Theorem
6.13.) and«^(Z) is an Eberlein space with respect to the vague topology (i.e. the weak

topology a(Jte(X)9 Jf(X)) (Corollary 6.11.).
g) Let Xbe a Hausdorff topological space, &(X) (resp. Vb(X)) be the set of

continuous (resp. bounded continuous) real or complex functions on X, and JKC{X)
(resp. ^h{X)) be the set of real or complex measures with compact carrier (resp.
bounded measures) on X. A subset of *&(X) (resp. ^b{X)) is compact for the

<r(V(X)9 ^Tc(Z))-(resp. <r(Vb(X),jeb(X))-) topology if and only if it is bounded for
this topology and is compact for the topology of pointwise convergence (Corollary
7.4. ; generalization of [3] Théorème 5).

h) Let F be a complète locally convex vector space which contains a weakly

(7-compact dense set. Let X be a measurable space, ju be a measure on X and / be a

map of X into F such taht for any x'eE' the function x'of is ^-integrable. If for any
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equicontinuous séquence (x'n)neN in E' converging to 0 for the a{E\ £)-topology
we hâve

lim x'n<

then there exists xeE such that for any x'eE' we hâve

(Theorem 7.9; generalization of [1]).
As corollaries we get:
i) Let E be a quasi-complete locally convex vector space, X be a Hausdorff

topological space, /ibea bounded measure on X and / be a ji-measurable map of X
into E for the weak topology of E such that f(X) is bounded. Then x'°f is

/z-integrable for any x'eE' and there exists xei? such that

h
for any x'eE' (Corollary 7.14).

j) Let X, 7be Hausdorff topological spaces, \i, v be bounded complex measures on
X, Y respectively and / be a bounded complex function on Xx Y which is separatedly
continuous in each variable ; then the restriction of the function

J f(x,y)dv(y):X-+C,

to the closure of any relatively countably compact set of X is continuous (Corollary
7.6 and Corollary 4.4) and we hâve

J J /(*, y) du (*)) dv (y) j(j f(x9 y) dv (y)^ dfi (x)

(Corollary 7.15).
For esthetic reasons the whole theory was done only for Hausdorff topological

spaces, although practically ail results remain true on arbitrary topological spaces.
The used notion which were not defined in the présent paper may be found in

N. Bourbaki or H. H. Schaefer [5].
The notions introduced in this paper were also studied hère for their own sake.

For the reader who is only interested in some of the above quoted results, we gige an
index and the list of the logical connections at the end of the paper.
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I. Nets

A preorder relation < ona set / is a binary relation on / such that
a) iel=>i<:i;
b) i, i\ i"el9 i<r, ï^i"=>i^i".

An upper directed preordered set is a set / endowed with a preorder relation < such

that for any i', i"e/there exists le/with i'<i, ï'^i.
The sectionfilter of an upper directed preordered non-empty set / is the filter gener-

ated by the fîlter-base {{ieZ | i ^k] | keI}. A net on a set Jf is a pair (/,/), where / is

an upper directed preordered non-empty set and/is a function defined on / such that

f(I)aX. If g is a filter on/, we shall dénote, abusively, by/(g) the filter on .Ygener-
ated by the filterbase {f(A) | Ae$}. A net (/,/) on a topological space is called

countably compact if for any increasing séquence (în)MeN in / the adhérence of the

séquence (f(in))neN is non-empty.

PROPOSITION 1.1. Let^bea covering of a set X, (/, /) be a net on X, U be an

ultrafilter on I, finer than the section filter of I, and (In)ne N be a séquence in II. If
f~1(V)$Ufor any Fe93, then there exist an increasing séquence (in)neN in I and a

séquence (Fn)wgN in 93 such that for any neN we hâve

ineln, f(in)eVn\\J Vm.
m<n

Suppose that the séquences were constructed up to n — 1 and let us find in and Vn.

Since f~1(Vm)$U for any m<n and since XI is an ultrafilter we get

On the other hand

{isl\i>in^}eU, IneU

and therefore there exists

I.6/"1 (X\{Jm<nVm) n {iel | i > in.t) n /„.

We take an arbitary Vn in 33 such that / (in)e Vn. t

PROPOSITION 1.2. Let Xbea topological space, ^Sbea covering ofX and Wbea
countable subset of open sets of 93 such that any point xeX\{JVeW V possesses a

neighbourhood U with theproperty that the set {Fe93 | Vn f/^0} isfinite. If(I,f) isa
countably compact net on Xand if IX is an ultrafilter on l,finer than the sectionfilter ofl,
then there exists Fe93 such that f~x{V)eU.
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Let q> be a map of N onto 2B and let us dénote

for any «eN.
Let us suppose that the proposition is not true. Then, since It is an ultrafilter,

'(U^W^H, J.ell

for any neN. By the preceding proposition there exist an increasing séquence (in)neN
in / and a séquence (Vn)neN in 93 such that

ineln9 f(in)eVn\U Vm

m<n

for any neN. Let x be an adhèrent point in X of the séquence (/ (in))ne N. Assume first
that there exists Ve2B such that xe V. Then there exists weN such that V= <p(m) and
therefore / (in)$ V for any n > m and this is a contradiction since V is open. But then,
by the hypothesis of the proposition, x possesses a neighbourhood U such that the set

{ V$ 93 | Vn U^ 0} is finite. There exists then a natural number m such that Vn n U— 0

for any n^m and this leads also to the contradictary relation f(in)$ U for any n>m.
Our initial assumption led us therefore to the absurd conclusion that the adhérence of
the séquence (/ (in))neN is empty. f

PROPOSITION 1.3. Let (/, /) be a net on a set X,%bea filter on Ifiner than
the sectionfilter of I, and F e g. Then there exists a net (/, g) on f (F) and an increasing

map cp of J onto F such that: a) g= f°(p; b) 3 ç>(®) where © dénotes the section

filter of J; c) for any increasing séquence (in)n eNin F there exists an increasing séquence
(Kn)nex in J such that ç{Kn) — infor any neN. If Xis a topological space and ifthe net

(/, / is countably compact, then any such net (J, g) is countably compact.
We set

J:= U(A
A<=F

and endow / with the preorder relation

(i, i4)<(ic, £):oz<ic and AzdB.

This preorder relation is upper directed. Indeed let (i', A')eJ, (i", A")eJ. There
exists tel such that i'^i, i"ci. Since 5 is finer than the section filter of lit follows
that the set A: {keI\ K^i}nA'nA" belongs to g. Let kgA. Then (k, A)eJ and

(*', A')^(k, A), (i\ A")^(k, A). We dénote by (p the map (*, A)\-+i:J-»F and set
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g: f°(p. It is obvious that (p is increasing and <p(J)=F. Let Ae%. Then, obviously

U (Bx{B})e© and q> \J (B x {B})) AnF.

Hence <p(©)z>g. Conversely let (ï, ^)e/. Then

<p({(K9 B)eJ | (k, B) ^ (i, A)}) 3 ^ n {>ce J | *c ^ ï}e

g. The property c) is obvious.
The last assertion is obvious. f

PROPOSITION 1.4. Let ("S, f be a countably compact net on a topological space.

If the séquence (/ (n))ne N te,? a unique adhèrent point, then it converges to this adhèrent

point,
Let x be the unique adhèrent point of the séquence (f(n))neN and assume that the

séquence does not converge to x. Then there exists a neighbourhood U of x and a

subsequence (f(nk))keN of the séquence (/(w))neN such that f(nk)$ U for any fceN.
Let>> be an adhèrent point of the séquence (f(nk))keN. Then >> is an adhèrent point of
the séquence (/(«))weN différent from x and this is a contradiction, t

U. Eberlein Spaces

A Hausdorff topological space will be called an Eberlein space if for any countably
compact net (/, / on it and for any filter 5 on h &ner than the section filter of /,
the adhérence of the filter / (5) is non-empty. This is équivalent to the assertion that
for any countably compact net (/, / on it and for any ultrafilter U on /, finer than the
section filter of /, the ultrafilter / (It) is convergent.

An Eberlein closed set of a Hausdorff topological space X is a subset Y of X such

that for any countably compact net (/, / on the topological subspace Y and for any
ultrafilter U on /, finer than the section filter of / and such that / (31) converges in X to
a point xeX, we hâve xe Y. Any closed set of a Hausdorff topological space is Eberlein
closed. The intersection of any family and, by Proposition 1.3, the union of any finite
family of Eberlein closed sets are also Eberlein closed. If Y is an Eberlein closed subset

of X and if Z is a subspace of X then Yn Z is Eberlein closed in Z.

PROPOSITION 2.1. Let X be an Eberlein space and Y be a subset of X. Y is an
Eberlein subspace if and only if it is Eberlein closed. In particular any closed

subspace of an Eberlein space is also an Eberlein space. If Y is Eberlein closed in X, then it
is Eberlein closed in Xfor any finer topology.

The proof is obvious. t
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PROPOSITION 2.2, Let X be a topological space, Y be an Eberlein subspace of
X, (/, f)bea countably compact net on X and % be afilter on I,finer than the section

filter of L Iff~i(Y)e$ then the adhérence off{%) is non-empty.
By Proposition 1.3 there exists a countably compact net (/, g) on F and an increas-

ing map cp of/into Jsuch that g=f°q> and 5 <P (©)> where © is the section filter of/.
Since Fis an Eberlein space the adhérence of #(©)=/(5) is non-empty. f

We shall give some criteria for a topological space to be an Eberlein space. The
criteria given in the corollaries 2.4, 2.5 and 2.6 having similar proofs, we prove first a

somehow complicated theorem, which has the advantage of avoiding répétitions.

THEOREM 2.3. Let X be a Hausdorff topological space and let % be a set of
Eberlein subspaces of X. If for every open covering 93 of X there exists a covering 93 of
X, finer than the covering 91 u 93 and a countable subset 2B of open sets of 93 such that

any point xeX\[JVeW Vpossesses a neighbourhood U with theproperty that the set

{Fe93 | Vn C/#0} isfinite, then X is an Eberlein space.
Assume that A"is not an Eberlein space. Then there exists a countably compact net

(/, f) on X and an ultrafilter U on /, finer than the section filter of /, such that the

ultrafilter /(U) is not convergent. By Proposition 2.2 / ~i(A)^U for any AetyL.

Since /(U) is not convergent any xeXpossesses an open neighbourhood Ux such

that/ ~1 (UX)$U. Let 93 be the covering of X, finer than the covering 91 u {Ux \ xeX}
of X, with the proporties indicated in the proposition. By Proposition 1.2 there
exists Ve 93 such that / ~1 (K)ell. This leads to a contradiction since then there exists

an AeS& such that f~i(A)eVi or an xeX such that / -1 (Ux)eU. t

COROLLARY 2.4. Any paracompact (and therefore any metrisable) space in an
Eberlein space.

It is sufficient to take 91 (and 9GB) empty in the theorem. t

COROLLARY 2.5. Any Lindelôf space2) is an Eberlein space.

It is sufficient to take 91 empty (and 93 SB) in the theorem. f

COROLLARY 2.6. A topological space which possesses a locally finite covering
with Eberlein subspaces is an Eberlein space. In particular a topological sum of Eberlein

spaces is an Eberlein space.
Let 91 be a locally finite covering of a topological space with Eberlein subspaces.

It is sufficient to take 93=91 and 9B=0 in the theorem. f

2) A Lindelôf space is a Hausdorff topological space such that any open covering contains a
countable subcovering. Any Hausdorff topological space which is a-compact is a Lindelôf space.
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Remark, There exist locally compact spaces which are not Eberlein spaces. Indeed
let co1 be the first uncountable ordinal number and let a subset U of cox be open if for
any Ce U there exists rj < Ç such that ~\rj, £] cz U\ then g^ endowed with this topology is

a locally compact space which is not an Eberlein space.

THEOREM 2.7. Let Xbea separated uniform space, (/, f)bea countably compact
net on X and II be an ultrafilter on I,finer thon the section filter ofl. ThenfQX) is a
Cauchy filter. Hence the topological space canonically associaied to a complète separated

uniform space is an Eberlein space.
Assume that/(U) is not a Cauchy filter. Then there exists a uniformly continuous

écart d of Xwith the property that for any AeU there exist i, keA such that d(f(i),
f(tc)) > 1. We shall construct by induction an increasing séquence (0n6N *n * suc^ ^at
d(f(im,f(in))>$ for any two différent natural numbers m, n. We take an arbitrary i0
in /. Assume that the séquence was constructed up to n — 1 and let us find a in. We hâve

{16/ | i > in-t}eU, m<n~ {tel \ d(f(i),

U being an ultrafilter we get

Hence there exists inel such that

in>in.u m<n=> d(f(im% f{in)) > i.
Let x be an adhèrent point of the séquence (f(in))n eN. There exists then a subsequence

(hjke* of (in)neN such that

«*(*,/(iJ)<i
for any kéN and this leads to the contradictory relation

Hence / (U) is a Cauchy filter. f

THEOREM 2.8. The product of any family ofEberlein spaces is an Eberlein space.
Let (Xx)ke L be a family of Eberlein spaces, (/, / be a countably compact net on

YlxeL %x and U be an ultrafilter on /, finer than the section filter of/. If we dénote for
any XeL by nx the projection

11 xx - Xx
XeL
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then (/, 7iAo/) is a countably compact net on Xk. Since Xx is an Eberlein space it
follows that the ultrafilter nx<> /(U) is convergent. Since X is arbitrary we deduce that
the ultrafilter f(U) is convergent. Hence \\xeL %x *s an Eberlein space. t

COROLLARY 2.9. Theprojective limit ofEberlein spaces is also an Eberlein space.
In fact this projective limit is homeomorphic with a closed subspace of a product

of Eberlein spaces. t

PROPOSITION 2.10. For any topological space X there exists an Eberlein space
XQ and a continuous map cpx of X into Xo such that (px(X) is dense in Xo and such that

for any Eberlein space Y andfor any continuous map cp of X into Y there exists a unique
continuous map \j/ of Xo into Y such that (p \l/°(pX'

Let us dénote by M the set of pairs (F, <p), where Fis an Eberlein space whose

underlying set is a subset of 22X and (p is a continuous map of Zinto Y. We dénote by
31 the small category whose objects are the éléments of M and such that for any two
objects (F, <p), (Y\<pf)

Hom((F, cp), (Y', cp')): tyeV(Y9 Y') \cp' ij/ocp},

where ^(F, Y') dénotes the set of continuous maps of F into F7; the composition of
two morphisms in 3t is the usual one. Let F be the imbedding functor of 3ï into the

category of topological spaces and let (X\ (^(y><P)) (y,ç,)€m) be its projective limit.
By the above corollary Xr is an Eberlein space.

Let (F, q>\ (F', <p') be two objects of 31 and i^eHom((F, <p), (Y', q>')). Then, by
the définition, (p' \jjo(p. Hence there exists a unique continuous map cp'x of X into X'
such that (p iï(Y,<p)o(Px f°r anv object (Y, (p) of 31. Let Xo be the subspace <px{X) of
X'. By Proposition 2.1 Xo is an Eberlein space. Let us dénote by i the imbedding
map of Xo into X' and by cpx the continuous map ofJHnto Xo defined by (px. We want
to show that the pair (Xo, cpx) possesses the announced properties.

It is obvious that q>x{X) is dense in Xo. Let F be an Eberlein space and (p be a

continuous map of X into F. Then the subspace q> (X) of F is also an Eberlein space

(Proposition 2.1). Since the cardinal number of <p(X) is smaller than the cardinal

number ofX, the cardinal number of (p(X) is smaller than the cardinal number of 22X.

We may therefore identify cp (X) with a subset of 22*. If q>0 dénotes the continuous map

of JHnto <p(X) defined by <p, then (ç(X), (po)eM.
Weset

where j dénotes the imbedding map of q> (X) into F. We get
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The unicity of if/ follows from the fact that (px(X) is dense in Xo and Fin a Hausdorff
space. f

COROLLARY 2.11. The full subcategory of the category of topological spaces
formed by the Eberlein spaces possesses inductive limits.

Let 3) be a small category and F be a covariant functor of D into the category of
Eberlein spaces. Let (X, (<pD)Deobiù) t>e its injective limit in the category of topological
spaces. Let further (Xo, q>x) be the pair whose existence was proved in the proposition.
We want to show that (Xo, (çxo (pD)DeObT>) is the inductive limit of F.

First ofail we remark that ifD, D'are two objects of 2) and ifweHom (D, D'), then

{<Pxo<Pd)°F{u) (Px°(<Pd'°F(u)) <Pxo<Pd-

Let Fbe an Eberlein space and (il/D)DGObt> ^e a family such that for any DeOb D,
il/De^(F (D), Y) and such that for any two objects D, D' of D and for any
weHom(D, D'), we hâve \l/D \l/D°F(u). Then there exists a unique (petf(X, Y) such

that for any DeObî), we hâve il/D=(p°(pD. By the proposition there exists a unique

09 Y) such that (p=^^.We get for any Z>eObD

Let {l/'e^(X0, Y) such that for any Z)eObî) we hâve il/D=il/f°((px° <Pd)- Then, by
the unicity property of \// we get further \j/f il/. f

PROPOSITION 2.12. A Hausdorff topological space for which there exists a

proper map into an Eberlein space is an Eberlein space.
Let q> be a proper map of a Hausdorff topological space Zinto an Eberlein space F.

Let further (/, / be a countably compact net on X and VL be an ultrafilter on /, finer
than the section filter of/. Then (/, q> o / is a countably compact net on Y and there
fore <p o / (U) is convergent. But q> being proper this implies that / (U) converges, f

THEOREM 2.13. In an Eberlein space any relatively countably compact set is

nearly relatively compact. In particular a countably compact regular Eberlein space is

compact.
Let Xbt an Eberlein space, A be a relatively countably compact set ofZand 5 be a

filter on A. We endow A with the trivial preorder relation ^ (i.e. we set x^y for any
two éléments x, y of A). Then A becomes an upper directed preordered set such that
2f is finer than the section filter of A. Ifwe dénote by / the inclusion map of A into X
then (A, / is a countably compact net on X. Since X is an Eberlein space it follows
that the adhérence of / (5) is non-empty. Since % is arbitrary it follows that A is

nearly relatively compact, t
The converse assertion is not true as it can be seen from the following examples.

(To be followed.)
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EXAMPLE 2.14. There exists a Hausdorff topological space such that any point
possesses a countable neighbourhood and a countable fondamental System of neigh-
bourhoods (and therefore any subset is sequentially dense) and such that any relatively
countably compact set is nearly relatively compact and countable, but which is not an
Eberlein space.

Let œi be the first uncountable ordinal number. We endow (Nu {oo}) x œx with a

topology taking as open sets the subsets U with the following property : if (oo, £)e U
then there exists meN and rjeœu rç<£ such that

({«eN | n > m}) x {Çec^ | n < £ < £} c U.

This space is Hausdorff and any point of this space possesses a countable neighbourhood

and a countable fondamental System ofneighbourhoods. Moreover any relatively
countably compact set is nearly relatively compact, and countable.

We endow N x <ox with the following upper directed order relation:

(m, {)<(«» rj):o(m, {) («, n) or (m < n and £<rj).

If/ dénotes the inclusion map ofN x œl into (N u {oo}) x col and 5 dénotes the section
filter of Nxc^i then for any increasing séquence (tn)neN in Nxa^ the séquence

(/(O)»eN has a non-empty adhérence and the adhérence of /($) is empty. f

EXAMPLE 2.15. There exists a completely regular space such that any relatively
countably compact set is relatively compact and which is not an Eberlein space.

We construct inductively the saquence (Kn)neN in the following way: Ko is the
smallest infinité cardinal number and Kw+1 is the smallest cardinal number strictly
greater than KM. By Xq, we dénote the smallest cardinal number strictly greater than

any Kn (neN).
Let X be a set, whose cardinal number is Kw, and Y be the set of its finite subsets

endowed with the discrète topology. Let F* be the Stone-Cech compactification of Y
and 0 be the set (A, U), where A is a subset of X, whose cardinal number is strictly
smaller than Kq,, and U is an ultrafilter on F such that for any finite subset y0 ofA we
hâve

{yeY\yoayczA}eU.
We dénote by Z the subspace of 7* formed by the limit points of the ultrafilters II on
Y for which there exists AcX such that (A, H)e#. Z is obviously a completely
regular space which contains Y. For any zeZ there exists a unique (A(z), U(z))e#
such that XI (z) converges to z.

We want to show that any relatively countably compact set B of Z is relatively
compact. Let < be a well order relation on X such that Xendowed with it is the smallest

well ordered set of cardinal K^. For any zeZ let <p(z) dénote the supremum of A(z)
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(which exists since the cardinal number of A (z) is strictly smaller than tfm). Assume
that the set {q>{z) | zeB} is not bounded. Then there exists a séquence (zn)n6N in B
such that ((p(zn))neN is increasing and unbounded. Let z be an adhèrent point in Z
of the séquence (zn)ne N. The closure in Z ofthe set {ye Y | y c ^4 (z)} is a neighbourhood
of z. For a sufficiently great neN, (p(zn) is strictly greater than <p(z) and therefore zn

does not belong to this neighbourhood of z which is a contraction. Hence the set

{(p(z) | zeJ?} is bounded.
Let tt be an ultrafilter on Z such that Be U and let us dénote for any Ce XI

zeC

We assert that there exists a DeU, DcB, such that ^4(Z))c:^(C) for any Cell.
If this is not the case, then there exists a decreasing séquence (Cn)neN in U such that
Coc:B a.ndA(Cn)\A(Cn+1)^0 for any neN. This allows us to construct a séquence
(zn\e n *n ^ sucn that /4 (z»)\Um>n A (zm) for any «eN. Let z be an adhèrent point in Z
of the séquence (zn)neN. Since the closure in Z of the set {ye Y | jc^4 (z)} is a
neighbourhood of z there exists an «eN such that A (zn)c:A(z). Let xeA (zn)\ljm>n A (zm).

The closure in Z of the set {je7| xeyczA(z)} is also a neigbourhood of z which
does not contain any zm for m>n and this is the expected contradiction. We also

remark that the cardinal number of A(D) is strictly smaller than X,,,. Let xeA(D).
The assumption

contradicts the relation xeA{D) cA(C). Hence {zeC
If y0 is a finite subset of A{D) we deduce

{zeC\yoczA(z)}= fxeyo

Let us dénote

33:= {E c F | {zeZ | £elt(z)}elt}.
Then 93 is an ultrafilter such that for any finite subset y0 of A (D)

Hence (A(D)9 33)e# and 93 converges to a zeZ. The closure in Z of any set of 93

belongs to U. But any neighbourhood of z contains the closure in Z of a set of 93 and

belongs therefore to U. Hence U converges to z. We hâve proved that B is relatively
compact.

We want to show now that Z is not an Eberlein space. Let us order Fby the inclusion
relation and let / be the inclusion map of 7 into Z. The Y, f is obviously a countably
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compact net on Z. Let U be an ultrafilter on Y, finer than the section filter of Y. Let
zeZ and xeX\A(z). Then

{yeY \xey}eU
and the closure of{yeY\y<=A (z)} in Z is a neighbourhood of z. Hence U does not
converge to z and Z is not an Eberlein space. f

Remark. It can be proved that any Hausdorff topological space whose cardinal
number is strictly smaller than Kw is an Eberlein space if any relatively countably
compact set is relatively compact.

m. Smulian Spaces

A Hausdorff topological space is called a Smulian space if for any countably compact
net (/, / on it, for any filter g on /, finer than the section filter of /, for any adhèrent

point x of the filter/(5), and for any séquence (In)neN in 3f there exists an increasing

séquence (in)neN in I such that the séquence (/(in))neN converges to x and such that
ineln for any neN. An équivalent statement is: for any countably compact net (/, /)
on it, for any ultrafilter U on /, finer than the section filter of / and such that / (U)
converges to a point x, and for any séquence (In)neN in U there exists an increasing

séquence (ïn)weNin I such that the séquence (f(in))neN converges to x and such that
ineln for any neN.

A Hausdorff topological space is called a strict Smulian space if for any countably
compact net (/, /) on it and for any ultrafilter U on /, finer than the section filter of /
and such that /(II) converges to a point x, there exists a séquence (An)neN in /(U)
with the property that for any increasing séquence (in)neN in / such that f(in)eAn for
any neN, the séquence (/(O)neN converges to x.

An Eberlein space which is at the same time a Smulian (resp. strict Smulian) space
will be called a Smulian-Eberlein (resp. a strict Smulian-Eberlein) space.

PROPOSITION 3.1. Any strict Smulian space is a Smulian space.
Let (/, / be a countably compact net on a strict Smulian space, U be an ultrafilter

on /, finer than the section filter of / and such that / (U) converges to a point x,
and (/W)B6N be a séquence in U. There exists a séquence (An)neN in /(U) with the

property that for any increasing séquence (in)neN in / such that /(in)eAn for any neN
the séquence (f(in)n€x converges to x. We construct inductively an increasing

séquence (OneN in I such that ineInnf~i(An) for any neN. Assume that this

séquence was constructed up to n-1. Since U is finer than the section filter of /
{ie/| ^^.jJeU, andtherefore {iel\ ^i),-1}n/lln/"1(i<B)ell. Wemay takean
arbitrary in in the set {iel\ i^in-i}n/Mn/ ~x(An). The séquence (/ (in))nes
converges to jc. t
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THEOREM 3.2. Let X be a Hausdorff topological space, Y be a Smulian (resp.
strict Smulian) space and (p be a continuous map of X into Y. Iffor any xeX there exists

a séquence (Un)neN of closed neighbourhoods of x such that

Wn
then X is a Smulian (resp. strict Smulian) space.

We prove first the Smulian part of the theorem. Let (/, /) be a countably compact
net on X, % be a filter on /, finer than the section filter of/, x be an adhèrent point of
/(5) and (/„)„«= N be a decreasing séquence in g. Let further (Un)neN be a decreasing

séquence of closed neighbourhoods of x such that

eN

Let us dénote by © the filter on / generated by the filter-base

{A nf "1 (Un) | Ae$, neN}. (/, (p°f) is a countably compact not on F, © is finer than
the section filter of/, cp{x) is an adhèrent point of <p°/(©) and (/nn/"1(t/n))MeN
is a séquence in ©. Since F is a Smulian space, there exists an increasing séquence
(OrtgN in /such that (q>(f(iH)))HeN converges to q>(x) and such that inelnn f'1 (Un)
for any neN. Let x' be an adhèrent point of the séquence (/ (in))neN. Then (p(xf)
is an adhèrent point of the séquence (cp° /(in))ngN and therefore (p(x') (p(x),
x'e(p~1((p(x)). On the other hand xfef^\neN Un and we deduce x' x. By Proposition
1.4 the séquence (/(O)neN converges to x.

We now prove the strict Smulian part of the theorem. Let (/, /) be a countably
compact net on X, U be an ultrafilter on /, finer than the section filter of / and such

that / (II) converges to a point x. Then (/, q> © / is a countably compact net on F and

(p°f (U) converges to (p (x). Since F is a strict Smulian space, there exists a séquence
(^n)neN i*1 (P°/(U) wiïh ^e property that for any increasing séquence (in)MgN *n I
such that (pof(in)eAn for any neN, the séquence (<p°/(*„))„eN converges to (p{x).
Let (Un)neN be a séquence of closed neighbourhoods of x such that

Wn
Then {Unr\q> *(^4n))weN is a séquence in /(U). Let (ïw)neN ^e an increasing séquence
in /such that/(ïn)e(/rtn<^~1(^4n) for any neN and let x' be an adhèrent point of
the séquence (/(O)neN- Then <P{X>) *s an adhèrent point of the séquence (<p°f(in))nen
and therefore (p(x')~(p(x), xfe(p~1(q>(x)). On the other hand x'eP)n6N Un and

therefore x'=x. By Proposition 1.4 the séquence (/(*„))*s n converges to x. f

COROLLARY 3.3. jLet ^Tèe a regw/ar ^pace, Fée ût Smulian (resp. strict Smulian)
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space, and cp be a continuous map ofXinto Y such thaï for any xeX, {x} is of type Gô

in the space ç'1 ((p(x)). Then X is a Smulian (resp. strict Smulian) space.
Let (Wn)neN be a séquence of open sets of the space <p~1(<p(x)) such that

{jc} P|neN Wn. Let(Fn)neN be a séquence of open sets of X such that Wn=Vnn
(p~x((p(x)) for any neN. Since X is regular there exists for any «eN a closed

neighbourhood Un of x in X such that Un c Vn. But then

^W)= n w.-w. t

COROLLARY 3.4. Le* X be a Hausdorff topological space, Y be a Smulian

(resp. strict Smulian) space and cp be a continuous map of X into Y such that for any
yeY, (f>"1(y) is at most countable. Then X is a Smulian (resp. strict Smulian) space.

Let xeX. By the hypothesis there exists a séquence (xn)neN in X\{x} such that

(p~1((p(x))={x}u{xn\neN}.
For any neN, let Un be a neighbourhood of x such that xn$ Un. Then

n

COROLLARY 3.5. A Hausdorff topological space X such that for any xeX,
{x} is the intersection of a countable set of closed neighbourhoods is a strict Smulian

space. In particular any metrizable space is a strict Smulian space. f

COROLLARY 3.6. A subspace of a Smulian (resp. strict Smulian) space is a
Smulian (resp. strict Smulian) space. t

COROLLARY 3.7. IfXisa Smulian (resp. strict Smulian) space thenXendowed
with anyfiner topology is also a Smulian (resp. strict Smulian) space. t

PROPOSITION 3.8. The product of any countable family of strict Smulian spaces
is a strict Smulian space.

Let (Xm)meN be a séquence of strict Smulian spaces, (/, /) be a countably compact
net on YlmeN X™ and M ^e an ultrafilter on /, finer than the section filter of/and such

that /(lï) converges to x. If for any meN, nm dénotes the projection

neN

then (/, nmof) is a countably compact net on Xm and nm°f(VL) converges to nm(x).
Hence for any meN there exists a séquence (Amtn)neN in ftm°/(U) with the property
that for any increasing séquence (iw)neN *n I such ^at nm°/(O€^« f°r any weN,
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the séquence (nmof(in))neN converges to nm(x). We may even take Amt n: Xm for
n<m. We set for any neN

An- n An<n.
meN

Then (^4,,)ngN is a séquence in /(U). Let (in)neN be an increasing séquence in / such

that f(in)eAn for any n. Then for any m, neN we hâve nm°f(in)eAmtn and therefore
the séquence (nm o / (*„))„ e N converges to rrm (x). It follows that the séquence (/ (in))n g N

converges to x. f
Remark. The product of an uncountable family of strict Smulian spaces is not

always a Smulian space. Indeed let us consider the space {0, l}*1, where co1 dénotes the

first uncountable ordinal number. Let / be the map of cû1 into {0, l}*01 defined by

for t] < Ç ,„ v

for y > Ç x'

and let Qf be the section filter of œv Then (col9 f is a countably compact net on
{0, \}m and /(8r) converges to the point

tlh->0:cûi-+{09l}

of {0, l}*1, but for any increasing séquence (in)ngN in co1 the séquence (f(in))neN does

not converge to this point.

PROPOSITION 3.9. The product of a Smulian space with a strict Smulian space
is a Smulian space.

Let Zbe a Smulian space and Fbe a strict Smulian space. Let (/, / be a countably
compact net on Xx Y, Xt be an ultrafilter on /, finer than the section filter of / and
such that /(U) converges to a point (x, y), and (/w)ngN be a séquence in Xt. If p (resp.

q) dénotes the projection

IxFkI (resp. X x Y -> Y)

then (I,pof) (resp. /, q°f) is a countably compact net on Z(resp. Y) and/?°/(XI)
(resp. qof (U)) converges to x (resp. y). Since 7 is a strict Smulian space there exists

a séquence (An)nefli in #°/(XI) with the property that for any increasing séquence
(in)neN in /such that qof(in)eAn for any neN, the séquence (qof(in))neN converges
to y. Then (Inn f "1 (q"1(An)))neN is a séquence in Xt and, X being a Smulian space,
there exists an increasing séquence (ïb)B6N in / such that the séquence (/>°/(*«))»€n
converges to x and !ne/M n / -1 (q~x (An)) for any neN. We deduce that the séquence

(/(0)«6N converges to (x9 y), t
Remark. We do not know if the product of two Smulian spaces is a Smulian space,

but this resuit seems to us improbably.
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PROPOSITION 3.10. Let Xbe a Hausdorfftopologicalspace, (/, f)bea countably
compact net on X and VL be an ultrafilter on I, finer thon the section filter of I and
such thatf (U) converges to a point x. Ifthere exists a Smulian subspace Y ofXwhich is

Eberlein closed and such thatf'1 (Y)eU, and if (/„)„<= N is a séquence in U, then there

exists an increasing séquence (in)ne^ in I such that (f(in))nes converges to x and

ineln for any neN. If there exists a strict Smulian subspace Y of X which is Eberlein
closed and such thatf~1(Y)eVL then there exists a séquence (An)neN inf(VL) with the

property that for any increasing séquence (O/teN ™ I such that f(in)eAn for any neN
the séquence (/0«))neN converges to x.

Let first Fbe an Eberlein closed subset of X such that / "1 Y)e U. By Proposition
1.3 there exists a countably compact net (/, g) on Y and an increasing map <p of /
into / such that g=f° (p,VL q> (©) where © dénotes the section filter of /, and such

for that any increasing séquence (in)neN inf~1(Y) there exists an increasing séquence
OOneN in J such that <p 00 in for any neN. Since Y is Eberlein closed we deduce

xeY.
Let us now prove the Smulian part of the proposition. Since g (©)=/ (U) converges

to xe Y and since q>
~1 (/„) e © for any n eN, there exists an increasing séquence (in)ne N

in / such that (g(in))ne^ converges to x and such that ^e^"1^) for any neN.
Then ((p(in))neN is an increasing séquence in /such that (f((p0«)))neN converges to x
and such that (p(in)eln for any neN.

Let us now prove the strict Smulian part of the proposition. Since g(©)=/(U)
converges to xe Y and since F is a strict Smulian space there exists a séquence
(An)neN in g(©) with the property that for any increasing séquence (Kn)neN in / such

that g(Kn)eAn for any neN the séquence (g(Kn))neN converges to x. Let (in)neN be an
increasing séquence in / such that f(in)eAn for any neN. By Proposition 1.3 there
exists an increasing séquence (kw),,6N in /such that (p(Kn) in, for any neN. Then the

séquence (/On))«6N=(^WkN converges to x. f

PROPOSITION 3.11. Let X be a Hausdorff topological space. If there exists a

locally finite covering of X with Smulian (resp. strict Smulian) subspaces which are
Eberlein closed, then X is a Smulian (resp. strict Smulian) space.

Let (/, / be a countably compact net on X and U be an ultrafilter on /, finer than
the section filter of / and such that / (U) converges to x. Let 93 be a locally finite
covering of X with Smulian (resp. strict Smulian) subspaces which are Eberlein
closed. By Proposition 1.2 there exists Ve 93 such that/ ~x (F)elt. The assertion now
follows from the preceding proposition, f

COROLLARY 3.12. A paracompact space which is locally a Smulian (resp. strict
Smulian) space is a Smulian (resp. strict Smulian) space.

Let Xbt a paracompact space such that any xeA"possesses a closed neighbourhood
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Ux which is a Smulian (resp. strict Smulian) space. Let 23 be a locally finite covering of
X which is finer than the covering (Ux)xeX. Then (F)K€23 is a locally finite covering of
X with Smulian (resp. strict Smulian) subspaces, which are Eberlein closed. f

COROLLARY 3.13. The topological sum of Smulian (resp. strict Smulian) spaces
is a Smulian (resp. strict Smulian) space. t

PROPOSITION 3.14. Let X be a Smulian space. If for any xeX there exists a

filter ^onX with a countable base such that any convergent séquence on X converges to x
if and only if its associated elementary filter on X is finer than %, then X is a strict
Smulian space. If for any xeX there exists a real function g on X equal to 0 at x and

strictly positive on X\{x) and such thatfor any séquence (yn)ne^ in X which converges to

a point yeX, the séquence (g(yn))neN converges to g(y), then for any xeX there exists

afilter % on X with the indicated properties.
Let (/, / be a countably compact net on X and U be an ultrafilter on /, finer than

the section filter of/and such that / (It) converges to a point xeX. Let $ be the filter
on X with the indicated properties and let Ae^. Assume that A$f(VL). Then

I\f"i{A)eVi and, since Zis a Smulian space, there exists an increasing séquence
(OneN m I sucrl ^at (/(O)neN converges to x and such that ineI\f~1(A) for any
neN. From the hypothèses about g we deduce that the elementary filter $' associated

with the séquence (/ (in))neN is finer than g. This is a contradiction, since X\A belongs
te g'. Hencei*e/(U).

Let (An)neN be a countable base of 5- Let (in)neN be an increasing séquence in /
such that /(iw)ep|m<n Am for any neN. Since (/, /) is a countably compact net, the

séquence (f(in))neN has an adhèrent point yeX. Using again the fact that X is a

Smulian space, we deduce that there exists a subsequence (f (ink))keN of the séquence
(/0»))neN> which converges to y. But the elementary filter associated to the séquence

(/(iJ)hN is finer than g. Hence y—x. Since x is the only adhèrent point of the

séquence (f(in))neN, we deduce by Proposition 1.4 that (/(O)neN converges to x.
This shows that X is a strict Smulian space.

In order to prove the last assertion let x be a point of X and g sl real function on X
with the indicated properties. We set

%:={Ac:X\ inf g(y)>0}.
yeX\A

It is easy to see that g is a filter on X with a countable base. Let (xn)neN be a convergent

séquence on X. We want to show that (xn)neN converges to x if and only if its
associated elementary filter g' is finer than g. Assume that (xtt)neN does not converge
to x. Then it converges to a yeX, y^x and we get

inîg(xn)>0.
neN
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Hence g' is not finer than 5- Assume that (xn)neS converges to x. Then

\imn^aog(xn)=g(x) 0 and gr' is finer than g. t

PROPOSITION 3.15. Let Xbea Hausdorfftopologicalspace, Ybea Smulian space,
<p be a continuons map of X into Y, (/, f)be a countably compact net on X and lt be an

ultrafilter on I, finer than the section filter of I. If (p°f(VL) converges to a point yeY
such that cp'1 (y) is a Lindelôf space (with respect to the induced topology), thenf(U)
is convergent.

Assume the contrary. Then any xecp~1(y) possesses an open neighbourhood Vx

which does not belong to /(lt). Since (Vxn cp~l(y))xe<p-i(y) is an open covering of
(p~1(y), there exists a séquence (xn)neN in (p~1(y) such that (VXnn\l/~l(y))neN is a

covering of cp~1{y). Since U is an ultrafilter and since f~1(VXn)$VL for any weN,
we get

r l(x\\j
for any neN. Fbeing a Smulian space and (/, cp° f) being a countably compact net on
Y, there exists an increasing séquence (ïn)neN in / such that (<p°/(*„))« en converges
to y and such that ine f ~1 (X\{Jm^n VXm) for any «eN. Since the net (/, / is countably
compact we deduce that there exists an adhèrent point x of the séquence (/(O)MeN.
lt is obvious that xe(p~x(y). Therefore there exists meN such that xeVXm. But
f(in)$ VXm for n^m and this is a contradiction, f

COROLLARY 3.16. Let X be a Hausdorff topological space, Y be a Smulian-

Eberlein space and (p be a continuons map of X into Y such that for any ye Y, (p~x(y) is

a Lindelôf space (with respect to the induced topology). Then X is an Eberlein space. f

COROLLARY 3.17. A subspace of a Smulian-Eberlein (resp. strict Smulian-

Eberlein) space is a Smulian-Eberlein (resp. strict Smulian-Eberlein) space.
The corollary follows from the preceding one with the aid of Corollary 3.6. t

COROLLARY 3.18 If X is a Smulian-Eberlein (resp. strict Smulian-Eberlein)

space then X endowed with any finer topology is a Smulian-Eberlein (resp. strict
Smulian-Eberlein) space.

The Corollary follows from Corollary 3.16 with the aid of Corollary 3.7. f

COROLLARY 3.19. A topologicalspacefor which there exists a coarser metrizable

topology is a strict Smulian-Eberlein space.
The assertion follows from the preceding corollary with the aid of Corollaries 2.4

and 3.5. t
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COROLLARY 3.20. Any topological group (and therefore any topological vector
space) for which the one-point sets are of type Gô is a strict Smulian-Eberlein space.

The assertion follows immediately from the preceding corollary and the next
lemma. t

LEMMA 3.21. If the one-point sets of topological group are of type Gô, then there
exists a coarser metrizable topology on the group.

Let (£/„)„ g N be a séquence of open sets of the topological group X such that

neN

where 1 dénotes the neutral élément of the group. Then there exists a séquence (Vn)neN

of open neighbourhoods of 1 such that for any neN

Vn-Vn~\ Vn+lVn+lcVnnUn.
We set for any neN

?n:={{x,y)eX2\xy-leVn}.
Then {Pn | «eN} is a fundamental System of vicinities (entourages) for a separated

uniformity on X. Being countable the uniform space defined by it is metrizable.
Its topology is obviously coarser than the initial topology of X. f

THEOREM 3.22. Any relatively countably compact set of a Smulian space is

sequentially dense.

Let A be a relatively countably compact set of a Smulian space X. We endow A with
the trivial preorder relation; i.e. we set x^y for any two éléments x, y of A. Then A
becomes an upper directed preordered set. If / dénotes the inclusion map of A into
Zthen (A, / is a countably compact net on X. Any adhèrent point of A is adhèrent to
the filter /(g), where g dénotes the section filter of A. Hence for any adhèrent point
of A there exists a séquence in A converging to this point, f

The converse assertion is not true as it can be seen from following examples.

EXAMPLE 3.23. There exists an Eberlein space for which any subset is sequentially

dense and which is not a Smulian space.
Let œl be the first uncountable ordinal number. If the continuum hypothesis

2**° X1 is assumed then there exists a family (/^)ç6C)1 such that: a) for any Çeœl9 f%

is an increasing map of N into N; b) if £, r\eco1 and Ç<rj then there exists ioeN such

that fç(i)<fn(i) for any i>i0; c) if / is an increasing map of N into N, then there
exists Çecot and /oeN such that /(*)

Weset

X:= N2 u cot
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A subset U of X will be called open if it possesses the following properties :

a) if co1 e U then for any l'eN the set {j eN | (i, j)$ U} is finite;
b) if 0 eU then there exists /oeN such that

c) if there exists ^eœu £#0, such that ÇeU then there exists <^0<^ and /oeN
such that

{(W)eN2 | i0 < i,4(/) <;</«(/)} <= l/.
X endowed with this topology is an Eberlein space for which any set is sequentially
dense.

Let N2 be endowed with the following uper directed order relation

(U)^O',/):<>0*<*' and j</)
and let / be the inclusion map of N2 into X. Then (N2, / is a net on X. We want to
show that it is countably compact. Let ((/„, jn))n€N be an increasing séquence in N2.

If there exist «oeN such that in i»0 for n^n0 then the séquence ((in, yn))neN converges
to œ1 or, if (yn)neN is also stationary from a certain «eN, to a point of N2. Assume

now that (in)neN is strictly increasing and let /be the set of rjeœi such that there exists

«oeN with the property that for any n^n0 we hâve jn^fn(in)- Let £ be the smallest
élément of /. If £=0 then the séquence ((/„, jn))neN converges to 0. If £ / 0 then for any

the set

is infinité and therefore £ is an adhèrent point of the séquence ((/B,;B))B6N. If 3f

dénotes the section rilter of N2 then cot is adhèrent to /(3). Set for any neN

Then (/w)weN is a séquence in 5- Let ((/„, 7*n))neN be an increasing séquence in N2 such

that (in,jn)eln for any /ieN. It is obvious that co1 is not an adhèrent point of this
séquence. Hence X is not a Smulian space. f

EXAMPLE 3.24. There exists a completely regular space for which any relatively
countably compact set is sequentially dense and which is not a Smulian space.

Let Y be an uncountable set, Xo be the set of subsets of Y of cardinal Ko and

X:=Xo u { Y}. We endow X with a topology by taking as open sets the subsets Vof X
such that for anyAeV there exists a finite subset BofA such that {CeZ|j0c:Cc:,4}
c: V. It is easy to see that the above set {C eX | Ba Ce: A} is closed and open for this

topology. From that we get immediately that X is completely regular. Since for any
AeX09 {A} is of type Gô it follows from Corollary 3.3. that Xo is a Smulian space with
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respect to the induced topology. On the other hand Fdoes not belong to the closure of
any countable subset of Xo. Hence by Theorem 3.22. any relatively countably compact
set of X is sequentially dense.

Xo endowed with the inclusion relation is an upper directed ordered set. If/ dénotes
the inclusion map of Xo into Zthen (Xo, /) is a countably compact net on Zsuch that,
if 5 dénotes the section filter of Xo then / (3f) converges to Y. This and the above
remark show that X is not a Smulian space. |

PROPOSITION 3.25. LetXbe an Eberlein (resp. Smulian) space and < an order
relation on Xsuch thatfor any upper directed subset A ofXandfor any xeXthefollowing
two assertions are équivalent:

a) x is the supremum of A;
b) x is adhèrent to the section filter of A.

Let A be an upper directed subset of X such that any increasing séquence in A has a

supremum. Then A hasasupemum (resp. ifA has a suprenum x then x is the supremum
of an increasing séquence in A).

Ifwe dénote by / the inclusion map of A into X, then (A, f is a countably compact
net in X. If X is an Eberlein space, then the adhérence in X of the section filter of A is

non-empty and therefore A has a supremum. If X is a Smulian space and A has a

supremum x, then x belongs to the adhérence of the section filter of A and there exists

therefore an increasing séquence in A converging to x; but then x is the supremum of
this increasing séquence, t

IV. Eberlein Continuous Maps

Let Xf Y be two Hausdorff topological spaces. A map g of X into Y is called
Eberlein continuous if for any countably compact net (/, f) on X and for any ultra-
filter VL on /, finer than the section filter of / and such that / (U) converges to a point
xeX, the ultrafilter g(f(U)) converges to g(x). We dénote by ê(Xy Y) the set of
Eberlein continuous maps of X into Y. Of course any continuous map is Eberlein
continuous. If g is an Eberlein continuous map of X into Y, and (/, / is a countably
compact net on X, then (/, g°f) is a countably compact net on Y. The composition
of two Eberlein continuous maps is Eberlein continuous.

THEOREM 4.1. LetXbe a Smulian space (/, f)bea countably compact net on X, U
be an ultrafilter on I, finer than the section filter of I and such that f (U) converges to a

point xeX, and g be a map of X into a Hausdorff topological space Y such that for any
increasing séquence (in)neN m I w^tn tne property that (f(in))neN is convergent,
(g(fOn)))neN converges to g(limn^^ f(in)). Then g(f(U)) converges to g(x).
In particular a map g of a Smulian space X into a Hausdorff topological space is
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Eberlein conîinuous iffor any xeX andfor any séquence (xn)neN in X converging to x,
the séquence (g (*„))„ 6N converges to g(x).

Let Fbea neighbourhood of g(x). If K^g(/(U)) then /""1(g"1(y\K))elï.
Since Zis a Smulian space there exists an increasing séquence *„)„<= N in /such that
(/0«))«eN converges to x and such that inef~1(g~1(Y\V)) for any neN. We get the

contradictory relations

lim g(/(ln)) g(x), «eN => g(f(in))eY\V.
n-*oo

Hence Ve g(/(U)) and, V being arbitrary, g(f(VL)) converges to g(x). f
Remark. The example 3.24. shows that we may not replace in Theorem 4.1. the

hypothesis that Xis a Smulian space with the weaker one that any relatively countably
compact set is sequentially dense. Indeed if we dénote by g the function on X which is

equal to 0 on Xo and equal to 1 at Y then for any convergent séquence (xn)neN on
X the séquence (g (*„))„ eN converges to g(limn_00 xn). In order to see that g is not
Eberlein continuous it is sufficient to take the countably compact net (Xo, f) on Zand
an ultrafilter U on Xo finer than the section filter of Xo and such that / (U) converges
to Y. It is possible to construct such examples even with Eberlein spaces X.

THEOREM 4.2. The restriction of any Eberlein continuous map to any relatively
countably compact set is continuous. Inparticular any Eberlein continuous map is univer-

sally measurable.

Let X, Fbe two Hausdorff topological spaces, g be an Eberlein continuous map of
X into Y and A be a relatively countably compact set of X. Let xeA and U be an
ultrafilter on A converging to x. If we endow A with the trivial preorder relation y^z
for any y, zeA and if we dénote by / the inclusion map of A into X, then (A, / is a

countably compact net on X and U is an ultrafilter on A, finer than the section filter of
A and such that / (U) converges to x. It follows that g (U) converges to g(x). Since U
and x are arbitrary we deduce that the restricton of g to A is continuous. t

Remark. The Theorems 4.1 and 4.2. hâve important conséquences for the intégration

of vector valued functions. Indeed by Lebesgue theorem any intégral may be

considered as a map possessing the property indicated in Theorem 4.1. If the ground
space is a Smulian space then, by Theorem 4.1., it is Eberlein continuous. With the aid

of Theorem 4.2. and of Grothendieck's completeness critérium it follows that the

intégral is even continuous. Thèse considérations will be applied in Chapter VIL

COROLLARY 4.3. Let X be a Hausdorff topological space such that any map
defined on X is continuous if its restriction to any compact set of X is continuous. Then

any Eberlein continuous map on X is continuous. t

COROLLARY 4.4. Let X be a Hausdorff topological space, Y be a regular space,
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fbe an Eberlein continuons map of X into Y and Abe a relatively countably compact set

of X. Then the restriction off to Â is continuons,

The assertion follows immediately from the theorem with the aid of the foliowing
lemma. t

LEMMA 4.5. Let X be a Hausdorff topological space and S be a set of subsets

of Xsuch that ifAeS and xeÂ then A u {x} eS. Iff is a map ofX into a regular space
Ysuch that its restriction to any set ofQ is continuons, then for any AeQ the restriction

off to Â is continuons.

Let Ae<5, xgÂ and Fbe a closed neighbourhood of f(x). Since the restriction of

/ to A u {x} is continuous there exists an open neighbourhood U of x such that

f{UnA)czV. Let yeUnÂ. Since the restriction of/ to A u {y} is continuous, we get

/ (y e V. Hence f(UnÂ)czV.Vbeing arbitrary, the restriction of/ to Â is continuous
at jc. But x being arbitrary the restriction of / to Â is continuous. t

Remark. The converse of Theorem 4.2. or of Corollary 4.4. is not true since there
exist real functions on Eberlein spaces whose restrictions to the closures of relatively
countably compact sets are continuous (and even to countable unions of such sets)

but which are not Eberlein continuous. Indeed let wx be the first uncountable ordinal
number. We set

X:=(œ1x (N u {oo})) u {0}

and endow X with a topology by taking as open sets the subsets U of X such that
a) if ({, oo)eU then there exists y]€(û1 such that rj<£, and meN such that

{(C, «)€©! xN | n«è, m^n}czU;
b) ifOeU then there exists i>eo)1 and meN such that

{(*?, «)€<*>! xN | £<Yi,m<n}czU.
X endowed with this topology is an Eberlein space. Any relatively countably compact
set of X is at most countable. It follows that the real function g onX equal to 0 on
(ox x (Nu {oo}) and equal to 1 at 0 has the property that for any relatively countably
compact set A of X the restriction of g to Â is continuous. We want to show that g is

not Eberlein continuous. Let us endow (ox x N with the order relation

({& m) < (fy, n):o (({{, m) (rj9 n) or ({{ < n and m < n))

and let / be the inclusion map of cot x N into X. Then {(û1 x N, /) is a countably
compact net on X. If % dénotes the section filter of cot x N then /(g) converges to 0

and the filter g(/(5)) converges to 0#g(0).
The following example will show that there exists a completely regular and countably

compact space X and a real function g on Xwhose restrictions to any compact set

of X is continuous and which is not continuous. Let N* be the Stone-Cech compacti-
fication of N and let 0 be the set of non-trivial ultrafilters U on N with the property
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that for any map / : N -* N there exists Me VL such that the restriction of / to M is

injective. Let A be the set of points x of N* for which there exists Ue# such that H

converges to x. By the continuum hypothesis J*=N*\N, N*\A N*. We set X: N*\A.
X endowed with the induced topology is a completely regular space such that for any
compact set j^of Xth& set KnN is finite. It follows that the real function on Zequal
to 0 on N and equal to 1 elsewhere, which obviously is not continuous, has the prop-
erty that its restrictions to any compact set is continuous. It can be shown, using the

properties of $, that X is a countably compact space.
We call espace a Hausdorff topological space X such that any Eberlein continuous

map of X into a regular space is continuous.

COROLLARY 4.6. Let X be a Hausdorff topological space such that any subset

VofX is open iffor any relatively countably compact set A the set An V is open in Âfor
the induced topology. Then X is a espace. In particular any Kelleyspace is a espace.

The assertion follows immediately from the preceding corollary. t

PROPOSITION 4.7. Let X be a Hausdorff topological space and X be the coarsest

topology on Xfor which any Eberlein continuous map on X into an arbitrary Hausdorff
topological space is continuous. If(I,f) is a countably compact net on X with respect to
the initial topology and ifXi is an ultrafilter on I>finer than the sectionfilter ofI and such

that /(XI) converges to xeX in the initial topology of X, then (/, /) is a countably

compact netfor the X-topology andf (U) converges to x in X. In particular any Eberlein
continuous map on X endowed with X is an Eberlein continous map on X endowed with
the initial topology. X endowed with Xisa espace. The identicalmap ofXinto Xendowed

with X is Eberlein continuous.

Let (Yx)XeL be a family of Hausdorff topological spaces and (ç)XeL t>e a family
such that for any XeL,(px is an Eberlein continuous map of Zinto Yx. Then YlxeL <Px

is an Eberlein continuous map ofZinto JJxeL Yx. Hence the sets of the form ç'1 (W)9
where q> is an Eberlein continuous map of JHnto a Hausdorff topological space Y and

W is an open set of Y, form a base for the X-topology.
Let U be a neighbourhood of x in the I-topology. Then there exists an Eberlein

continuous map q> of Zinto a Hausdorff topological space F and a neighbourhood V

of(p(x) such that cp"1 {V)a U. Since cp is Eberlein continuous, <p(/(U)) converges to

cp(x) and therefore <p"1(F)e/(U). Hence Uef(U) and f (il) converges to x in the

ï-topology.
Let now (in\€N be an increasing séquence in / and y be an adhèrent point of the

séquence / (in))n e N with respect to the initial topology of X. Ifwe dénote by g the map
n*-+f(in)ïN-+X then (N, g) is a countably compact net on X such that there exists an
ultrafilter S on N such that g(23) converges to y with respect to the initial topology of
X. By the above considérations g(23) converges to y with respect to the ï-topology.
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Hence y is an adhèrent point of the séquence (/(*„))„gN in tlie ï-topology. But this
means that (/,/) is a countably compact net on X with respect to the ï-topology.

The last assertions are obvious. t

COROLLARY 4.8. Let X be a Hausdorjf topological sace and & be a set ofmaps
ofXinto arbitrary Hausdorjf topological spaces. We dénote by IF' the maps of^ which

are Eberlein continuous and Z(^) the corsest topology on X which is finer than the

initial one and for which any f e&' is continuous. Then any fe^ which is Eberlein
continuous with respect to %(JF) is continuous with respect to %{^).

Let f e!F be Eberlein continuos with respect to %(!F\ Since the topology %

introduced in the proposition is finer than %(3F\ f is Eberlein continuous with respect
to %. By the proposition it follows that / is Eberlein continuous for the initial topology
of X. Hence f elF' and is therefore continuous with respect to ZÇF). t

PROPOSITION 4.9. Let X be a Hausdorjf topological space, g be a filter on X
converging to a point xeX, (/A, fx)ÀeL be afamily of countably compact nets on X and

(5a)acl oe afamily with thefollowingproperties:
a) for any ÀeL, 5a is a filter on Ix, finer than the section filter of Ix;
b) 5=ru. l h (&)•
Then for any Eberlein continuous map <p defined on X the filter q>{%) converges to

By b) A(5a) converges to x for any keL. Hence ç>(/a(Sa)) converges to <p(x)

for any XeL. If Fis a neighbourhood of <p(x) then cp'1 (V) belongs to fx(5a) f°r anY
XeL and therefore to 5- It follows that (p($) converges to cp(x). |

COROLLARY 4.10. Let X be a Hausdorjf topological space, x be a point of X,
(/A, /A)A eLbe afamily of countably compact nets on X and (gx)xeL°e afamily such that

for any ÀeL, 5a ^ a filter on ïx, finer than the section filter of Ik and such that

P1a€l/a(5a) & the filter of neighbourhoods of x. Then any Eberlein continuous map
defined on X is continuous at x. t

PROPOSITION4.il. Let X be a Hausdorff topological space, (Xa)aeA be a

family of Smulian spaces, ((pa)aeA oe afamily such that for any eue A, (p^êiX, Xa) and

Y be a subspace of X such that any xeX belongs to Y iffor any eue A there exists yeY
such that (pa (x) q>a (y). Then Y is Eberlein closed in X. Hence ifX is an Eberlein space,
then so is F.

Let (/, / be a countably compact net on Y and U be an ultrafilter on / finer than
the section filter of/and such that f(VL) converges in Zto an x. We hâve to show that
xeY. Let ueA. Then (/, <pa°f) is a countably compact net on Xa and cpa°/(U)
converges to q>a(x). Since Xa is a Smulian space, there exists an increasing séquence
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(in)neN m I such that ((pa°f(in))neNconvergesto (pa(x). Since (/,/) is a countably
compact net the séquence (/ (in))ne N possesses an adhèrent pointée F. It is obvious that
cpa (y) is an adhèrent point of the séquence (cpa o f (in))ne N and therefore cpa (y) cpa (jc).
Since a is arbitrary we deduce xe F. The last assertion foliows with the aid of
Proposition 2.1. t

V. Spaces of Continuous Maps

For any sets X9 Fwe dénote by Yx the set of maps of A"into Y. If Fis a Hausdorff
topological space then any subset of Yx will be considered endowed with the topology
of pointwise convergence. If Fis a separated uniform space and S is a covering of A",

then, for any subset ^c Yx9 1F& will dénote the uniform space (respectively the

topological space) obtained by endowing ^ with the uniform structure (respectively
the topology) of uniform convergence on the sets of S.

If X and Tare non-empty Hausdorff topological spaces, then ^(X, Y) will dénote

the subspace of Yx formed by the continuous maps. We remark that Fis homeomorphic
to the closed subspace of tf(X9 Y) formed by the constant maps. Hence if %(X, Y) is

an Eberlein (respectively Smulian, strict Smulian) space, then Fis an Ebelerin (respectively

Smulian, strict Smulian) space. If (/, / is a net on Yx we shall write /, instead of

/ (i) for any tel.
If, in addition, F is endowed with a preorder relation, we shall consider Yx

endowed with the preorder relation

The following proposition allows to extend the results enunciated for the spaces
J^cz Yx to the spaces J*V

PROPOSITION 5.1. Let S be a covering of X, Y be a separated uniform space,

& bea subset of Yx, (/, f)bea countably compact net on 3F& and VL be an ultrafilter on

I,finer than the sectionfilter ofl and such thatfQX) converges toage^ in the topology

ofpointwise convergence. Then f (U) converges to g in fF®.
We may suppose that the union of any finite family of sets of S belongs to S.

Assume that the proposition is not true. Then there exists a set A e® and a uniformly
continuous écart d on F such that

xeA => d(g(x% h(x))

Since U is an ultrafilter

{iel\(lx)(xeA9d(g(x),fl(x))>l)}eVL.
We shall construct inductively a séquence (xn)neN in A and an increasing séquence
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(in)neN in / such that for any neN

à (g (*„), fln (*„)) > 1, m<n=>d(g (xm), fln (xm)) < ±.

Assume that the séquences were constructed up to n — 1 and let us find in and xn.
Since / (U) converges to g in the topology of pointwise convergence, we hâve

{tel \m<n=> d(g(xm), f,(xm)) < i}ell.
Hence the set

&{i> iu_x) & (3x) (xeA, d(g(x\ /,(*)) > 1)}

belongs to U and is therefore non-empty. We take an arbitrary in in this set and an

arbitrary xneA such that

d(g(xn),fjxn))>l.
Since (/,/) is a countably compact net on ^"s the séquence (fln)neN possesses an
adhèrent point h in «^s. Hence there exists a subsequence(/Ink)fc6N such that

xeA=>d(h(x),flnk(x))<i

for any fceN. This leads to the contradictory relation

* < d(g(Xno)flno(xJ) - d(flno(xj, h(xj) < d(g(xj, h(xj)
<d(g (xj, flni (xj) + d(flni (xj, h(xj) < i. f

COROLLARY 5.2. Let © be a covering of X, Y be a separated uniform space and

ff be a subset of Yx. If !F is an Eberlein (resp. Smulian, resp. strict Smulian spacefor
a topology %t which isfiner thon the topology ofpointwise convergence and coarser thon

the topology of uniform convergence on the sets of (3, then IF^ is an Eberlein (resp.
Smulian, resp. strict Smulian) space. In particular if Y is an Eberlein space Yq is an

Eberlein space.
The Smulian and strict Smulian parts of the corollary follow immediately from

Corollary 3.7.

Let (/, /) be a countably compact net on ^e and U be an ultrafilter on /, finer
than the section filter of/. Then (/, / is a countably compact net on !F endowed with
%. Hence /(II) converges to a function ge^ in the ï-topology. But then /(U)
converges to g in the topology of pointwise convergence. By the proposition / (U)
converges to g in «^"s .The last assertion follows from Theorem 2.8. t

Remark. In the sequel we shall state the results only for the topology of pointwise

convergence, this corollary extending them automatically to the topologies of uniform

convergence on the sets of a covering S.
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THEOREM 5.3. Let X be a set, (Xa)aeA be a family of sets, Y be a Hausdorff
topological space (Yp)fiçB be a family of Hausdorff topological spaces, &be a subset of
Yx, and {q>XeA> (^W (^«p)(*,p)eAxB be families such that for any (a, p)eA x B,
(paeXx°, i/^e*f (F, Yp) and&afi is an Eberlein closedset ofY$*. Iffor anyfeYxwe hâve

then SF is Eberlein closed in Yx. Hence if Y is an Eberlein space, then so is 3F.

Let (/, / be a countably compact net on !F and II be an ultrafilter on /, finer than
the section filter of / and such that / (U) converges in Yx to a g. For any (a, P)eA x B
we dénote by faP the map

Then (I,faP) is a countably compact net on &"aP and faP(U) converges in Yf° to
iïp0 go(Pa- Since 3F^ is Eberlein closed in Yf" it follows that cppo go(pae^afi. By the

hypothesisgei7.
The last assertion follows from Theorem 2.8. and Proposition 2.1. |

COROLLARY 5.4. Let X, Y be Hausdorff topological spaces. If V(X, Y) is

Eberlein closed in Yx then tf(X9 Z) is Eberlein closed in Zx for any subspace Z of Y.

In particular if Z is an Eberlein space then ^(I,Z) is an Eberlein space. |
COROLLARY 5.5. If X is a Hausdorff topological space such that %(X, R) is an

Eberlein space, thentë(X9 Y) is Eberlein closed in Yx (resp. is an Ebelerin space) for any
completely regular space (resp. for any completely regular Eberlein space) Y.

It is sufficient to take in the theorem

A : {0}, B : V (Y, R), Xo : X9 <p0 : identity map,

and for any fieB

Yfi). t

THEOREM 5.6. Let (Xn)neN, (YneN) be two séquences of Hausdorff topological
spaces such thatfor any (m, «)eN2, ^{Xm9 Yn) is a strict Smulian space. Let X, Ybe two

Hausdorff topological spaces and ((pn)nen, (^«)n6N °e two séquences such that:
a) for any neN we hâve (pneV(Xn9 X)9 ^ne^{Y9 Yn);

c) any two points y', y" of Y coincide if ^n(/) ^«(/')/(9r any
Then ^(X, Y) is a strict Smulian space.

We dénote by 0 the map of V(X, Y) into ri(«.»)eN^(^m» Yn) defined by

Y)).
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It is obvious that 3> is a continuous injection. The theorem now follows from
Proposition 3.8 and Corollary 3.4. f

COROLLARY 5.7. If X is a Hausdorff topological space such that tf(X9 R) is a
strict Smulian space, then ^(X, Y) is a strict Smulian space for any topological space Y
which may be injected continuously in RN (this is équivalent that Ypossesses a coarser
metrizable topology which has a countable base).

Let for any «eN, nn be the #-th projection of RN and let ^ be a continuous injection
of Y into RN. We may take in the theorem

Xn: X, Yn: R, cpn: identity map, ^B: 7rBo^,

for any «eN. t

PROPOSITION 5.8. Let X, Y be Hausdorff topological spaces such that <g(X, Y)
is a Smulian space. Then for any quotient space X' of X and for any subspace Y' of Y,

V(X'9 Y') is a Smulian space.
Let (/,/') be a countably compact net on ^(X\ F'), g be a filter on /, finer than

the section filter of/, g be an adhèrent point of/' ($) and (In)neN be a séquence in $f-

If cp (resp. i//) dénotes the canonical map of X into X' (resp. of Y' into Y) and if /
dénotes the map

then (/, /) is a countably compact net on ^(X, Y) such that ij/o go cp is an adhèrent

point of f(%). Since ^(X, Y) is a Smulian space there exists an increasing séquence
(OneN in /such that (/(ïn))neNconvergesto \j/°g°(p and such that ineln for any weN.
But then (/'(in))neN converges to g. Hence ^(Xf, Y') is a Smulian space. t

THEOREM 5.9. Let X be a Hausdorff topological space, (/, f)bea countably

compact net on X and Ybe a regular space. Let @(I,f) be the set of those geYx which

hâve the followingproperty: if l'is an upper directed subset ofI and Xi is an ultrafilter on

V, finer than the section filter of V and such thatf (H) converges to a point xeX, then

g(f(U)) converges to g{x). Then &(I,f) is Eberlein closed in Yx.

Let (/, g) be a countably compact net on ^(/, /) and 93 be an ultrafilter on /,
finer than the section filter of / and such that g (95) converges in Yx to a map h.

We hâve to show that he&(I,f).
Assume the contrary. Then there exists an upper directed subset /' of / and an

ultrafilter U on /', finer than the section filter of/' and such that / (U) converges to a

point x, with the property that h (/(II)) does not converge to h{x). There exists

therefore a closed neighbourhood V of h(x), which does not belong to h(f(VL)).
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Since U is an ultrafilter it foliows that f~i(h~1(Y\V))eU. Let Wbt an open neigh-
bourhood fo h(x), whose closure lies in the interior of V.

We shall construct inductively an increasing séquence (zn)rtgN in /', an increasing

séquence (fcn)n6N in / and a decreasing séquence (/n)M6N m W such that for any neN
we hâve :

a) iJleJII-1n/-1(A-1(r\ï0);
h)gKn

c)

Assume that the séquences were constructed up to n— 1. Since /„_!, / -1 (A"1 (F\F)),
and {ze/' | i > zn_ i} belong to U, their intersection is non-empty. We take an arbitrary
in in this intersection, so that condition a) is fulfilled. The sets Y\ V and W are open and

h(x)eW,

Since g (33) converges to h, we get

{KeJ | gK(x)eW} n {fceJ | m

The set {kg/ | k^^.J also belongs to 23 and therefore there exists a KneJ, Kn|

satisfying the above condition c) and such that gKn (x)e W. SincegKne@ (/, f\gKn (/ (U))
converges to gKn(x). Hence / ~1(g~n1 (W))eU. We set

/w satisfies the above condition b).
The net (/, g) being countably compact in ^(/,/), there exists a hoe&(I,f)

which is adhèrent to the séquence (gKn)n€ N- The net (/, / being countably compact in
X, there exists an xoeX which is adhèrent to the séquence (/(ïM))n6N- Let us dénote

ro:={in\neN}.
Then /' is an upper directed set of /and there exists and ultrafilter lt0 on /', finer than the

section filter of J' and such that /(lt0) converges to x0. Since hoe&(I,f) and

gKne@(I,f) for any neN it follows that ^o(/(Wo)) converges to ho(xo) and

gKn(/(U0)) converges to gKn (x0) for any neN. We deduce (by a), b)) gKn(x0)e Wîox

any neN and therefore ho{xo)eW. By c) we get /*0(/(im))eF\Ffor any meN and

therefore ho(xo)e Y\V and this is a contradiction since

COROLLARY 5.10. IfX is a Hausdorff topological space and Y is a regular space,
then £{X, Y) is Eberlein closed in Yx. Hence ifYis an Eberlein space, then ê(X, Y) is

an Eberlein space.
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The first assertion follows immediately from the theorem and from the relation
é(X9 Y) p| {9(1, /) |(/, /) is a countably compact net on X).
The last assertion follows from the first one, Theorem 2.8 and Proposition 2.1. f

COROLLARY 5.11. For any espace X and for any regular space Y, ^(X, Y) is
Eberlein closed in Yx. Hence if Y is a regular Eberlein space, *€ (X, Y) is an Eberlein

space. f

COROLLARY 5.12. Let X be a espace, Y be a regular space and < be an order
relation on Ysuch thaï any upper directedset A of Yhas a supremum which is adhèrent

to A. If' IFis an upper directed set of<é'(X, Y) such that the supremum of any increasing

séquence in tF is continuous, then the supremum of !F is continuous.

If we dénote by / the inclusion map of IF into ^(X, Y) the (^,f) is a countably
compact net on të(X, Y) such that the supremum of & is adhèrent to /(3f), where

5 dénotes the section filter of IF. Since by the preceding corollary ^(X, Y) is Eberlein
closed in Yx, this supremum is continuous. t

This corollary contains Proposition 1.1 of [2].

PROPOSITION 5.13. Let X, Y be Hausdorff topological spaces, (Kn)neN be an

increasing séquence of compact sets of X whose union is X, (Un)neN be a decreasing

séquence of open sets of Y2 such that

DUn=n Ûn {(y,y)\yeY},
neN neN

(/, f)be a countably compact net on Yx, % be afilter on I,finer than the sectionfilter of
I and such thatf ($) converges to a ge Yx and (I»)ne N be a decreasing séquence in $•

Iffor any i eland any neN the restrictions of the functions ft andgto Kn are continuous,
then there exists an upper directed countable subset J of I such that {InnJ | neN}
générâtes the section filter © of J and such that g is adhèrent to the filter f {de)

We shall construct inductively a séquence (Jf)ne^ of finite subsets of/such that we
hâve for any neN:

a) Jn^Inl
b) !€/„-!, KeJn=>i^K;
c) for any family (xm)m^n in Kn there exists ieJn such that for any m^n we hâve

Assume that the séquence was constructed up to n — 1 and let Kel be an upper
bound for \Jm<n Jm. Let x : (xm)m ^ n be a point of (Kn)n+1. Since g is adhèrent to the

set {/, | ieln9 i&zk} there exists ixeln, ix^k, such that for any
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The restrictions of g and flx to Kn being continuous, the set

Ux:= {x'e(Kn)n+i \ m ^ n => (g(xfm), flx(x'm))eUn}

is open in (KH)n+1 and contains x. Since (Kn)n+1 is compact, there exists a finite
subset A of (Kn)n+1 such that

xeA
Weset

It is obvious that Jn is a finite subset of / satisfying the above conditions a) and b).
In order to show that it also satisfies condition c) let (xm)m^n be a family in Kn.
Then there exists x'eA such that (xm)m^ne Ux> and therefore for any m^n we hâve

We set now

J:= U Jn-
neN

/ is obviously an upper directed countable subset of / and {InnJ \neN} générâtes
the section filter of J. In order to prove the last assertion let keJ, (xx)XeL be a finite
family in X and for any XeL let Vx be a neighbourhood of g(xx). There exists «oeN
such that:

a) cardL<wo + l, P) 2eL=>^G^,0, y) Ke\Jm<noJm.
There exists for any n^nOi ineJn such that for any XeL

(g(xx),fln(xx))eUn.

We want to show that there exists n ^ n0 such that fln (xx) e FA for any XeL. Assume the

contrary. Then there exist XeL and a strictly increasing séquence (n(k))keN in N such

that /ln(k)(xA)§§ Vx for any £eN. By b) the séquence (^(fc))fcgN is increasing in /. Since

the net (/, / is countably compact there exists he Yx which is adhèrent to the séquence
(/.B(k))*6N- Then h(xx) is adhèrent to the sequence(/ln(k) (xx))keN. From /ln(k) (xx)$VÀ
we deduce h(xx)^g(xx). From(g(xx)9flnW(xx))eUHm for any keN we get

(g(xx),h(xx))enu.m

and therefore g (xx)=h (xx). This is the expected contradiction. Hence g is adhèrent to

/(S). t

PROPOSITION 5.14. Let X be a o-compact Hausdorff topological space and Ybe
an Eberlein space whose diagonal is the intersection of a countable set of closed neigh-
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bourhoods (i.e. there exists a countable set of closed neighbourhoods of {(j, y) \ye Y}
in Y2 whose intersection is {(y, y) | ye Y}). Then ^(X9 Y) is a Smulian Eberlein space.
The above conditions for Y are satisfied by any topological space on which there

exists a coarser metrizable topology.
Since Y is an Eberlein space, ^(X, Y) is an Eberlein space too (Corollary 5.10).

Let (/, /) be a countably compact net on $(X, Y)9 VL be an ultrafilter on /, finer than
the section filter of/and such that /(U) converges to geé'(X, Y), and (In)neN be a

decreasing séquence in lï. Let (Kn)ne^ be an increasing séquence of compact sets of X
whose union is X, (Un)neN be a decreasing séquence of open sets of Y2 such that

OUn=n Ûn {(y,y)\yeY}.

By Theorem 4.2 for any tel and any neN the restrictions of /, and g to Kn are contin-
uous. Hence by the preceding proposition there exists an upper directed countable
subset /of/such that {Innj\neN} générâtes the section filter (5 of/and such that g
is adhèrent to the filter /(©).

For any neN let cpn be the map of Kn into YJ defined by

W*))(0 : /.(*) (xeKn,ieJ).

Since q>n is continuous, (pn(Kn) is compact and is the quotient space of Kn with respect
to the équivalence relation

(x,yeKH).

The diagonal of YJ is obviously a G^-set in (YJ)2 and therefore the diagonal of
(pn(Kn) is a Gd-set in (cpn(Kn))2. It follows that (pn(Kn) is metrizable. Hence there exists

a countable subset An of Kn such that <pn(AJ is dense in (pn(Kn).

By Corollary 3.5 7 is a strict Smulian space. Hence Y UneN An is a strict Smulian

space (Proposition 3.8) and therefore a Smulian space (Proposition 3.1). We deduce

that there exists an increasing séquence (im)meN in / such that im elm for any meN and
such that (/lm(x))weN converges to g(x) for any xe\^Jne^An. Let h be an adhèrent

point in ê (X, Y) of the séquence (/lm)meN- Since g and h are adhèrent points in ê (X, Y)
of {/» | i e/}, there exists for any n eN two map gn, hn in ^((p(i^,), Y) such that

g=gn°<Pn> h hn°<Pn

on Kn. But for any «eN and any xeAn we hâve g(x)=h (x) and therefore for any #eN
the functions gm hn coincide on ç(An). This set being dense in q>(Kn) it follows gn hn

for any neN and therefore g=h. g being the only adhèrent point of the séquence
(/iw)m6N this séquence converges to g (Proposition 1.4.)

Let now Y be a topological space on which there exists a coarser metrizable topology
%. By Corollary 2.4. Fis an Eberlein space. Let dbe a metric on Y consistent with X.
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We set for any neN

Then {Vn | «eN} is a countable set of closed neighbourhoods of the diagonal of Y
whose intersection is the diagonal of Y. f

Remark. It was shown (Corollary 4.4) that if X is a Hausdorff topological space
and Y a regular space, then the restriction to the closure of any relatively countably
compact set of X of any Eberlein continuous map of X into Y is continuous. But the

restriction of an Eberlein continuous map to a c-compact set is not always continuous
even if Y is R and X is a-compact. Indeed set

X:=(Rx N)u {0}

and let a subset U of X be open if it fulfills the foliowing two conditions:
a) Un (R x N) is open with respect to the product topology of R x N;
b) if OeU then there exists «eN such that Rx{/weN | m^n}\U is countable.
Then X is a Hausdorff space and is c-compact. The function on X equal to 0 on

R x N and equal 1 at 0 is Eberlein continuous and not continuous.

THEOREM 5.15. Let X be a Hausdorff topological space, Y be a regular space on
which there exists a coarser metrizable topology, (/, f)bea countably compact net on

të(X, Y) andlXbe an ultrafilter on I, finer than the section filter ofL Then lim ltU ft(x)
exists for any xeX andfor any a-compact set A of X andfor any séquence (/„)„<= N in U
there exists an increasing séquence (iw)neN in I> such that (/ln(*))W6N converges to

limlU & (x) for any xeÂ. In particular the map

x »-» lim fx (x) :Â -> Y

is continuous and equal to the restriction to Â of a continuous map of X into Y.

By Corollaries 3.19 and 5.10, #(X, Y) is an Eberlein space and this shows that

limlU /,(*) exists for any xeX and that the map g

xh->]imfl(x):X->Y

is Eberlein continuous. By the preceding proposition &{A9 Y) is a Smulian space.
Hence there exists an increasing séquence (in)neN in /, such that (/,„(•*)) converges to

g(x) for any xeA and such that ineln for any neN. The net (/,/) being countably

compact there exists an adhèrent point h of the séquence (/,„)„<= N m V(X9 Y). We get
g—h on A. Hence the restriction of g to any a-compact set of X is continuous. By
Lemma 4.5 the restriction ofg to Â is continuous. It follows that h and g coïncide on Â.
The map h being arbitrary it follows that for any xeÂ, g(x) is the unique adhèrent
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point of the séquence (/,n(*))BeN- By Proposition 1.4 it follows that (/,n(x))n6N
converges to g(x) for any xeÂ. t

COROLLARY 5.16. If a Hausdorff topological space X possesses a dense cr-

compact set, the të(X, Y) te a Smulian-Eberlein space for any regular space Y on which

there exists a coarser metrizable topology. f
Remark. There exist compact sets X such that ^(X9 R) is not a strict Smulian

space. Indeed let a be an ordinal number and U be an ultrafilter on a, finer than the
section filter of a and such that the intersection of any countable family in It is non-
empty. We endow I: au{a} with the usual topology, i.e. a subset UoîXis open if
for any £e U there exists rj < £ such that

X is then a compact space. For any £ea we dénote by /^ the function on Zequal to 1 at
Ç +1 and equal to 0 elsewhere. Then (a, / is a countably compact net on *$ (X, R)
such that /(U) converges to the identically 0 function. Let (An)neN be a séquence in

/(U) and ^PUn/''OU If we set

for any weN, then (in)ne^ is increasing séquence in a such that flneAn for any weN,
but the séquence (/ln)neN does not converge to the identically 0 function on X. Hence

R) is not a strict Smulian space.

COROLLARY 5.17. Let X be a Hausdorff topological space and (^"n)n6N be a

séquence ofcompact subsets of*ê(X, R). lîfor any xeX, {^e^l fe{JneN^n=> f (x)

/ (y)} is a Lindelôf subspace of X (resp. is equal to {x}), then Xis an Eberlein space

(resp. is a Smulian-Eberlein space).
Let q> be the continuous map of X into ^(UneN ^m R) defined by

for any xeX and any /eUneN«Fn. By the preceding corollary ^(UweN ^»> R) is

a Smulian-Eberlein space. The assertions follow now from Corollary 3.16 and

Corollary 3.18. t

COROLLARY 5.18. For any completely regular space X and for any topological

group G for which the one point sets are of type Gô the space CtiT (X, G) of continuous

mapsofXinto G with compact carrier enowedwith the topology ofpointwise convergence
is a Smulian-Eberlein space.

Let Xo be a compactification of X. For any fe3f(X, G) we dénote by ç (/) the

map of Xo into G equal to / on X and equal to 1 (the neutral élément of G) elsewhere.

Then cp is an injective map ofX (X, G) into^ (Xo, G) which induces a homeomorphism
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of Jf(X, G) onto (p(jf(X, G)). By the Corollary 5.16 and Lemma 3.21, %(X0, G) is a
Smulian-Eberlein space. Hence by Corollary 3.17 cp (Jf (X, G)) and therefore Jf (X, G)
is a Smulian-Eberlein space. t

COROLLARY 5.19. Let X be a Hausdorjf topological space such that any real
function g on Xis continuous iffor any o-compact set AofX there exists a real continuous

function on X which coincides with g on Â. Then ^(X, Y) is Eberlein closed in Yx
(resp. is an Eberlein space) for any completely regular (resp. for any completely regular
Eberlein) space Y.

By Corollary 5.5 it is sufficient to show that të(X9 R) is an Eberlein space and this
follows immediately from the theorem. f

COROLLARY 5.20. Let X be a Hausdorjf topological space such that any real
continuous function g on X is continuous iffor any o-compact set A of X there exists a

real continuous function on X which coincides with g on Â (resp. let X be a Hausdorff
topological space which possesses a dense o-compact set). Let Ybea completely regular

space (resp. let Y be a regular space which possesses a coarser metrizable topology)
and let < be an order relation on Y such that any upper directed set B of Y has a supremum,

which is adhèrent to B. If !F is an upper directed set of ^(X, Y) such that the

supremum ofany increasing séquence in & is continuous, then the supremum of 3F is

continuous (resp. and there exists an increasing séquence in 3F converging to this

supremum).
By the preceding corollary tf(X, Y) is Eberlein closed in Yx (resp. by Corollary 5.16

Sf, Y) is a Smulian-Eberlein space). If / dénotes the inclusion map of & into
K, Y) and if g dénotes the section fîlter of #", then (^, f is a countably compact

net on ^(X, Y) and /(S) converges in Yx to the supremum of 3F. Hence this supremum

is continuous (resp. and there exists an increasing séquence in 3F converging to
this supremum). t

THEOREM 5.21. Let X be a Hausdorjf topological space on which there exists a
bounded measure (i.e. mesure bornée in Bourbalei, Intégration, Ch. IX) whose carrier
coincides with X. Thenfor any regular space Y on which there exists a coarser metrizable

topology with a countable base, # (X, Y) is a strict Smulian-Eberlein space.
The existence of a bounded measure \i on X whose carrier coincides with Ximplies

that X possesses a dense a-compact set and so, by Corollary 5.16, ^{X, Y) is a

Smulian-Eberlein space. In order to show that ^(X, Y) is a strict Smulian space we

only hâve to show that &(X9 R) is a strict Smulian space (Corollary 5.7). We dénote

by d the map

l/,~gl ,dM;y(:r,R)2-+R+.
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It is easy to see that d is a metric on &(X, R). Let (fn)neN be a séquence on tf(X, R)
which converges to an fe^{X, R). By Lebesgue theorem

Hmd(/,/.) <>.

The assertion now follows from Proposition 3.14. f
We shall say that a filter g is ô-stable if the intersection of any countable family in

5 belongs to $.

PROPOSITION 5.22. Let X be a set, S' and S" be two coverings of X, Y be a
separated uniform space, !F be a subset of Yx and f e Yx. Consider the following two
assertions:

a) for any séquence (A'n)neN in S' there exists ge<F such that f=g on UneN A'n;

b) there exists a ô-stable filter on F converging to f in Y&,.

Ifany set of&" is contained in the union of a séquence inQ', then a => b. Ifany set of S'
is contained in the union of a séquence in S" and if there exists a coarser metrizable

uniform structure on Y, then b => a.

a => b. Let g be the set of subsets ^ of !F with the following property : there exists

a séquence (A'n)neN in S' such that

{g€>F\g f on U A'n} c <&.

neN

Then 5 is a ^-stable filter on IF converging to / in Y%,.

b => a. Let rf be a metric on 7 whose associated uniform structure is coarser than
the initial uniform structure of Y and let $ be a <5-stable filter on IF converging to /
in Y%. Let (^)n6N be a séquence in ©' and for any «eN let (Af^m)me^ be a séquence
in S" such that

A'ncz \J A"Htm.
meN

For any/?eN

xeU<m^(/M,/'(*))<4

belongs to g. Let g be an élément of f)p e N 9rr It is obvious that g=f on \JneNA'n. t
THEOREM 5.23. LetXbe a Hausdorff topological space and Qbea covering ofX

such that any set ofQ is contained in the closure ofa a-compact set. Let Ybe a separated

uniform space and^cz^(X, Y). If any ô-stable Cauchyfilter on tF® is convergent then

IF is Eberlein closed in Yx. Hence if Y is an Eberlein space then so is !F.
Let (/, / be a countably compact net on !F and U be an ultrafilter on / finer than

the section filter of / and such that f(U) converges in Yx to g. Let 2tf be the set of
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uniformly continuous maps of F into metrizable uniform spaces and for any
let us dénote

jr(A):= {hoip | <pe^}, h*:= (i kAo/,:/ - V(x, Zk))9

where Zh dénotes the range of h. Then (/, h*) is a countably compact net on
/i* (XI) converges to ho g.

By Theorem 5.15 there exists for any ^-compact set A of X and any heJt a

function of ^(K) equal toftogoni. Let us dénote by ©' the set of the countable
unions of sets of S and for any BeQ>' and any heéti?

&r(h,B):={(pe&'\ho(p hog on B}.

Since any set of S'is contained in the closure of a or-compact set of X it follows from
the above remark that ^{hy B) is not empty. It is easy to see that {^(h, B)\heJf,
BeS'} générâtes a ^-stable Cauchy filter on ^B converging to g. We deduce getF.

The Iast assertion follows from Theorem 2.8 and Proposition 2.1. t

PROPOSITION 5.24. Let Xbea Hausdorff topological space, Qbea covering ofX
such that there exists a séquence in S whose union is dense in X and Ybe a uniform space
which possesses a coarser metrizable uniform structure. Then ^e(X9 Y) is a strict
Smulian-Eberlein space.

It follows immediately from the hypothèses that ^&(X9 Y) possesses a coarser
metrizable topology and the assertion follows from Corollary 3.19. f

PROPOSITION 5.25. Let X be a Hausdorff topological space which contains a

countable dense set and Y be a strict Smulian space. Then ^(X, Y) is a strict Smulian

space.
Let A be a countable dense set ofX and <p be the map of^ (X, Y) into YA defined by

(*):=/(*) (/€*(*, Y), xeA).

It is obvious that <p is a continuous injection of ^(X, Y) into YA. Since YA is a strict
Smulian space (Proposition 3.8) it follows that <&(X9 Y) is also a strict Smulian space

(Corollary 3.4.) f

THEOREM 5.26. Let X be a set, {Xa)aBA be a family of sets, Y be a Hausdorff
topological space, (Yp)PeB be afamily of Hausdorff topological spaces, &, & be subsets

of Yx such that &<=:&, and ((pa)aeA> (^/j)/j6b befamilies such that for any aeA and any
peB, cpaeXx", ^e#(F, Yfi). We assume:

a) for any (a, p)eA x B, {ij/fio go ça | ge&} is a Smulian space;

b) any ge& belongs to & if for any (<x,p)eAxB there exista fe^ such that
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Then !F is Eberlein closed in &. Hence if & is an Eberlein space, then so is IF.
For any (a, f)eA x B the map

is Eberlein continuous. The theorem follows from Proposition 4.11. f
COROLLARY 5.27. Let X, Y be Hausdorff topological spaces, (Yx)XeL be a

family of metrizable topological spaces, ((px)XeL be a family such that for any ÂeL,
cpxeê{Y, Yx) and&, <&,&£!<$, be subsets of S(X, Y) such that any ge& belongs to

!F iffor any g-compact set A ofXandfor any XeL there exists f etF such that (px° J
(pxo g on A. Then !F is Eberlein closed in <&. Hence if <& is an Eberlein space, then so

is&.
By Proposition 5.14. for any ^-compact set A of Xand for any XeL, ${A, Yx) is a

Smulian space. By Corollary 3.6. {(pxo g°iA\ge&} is a Smulian space, where iA

dénotes the inclusion map A -+ X. The assertions follow now immediately from the
theorem. f

COROLLARY 5.28. Let X, Y be Hausdorff topological spaces such that on Y
there exists a coarser completely regular topology and^t & be subsets of#(X9 Y) such

that ^c& and any ge& belongs to IF iffor any g-compact set A of X there exists an

fe^ equal to g on A. Then IF is Eberlein closed in &. Hence if & is an Eberlein space,
then so is &'.

Since Y possesses a coarser completely regular topology, it may be injected
continuously into a product of metrizable spaces. Hence we may apply the preceding
corollary. t

COROLLARY 5.29. Let X be a set, Y be a Hausdorff topological space, (Yx)XeL
be a family of strict Smulian spaces, ((px)XeL be a family such that for any ÀeL,
(pxeê(Y, Yx) and^F, <$, &<=.<$, be subsets of X such that any ge<& belongs to & iffor
any countable subset A ofXandfor any XeL there exists fe^ such that q>x° f—(Px° S

on A. Then IF is Eberlein closed in <&. Hence if <& is an Eberlein space, then so is <F.

By Theorem 3.8. and Proposition 3.1. for any countable subset A of Zand for any
XeL, Yx is a Smulian space. By Corollary 3.6. {<Px°g°iA \ g^} is a Smulian space,
where iA dénotes the inclusion map A-+X. The assertions follow now from the

theorem. f
PROPOSITION 5.30. Let Xbea set, Y be a Hausdorff topological space, Z be a

Smulian space, <p be a continuous map of Y into Z such thatfor any zeZ, cp~1(z) is a

Lindelôfspace (with respect to the induced topology) andlF be a subset of Yx such that

any he Yx belongs to SF if there existsge!F such that <p<> g=q>oh. If{q>o g | gelF} is an
Eberlein space, then IF U an Eberlein space.
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Let (/, /) be a countably compact net on & and U be an ultrafilter on /, finer than
the section filter of /. Let us dénote by q> o / the map

ih^o/,:/ -> Zx.

Then (/, q> o / is a countably compact net on {cp o g | ge#"} and therefore there exists
such that cpofQX) converges to cp<> g.

Let xeX and let gx be the map,

Then (/, gx) is a countably compact net on Y and q>o gx(U) converges to (p(g(x)).
By Proposition 3.15, gx(VL) is convergent.

Let us dénote by h the map

Then cp (h(x)) q>(g(x)) for any xeX and therefore cpoh cpo g. We deduce

Since it is clear that / (U) converges to h it follows that IF is an Eberlein space. t

COROLLARY 5.31. LetXbea set, Ybea Hausdorff topological space and Zbea
Smulian space obtained by endowing Y with a coarser topology and & be an Eberlein
subspace of Zx. Then !F is an Eberlein subspace of Yx.

It is sufficient to take cp the identical map of Yinto Z and to apply the proposition, t

PROPOSITION 5.32. Let X be a set, %bea set of subsets of X, Ybea Hausdorff
topological space and^ be the set ofthosef e Yx for whichf(A) is relatively countably

compact for any A e SI. If Y is a locally compact, paracompact space or if Y is a strict
Smulian space then & is Eberlein closed in Yx.

Let (/, / be a countably compact net on & and U be an ultrafilter on /, finer than
the section filter of / and such that / (U) converges in Yx to a map g. We want to show
that ge^.

a) The case when Y is locally compact and paracompact. Then there exists a

family (YÀ)XeA of pairwise disjoint open, cr-compact sets of such F that

XeA

Assume first that there exist AetyL, a séquence (xn)neN in A and a séquence
(lB)neN in A such that g(xn)eYXn for any neN and such that km^kn for any m^n.
Then we may construct inductively an increasing séquence (ïn)n6N in / such that for

any m, weN, m^n, we hâve fln(xm)eYXm. Let h be an adhèrent point in y of the

séquence (/,„)„*. Then
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for any meN and this contradicts the fact that h (A) is relatively countably compact.
Assume now that there exist Ae% a séquence (xn)neN in A and a XeA such that

g(xn)eYx for any neN and such that the adhérence of the séquence (g(xn))neN is

empty. Let (Um)meN be a séquence of open relatively compact sets of Yk such that
for any neN: a) Ûnc UH+1, b) Yx= IJmeN #m, c) g(xw)£ 0n. Then we may construct
inductively an increasing séquence (in)n e N in / such that for any m,neN,m^n,we hâve

fin (xm)$ Ùm. Let A be an adhèrent point in & of the séquence (fln)ne N. Then A (xm)£ £/m

for any meN and this contradicts the fact that h (A) is relatively countably compact.
We deduce by the above results that g (A) is relatively countably compact for any

AetyL and therefore ge!F. Hence !F is Eberlein closed in Yx.

b) The case when Fis a strict Smulian space. Assume that g$^. Then there exists

A e 31 such that g (A) is not relatively countably compact. Hence there exists a séquence
(xB)neN in A such that the séquence (g(xn))neN has no adhèrent point in Y. Let B the

set {xn | #eN}. Since YB is a strict Smulian space (Proposition 3.8) there exists an
increasing séquence 0m)meN in /such that (flm(xn))meN converges to g(xn) for any neN.
If h dénotes an adhèrent function in !F of the séquence (/Im)meN then h(xn)=g(xn)
for any neN. But then h (A) is not relatively countably compact and this is a
contradiction. Hence ge^ and & is Eberlein closed in Yx. t

COROLLARY 5.33. Let X be a Hausdorff topological space such that any real
function gonX is continuous iffor any a-compact set AofX there exists a real continuous

function on X which coïncides with g on Â. Letfurther %be a set ofsubsets of X, Ybe a

Hausdorff topological space and <f*(Jf, Y) be the set of those fetf(X, Y) for which

f(A) is relatively compact for any Ae%. If Y is a locally compact, paracompact space

or if Y is a completely regular, strict Smulian-Eberlein space then të®(X, Y) is an

Eberlein space.
Since Fis an Eberlein space (Corollary 2.4), ^(X, Y) is an Eberlein space (Corol-

lary 5.19). By the proposition %%(X, Y) is Eberlein closed in <£(X, Y) and therefore

an Eberlein space (Proposition 2.1). t

VI. Locally Convex Vector Spaces

A locally convex vector space (over R or C) will always be Hausdorff. If E, F are

locally convex vector spaces then & (E, F) dénotes the set of continuous linear maps of
E into F. E' dénotes the dual (i.e. ^(E9 R) or 2{E, C)) of E. If <£, F} is a duality
separated in E9 then E may be identified with a subset of RF or CF; the induced

topology is called the weak topology on E (associated to the duality <£, F» and is

denoted by cr(E9 F). If E is a locally convex vector space, then by weak topology on E
we understand the weak topology with respect to the duality <£, E').
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PROPOSITION 6.0. Let E, Fbe locally convex vector spaces such that Epossesses

a countable dense set and F is a strict Smulian space. Then ££(E,F) is a strict Smulian

space for any topology finer than the topology ofpointwise convergence.
By Proposition 5.25. tf(E9 F) is a strict Smulian space. The assertion follows now

from Corollary 3.4. t

PROPOSITION 6.1. Let E be a locally convex vector space such that for any
Banach space G, ££{E9 G) is an Eberlein space. Then ££{E9 F) is an Eberlein space for
any locally convex vector space F which is an Eberlein space.

Let 0* be the set of ail continuous semi-norms on F and for any pet? let Fp be the
Banach space obtained by completion of the quotient space of F over p~l (0) and up

be the canonical map F-+Fp. We apply Theorem 5.3. (and Proposition 2.1.) by taking
A: {0}, B: 0>9 X0: E9 Yp: Fp for any pe0>, X: E, Y:=F, <po:= the identical

map of E, il/p: up for any pe0>9 ^: ^(E9 F), ^Op: ^(E9 Fp). t

THEOREM 6.2. Let E, F, be locally convex vector spaces. If there exists a g-

compact (resp. countable) dense set in E and if the one point sets of F are of type Gô,

then S£ (E, F) is a Smulian-Eberlein (resp. strict Smulian-Eberlein) space for any
topology finer than the typology of pointwise convergence. If there exists a a-compact
dense set in E and ifF is an Eberlein space, then <&(E9 F) is an Eberlein space.

Assume first that E possesses a cr-compact dense set and that the one point sets of
F are of type Gô. By Corollary 5.16. and Lemma 3.21. ^(E, F) is a Smulian-Eberlein

space and the assertion follows from Corollaries 3.17. and 3.18.

Assume now that E possesses a countable dense set and that the one point sets

of F are of type Gô. Since any countable set is c-compact it follows from the above

proof that &(E, F) is an Eberlein space and so we hâve to prove only that it is a strict
Smulian space and this follows from the Proposition 6.0. and Corollary 3.5.

The last assertion follows from the first one and from the preceding proposition, f

COROLLARY 6.3. If E is a locally convex vector space such that the one point
sets are of type Gô, then E endowed with any topology finer than the weak topology is a
Smulian-Eberlein space. If moreover E possesses a countable dense set, then E endowed

with any topology finer than the weak topology is a strict Smulian-Eberlein space.

If we endow E' with the a (F', F)-topology, then E=&(E'9 R or C) and the

assertion follows from the theorem with the aid of the following lemma. f

LEMMA 6.4. Let E be a locally convex vector space and let us endow Ef with the

weak topology associated to the duality (E\Ey.Ifthe one point sets ofE are of type G5,

then E' possesses a a-compact dense set. Ifmoreover Epossesses a countable dense set,

then E' possesses a countable dense set.
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Let (Un)neN be a séquence of convex closed neighbourhoods of the origin of E
whose intersection is equal to {0}. If for any weN, U° dénotes the polar set of Un with
respect to the duality <£, £">, then (U°)neN is a séquence of compact sets of E'.
Let xeE be equal to 0 on UneN Un- Then xeUn for any neN and therefore x=0.
This shows that UneN ^« is dense in E'.

If moreover E possesses a countable dense set, then any U° is metrizable and pos-
sesses therefore a countable dense set. We deduce that E' possesses a countable dense

set. t
Remark. IfE is metrizable or one of the continuous seminorms ofE is a norm then

the one point sets of E are of type Gô.

PROPOSITION 6.5. Let E, F be locally convex vector spaces such that:
a) there exists afinite measure on E whose carrier is equal to E (this happens e.g. if

E possesses a countable dense set);
b) there exists a countable dense set in F;
c) the one point sets of F are of type Gô.

If Fs dénotes the locally convex vector space obtained by enodwing F with its weak

topology, then J?(E, Fs) is a strict Smulian-Eberlein space for any topology finer thon
the topology ofpointwise convergence.

By the preceding lemma, F' possesses a countable dense set. Hence there exists on
F a metrizable topology which is coarser than the weak topology. Since F possesses

a countable dense set this topology has a countable base. By Theorem 5.21. tf(E, Fs)
is a strict Smulian-Eberlein space. The assertion follows now from Corollaries 3.17.

and 3.18. f

PROPOSITION 6.6. Let E, F be locally convex vector spaces such that F is an
Eberlein space, Qbea covering ofE with boundedsets such that any set ofQ is contained
in the closure ofa o-compact set of E, and&' be a set of continuous linear maps of E into
F. If any à-stable Cauchy filter on $?<& is convergent, then &> is an Eberlein space

(with respect to the topology ofpointwise convergence).
The proposition is an immédiate conséquence of Theorem 5.23. f
Proposition 6.6. contains Theorem 6. of [6].

COROLLARY 6.7. A subset A ofa locally convex vector space is an Eberlein space
with respect to the weak topology ifany è-stable Cauchyfilter on A converges to a point
of A (this happens ifparticular in A is complète).

Let us dénote by E the locally convex vector space, by E' its dual endowed with the

<r(E'9 2s)-topology and by S the set of equicontinuous subsets of E'. The assertion

follows now from the proposition by replacing E, F and 3F with E' the scalar field and

A respectively. f
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THEOREM 6.8. Let E be a bornological locally convex vector space, Q be a cover-

ing of E, and Fbe an Eberlein locally convex vector space. Then J?(E9 F) endowed with
the topology of uniform convergence on the sets of S is an Eberlein space.

By Theorem 5.9. the set of linear maps g of E into F such that for any séquence
(xnXeN i*1 E which converges to 0 the séquence (g (#„))„6n converges to 0 is Eberlein
closed in FE and therefore an Eberlein space (Propositions 2.1. and 2.8.). But E being
bornological this set is exactly ££{E, F). The theorem follows now from Corollary
5.2. f

This theorem contains Corollary 2.3. of [6].

PROPOSITION 6.9. Let X be a set, $ be a set of séquences in X, Y be a regular
space and & be the set ofthose ge Yx for which (g(xn))neN converges to g(x0) for any
WneNe^ Then & is Eberlein closed in Yx. Inparticular ifYis an Eberlein space then

so is &'.

Let (*n)weNe^ anc* *et us endow X with the following topology: a subset U of Xis
open if either xo$ U or xoe U and there exists meN such that xne U for any n^m. X
endowed with this topology is a Hausdorff topological space and (xn)nefi converges to

x0. Hence if we dénote by / the map

«hxb:N -? X,

then (N, /) is a countably compact net on X. By Theorem 5.9., ^(N, /) is Eberlein
closed in Yx. & is Eberlein closed in Yx as the intersection of the sets ^(N, /), where

(xn)neN runs through $. The last assertion follows from Proposition 2.1. and Theorem
2.8. t

COROLLARY 6.10. Let E be an ordered vector space and F be the set of linear

forms x' on E with the property that for any decreasing séquence (xn)neN in E whose

infimum is 0 we hâve

lim x'(xn) 0.
n-*oo

Then F is an Eberlein space with respect to the weak topology associated to the duality
<F, E}.

By Corollary 2.4. R is an Eberlein space and by the proposition F is an Eberlein

space. t

COROLLARY 6.11. The set of real or complex measures on a locally compact

space endowed with the vague topology is an Eberlein space.

By Theorem 2.8. it is sufficient to prove the theoremo nly for the real measures.
This follows from the proposition and the following lemma. f
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LEMMA. 6.12. Let X be a locally compact space and let 3f(X) be the real vector

space ofreal continuous functions with compact carrier on X. A linearform u on J>f(X)
is a measure if and only if for any feX*(X) and for any séquence (/n)MeN in Jf(X)
converging to 0 and such that |/J^|/| for any weN, (w(/n))neN converges to 0.

By Lebesgue theorem this condition is fulfilled by any measure on X. Assume that
u possesses this property and letfeJf(X). We want to show that

Assume the contrary. Then there exists a séquence (/n)ngN in such Jf(X) such that

I/.KI/U \u(fn)\>n+l
for any neN. Then ((l/«+ l)/M)MeN is a séquence in Jf(X) which converges to 0 and
such that |(l/« + l)/J^|/| for any neN. We get the contradictory relation

0= lim
1

n+l fn

Hence u may be written as a différence of two positive linear forms on Jf(X) and is

therefore a measure. t

THEOREM 6.13. Let X be a locally compact space, Jf(Z) be the vector space of
continuous real (resp. complex) valued functions on X with compact carrier and *Jt{X)
be the vector space of real (resp. complex) measures on X. Then Jf(X) endowed with
the weak topology a{ct{X), Jé(X)) is a Smulian-Eberlein space.

The a{jf(X), ~#(Z))-topology being finer than the topology of pointwise
convergence on 3f(X) the assertion follows from the Corollaries 5.18. and 3.18. t

PROPOSITION 6.14. Let E be a locally convex vector space and F be the set of
Eberlein continuous linearforms on E. Then F is a subspace of the algebraic dual ofEand

any a(E, F)-Eberlein continous linearform on E belongs to F.

From the définition on Eberlein continuous functions it follows immediately that F
is a subspace of the algebraic dual £* of E. Let u be a a(E9 F)-Eberlein continuous
linear form on E and let X(E*) be the coarsest topology on E finer than the initial one
and for which any function of Fis continuous. ï(2s*) is finer than a(E, F) and so u is

Eberlein continuous for X(E*). Hence by Corollary 4.8. u belongs to F. f

PROPOSITION 6.15. Let <F, G> be a separated duality, S be a saturatedfamily,
covering G, such that the sets of S are a {G, F)-relatively countably compact and let us

endow F with the topology of uniform convergence on the sets of S. Then any a {G, F)-
Eberlein continuous linearform on G belongs to the completion of F.
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Let u be a a (G, F)-Eberlein continuous linear form on G. By Theorem 4.2. its
restriction to any set of S is continuous. By Grothendieck's dual characterization of
completeness u belongs to the completion of F ([5], ch. IV, 6.2., Corollary 1.). f

We shall say that a locally convex vector space E is Eberlein complète if any linear
form on E' which is a (£", £)-Eberlein continuous belongs to E. The notion of Eberlein

complète dépends only on the duality {E, £'>.

COROLLARY 6.16. Let Ebea locally convex vector space, E be its completion and
Ê be the set of <r(E', E)-Eberlein continuous linear form on E'. Then ÊczE and Ê
endowed with the induced topology of E is Eberlein complète. In particular a complète

locally convex vector space is Eberlein complète.
The inclusion ÊczE foliows from the proposition. E' is obviously the dual of Ê.

By Proposition 6.14. any a{E\ £)-Eberlein continuous linear form on E' belongs to
Ê. Hence Ê is Eberlein complète, t

Remark. The inclusion EaË may be strict. Let X be a set and

ll(X):={feRx\ E |/(x)|«x>}.
xeX

Then l1 (X) is a real vector space,

/•-> S \f(x)\:lt(X)-+R +
xeX

is a norm on l1 (X) and l1 (X) endowed with this norm is a Banach space. If we set

E:= {/e/1 (X) | {xeX | f(x) ï 0} is finite}

and endow E with the induced topology, then E is a normable locally convex vector

space which is Eberlein complète but not complète.
Ê endowed with the induced topology of E will be called the Eberlein completion

ofE.

COROLLARY 6.17. A locally convex vector space is Eberlein complète ifand only

if it coincides with its Eberlein completion. f

PROPOSITION 6.18. Let E, F be locally convex vector spaces, E, F be their
complétions, Ê, Fbe their Eberlein complétions, ubea continuous linear map ofE into F
and û be its unique linear continuous extension from £ into F. Then û(Ê)czF.

Let xeÊ. Let (/, / be a a (F', F)-countably compact net on F' and U be an ultra-
filter on /, finer than the section filter of/and such that/(U) is a(F\ /^-convergent
to an y'eF'. If u':F'' -> E' dénotes the adjoint map of u then u' is continuous for the

a(F\ F)- and <r{E\ E^topologies. Hence (/, u'of) is a <r(E'9 2s)-countably compact
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net on E' and w'°/(U) a(E\ F)-converges to u'(y'). We get

Hence w(x) is <r(F', F)-Eberlein continuous and belongs therefore to F. f

COROLLARY 6.19. Let Fbe an Eberlein complète locally convex vector space and

Ebea subspace ofF. Then the Eberlein complet ion ofE is the smallest Eberlein complète
subspace of F containing E,

Let F be the completion of F. Then the closure of E in F is the completion of E.

By the proposition the Eberlein completion of E lies in F. If G is an Eberlein complète
subspace ofFcontaining E the above resuit shows that the Eberlein completion of E is

contained in G. Since by Corollary 6.16. the Eberlein completion of E is Eberlein

complète, it is the smallest Eberlein complète subspace of F. t

PROPOSITION 6.20. Let E be an Eberlein complète locally convex vector space
and S be a covering of E'. Then E endowed with the topology ofuniform convergence on

the sets of S is an Eberlein space. In particular E is an Eberlein space.

E is a closed subset of ${E\ R or C) which is an Eberlein space (Corollaries 5.10.

and 2.4.). Hence E is an Eberlein space for the weak topology (Proposition 2.1.). The
assertion follows now from Corollary 5.2. t

PROPOSITION 6.21. If E is an Eberlein complète locally convex vector space,
then any closed subspace of E is Eberlein complète.

Let F be a closed subspace of E. It is known that F' endowed with the cr(F', F)-
topology is isomorphic with the quotient space E'\F° ofE' endowed with the a (E\ E)-
topology, where F° dénotes the polar set of Fin E' ([5], ch. IV, 4.1., Corollary 1.).

Let u be a linear from on F' Eberlein continuous for the cr(Ff, F)-topology and let q>

be the canonical map E' -+E'IF°~F'. Then uoq> is a linear form on E', Eberlein
continuous for the <r(E\ F)-topology. Since E is Eberlein complète it follows that

uoq> and therefore u are continuous. f
PROPOSITION 6.22. The product of an arbitrary family of Eberlein complète

locally convex vector spaces is Eberlein complète.
Let (EXei be a family of Eberlein complète locally convex vector spaces and let E

be its product. Its dual may be identified algebraically with the direct sum of the family
(F/)ieJ ([5], ch. IV, Theorem 4.3.). Let for any ie/, ^, be the canonical map

Let « be a linear form on E' which is Eberlein continuous for the a{E\ F)-topology.
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It is easy to see that uoij/^s an Eberlein continuous on 2s/ for the (r(Et\ is,)-topology.
Since Ev is Eberlein complète it follows that u°<pl is continuous for this topology.
Since this happens for any i e/it follows that u is continuous for the a (£", E)-topology.
Hence E is Eberlein complète, t

COROLLARY 6.23. The projective limit in the category of locally convex vector

spaces of Eberlein complète locally vector spaces is Eberlein complète.
In fact a projective limit in the category of locally convex vector spaces is a closed

subspace of a product. t

PROPOSITION 6.24. Let E be an Eberlein complète (resp. complète) locally convex
vector space which contains a weakly a-compact dense set. If u is a linear form on

E' such that (u(x'n))neN converges to Ofor any séquence (resp. equicontinuous séquence)

(x'n)neN on E' which converges to 0 for the (t(E\ E)-topology, then ueE.
Let us dénote by Es the topological space obtained by endowing E with the weak

topology. By Corollary 5.16. and Corollary 3.6., any subset of E' endowed with the

induced a (2s", is)-topology is a Smulian space. By Theorem 4.1. u (resp. the restriction

of m to any equicontinuous set of E') is Eberlein continuous (resp. is continuous
(Theorem 4.2)) and therefore ueE (resp. [5], ch. IV, 6.2., Corollary 2.). t

Remark. This resuit contains [5], ch. IV, 6.2., Corollary 3. where it is assumed that
E is complète and separable.

PROPOSITION 6.25. Let E be a locally convex vector space which is complète for
the Mackey topology, X' be the topology on E' of uniform convergence on the convex

compact sets of E and © be the set of convex sets of E' precompact for %'. Then the

identical map of Einto E endowed with the topology X of uniform convergence on the

sets of S is Eberlein continuous.

Let (/, / be a countably compact net on E and let U be an ultrafilter on /, finer
than the section filter of/and such that /(U) converges to an xeE. We want to show
first that /, / is a countably compact net on E for the topology X. Let (in)ne N be an

increasing séquence in /. Then {/ (in) | weN} is a relatively countably compact set of i?.

But E being an Eberlein space (Proposition 6.20. and Corollary 6.16.) it follows that
this set is relatively compact (Theorem 2.13.). By Krein's theorem ([5], ch. IV, 11.5.)
its closed convex hull A is compact hence equicontinuous for Ef endowed with X'.
We deduce that A is compact for X ([5], ch. III, 4.5.). It follows that the séquence

(/ (ln))n<= n has a non-empty adhérence for X. Hence (/, / is a countably compact net
for X. But E endowed with X is an Eberlein space (Proposition 6.20. and Corollary
6.16.). We deduce that/ (U) is convergent for X. Since X is finer than the initial topoly»

/ (W) converges to x for I. t
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PROPOSITION 6.26. Let X be a set, %be a set of subsets of X, E be a Hausdorff
topological vector space and !F be the set of thosef eEx for whichf (A) is> boundedfor
any Ae% Then & is Eberlein closed in Ex.

Let (/, / be a countably compact net on & and VL be an ultrafilter on /, finer than
the section filter of/ and such that/ (U) converges in Ex to a map g. We want to show

that geéF. Assume the contrary. Then there exists A e % such that g (A) is not bounded.
Hence there exists a séquence (xn)neN in A such that {g(xn) | neN} is not bounded

([5], ch. I, 5.3.). There exists therefore a circled neighbourhood U of the origin of E
such that {g(xn) | neN}\<xlI^0 for any scalar number a. Let W be a closed circled

neighbourhood of the origin of E such that W+WaU. We may construct an in-
creasing séquence (*„),, eN in / such that for any m, n eN, m^n, we hâve

let h be an adhèrent point in !F of the séquence (/ln)neN- Then

h(xm)eg(xm)+W

for any meN. Since h (A) is bounded there exists aeR such that h(A)c(xW. We get

g(xm)e<xW+W csup(a,l)U
for any meN, and this is the expected contradiction, f

COROLLARY 6.27. Let X be a Hausdorff topological space such that any real

function g on X is continuous if for any cr-compact set B of X there exists a real
continuous function on X which coïncides with g on B. Letfurther %bea set ofsubsets of
X, E be a locally convex vector space which is an Eberlein space andtf® (X, E) be the set

of thosefetf(X9 E) for which f (A) is bounded for any Ae% Then V"(X, E) is an

Eberlein space.
Since ^(Z, E) is an Eberlein space (Corollary 5.19.) the assertion follows from the

proposition and Proposition 2.1. f

VII. Application to Intégration Theory

A measurable space is a set X endowed with a c-algebra of subsets of X, called

measurable sets. By measure on a measurable space we will understand a a-additive
function on the c-algebra of measurable sets with values in [0, oo] equal to 0 on the

empty set. The measure is called bounded if it does not take the value oo. Let xeX; we

call Dirac measure at the points x9 and dénote it by ex, the measure on X equal to 1

(resp. 0) on any measurable set which contains (resp. does not contain x). A measurable

set A carries pi if X\A is ju-negligible (i.e. fi(X\A)=0). If JHs a Hausdorff topological
space, then by positive measure on Xwe understand a measure \i on a cr-algebra S of
Xsuch that;
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a) the compact sets belong to 93 and are of finite ju-measure;
b) a subset ofX belongs to 23 if its intersection with any compact set belongs to 93 ;

c) for any ieSwe hâve

\i (A) sup {/x (K) | K compact c ^4} ;

d) AcB, Beïï, /i(JB) O=>^e93.
Thèse are exactly the "prémesures positives" introduced in Bourbaki. It is easy to show

that a measure on a Hausdorff topological space is determined by its values on the

compact sets. This allows to define the sum of two measures and the multiplication of
a measure with a positive real number. A complex (resp. reaï) measure on a Hausdorff
topological space will be a linear combination of positive measures with complex
(resp. real) coefficients. This notion coincides with Bourbaki's notion of "prémesure"
(resp. "prémesure réelle"). A complex (resp. real) measure on a Hausdorff topological
space will be called boundediî it is a linear combination of bounded measures. If«^ is a

vector space of complex (resp. real) functions on a Hausdorff topological space X and

*Jt is a vector space of complex (resp. real) measures on X such that :

a) any fe^ is ju-integrable for any
b) any Dirac measure belongs to Jt,

then the map

I x J( -> C (resp. R)

is a duality on <<^", Jty separated in !F.
Let \i be a measure on a measurable space. A set IF of /x-integrable function will

be called equi-integrable for \i if for any séquence (/n)neN in 3F which converges to
a function / ju-allmost everywhere (i.e. at any point of X with the exception of a

/i-negligible set) we hâve

J n-*oo J

Let X be a Hausdorff topological space and n be a complex measure on X; a map cp of X
into a topological space is called \i-measurable if for any compact set K of X there
exists an increasing séquence (Kn)neN of compact subsets of i^such that -K\LJneN ^» *s

/x-negligible and for any neN the restriction of <p to Kn is continuous.

PROPOSITION 7.1. LetXbea Hausdorff topological space, & be a vector space

of complex (resp. real) functions on XandJt be a vector space of complex (resp. real)
measures on X such that:

a) anyf etF is ii-integrable for any n^Jt;
b) any Dirac measure belongs to J(;
c) for any ixeJt there exists a subset A^ ofX which carries fi such that the set of the
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restrictions of the functions of IF to A^ is a Smulian space with respect to the topology of
pointwise convergence.
Let (/, f)bea net on IF which is countably compact for the topology of pointwise
convergence on IF and with thefoliowing property: for any iie*4t andfor any increasing

séquence (in)neN in Isuch that (/In)neN converges to a getF at any point of A^ we hâve

lim \ flndfi= I gdfi.
n-*ao J J

If 5 is afilter on Ifiner than the section filter of I, then the adhérence o//(g) in the

topology of pointwise convergence on tF coïncides with its adhérence in the g(1F, ^)-
topology.

We may assume that g is an ultrafilter. The <r(#", ~^)-topology being finer than
the topology of pointwise convergence we hâve only to show that if/ {%) converges to
a geF for the topology of pointwise convergence it converges to g for the a{^, Jt}-
topology. Let \xeJ( and q> be the map

Then (/, tp° f) is a countably compact net on !F | A^ (for the topology of pointwise
convergence) and for any increasing séquence (in)neN in / such that (p° fln converges
to an helF | A^ we hâve

lim (poflndfz= j h d\i.
«-?oo J J

Since & | A^ is a Smulian space we get by Theorem 4.1.

gd/z= (pogdfi \im (pofidfi \im fxd\i.
J J »,8f J i,% J

The measure fi being arbitrary we deduce that/(2f) converges to g for the <x(^", Jt)-
topology. f

COROLLARY 7.2. Let X, «F, Jt be like in the proposition and & be a relatively
countably compact set of !F for the topology ofpointwise convergence such that for any
\xeJt, & is equi-integrablefor n. Then on the closure of^ in IFfor the topology ofpointwise

convergence, this topology and the o{lF, Jt}-topology coincide.

We prove first a lemma.

LEMMA 7.3. LetXbeaset, X, %' be two topologies on X such that %' isfiner than

% and such that X endowed with %' is a regular space, and let Abea subset of X dense

for X. If the X-closures and the X'-closures of the subsets of A coincide, then X X'.

3) ^r\Att:^{f\Ait 1/eJf*} where/| ^dénotes the restriction offtoA».
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Let Fbe a !£'-elosed set ofXand let xeX\F. Let Ubea37-closed neighbourhood of
x contained in X\F. Let ysF and Fbe a ï'-neighbourhood of .y. Then Vn (X\U) is a

I'-neighbourhood of y. Since y belongs to the ï-closure of A and therefore, by the

hypothesis, to the î'-closure of A we get

V n (A\U) V n (X\C/) nA^Q.
Hence y belongs to the 37-closure of A\U. Since y is arbitrary F is contained in the

27-closure of A\U. But U being a 27-neighbourhood of x, x does not belong to the

ï'-closure of A\U which coïncides with the 2-closure of A\U. Its complementary set

is therefore a ï-neighbourhood ofx which does not intersect F. Hence F is X-closed. f
Let ~§ be the closure of ^ in IF for the topology of pointwise convergence. By the

above lemma it is sufficient to show that the closures of any subset of ^ in § for the

topology of pointwise convergence and for the o"(^, e^)-topology coincide. Let 3fF be

a subset of^and/e«^"be an adhèrent point of $F in the topology of pointwise convergence.

Let < be the trivial preorder relation on Jf (i.e. g^hfor any g, heJtf*) and <p be

the identical map of $? into & .Then (^f, q>) is a countably compact net on IF for the

topology of pointwise convergence and possesses the following property: for any
and for any séquence (hn)neN in Jf which converges to a hetF at any point of

we hâve

lim f^dn-fh^.
Let Xi be an ultrafilter on 3tf which converges to / in the topology of pointwise convergence.

By the proposition U converges to / in the <r(«^*, e^)-topology. \

COROLLARY 7.4. Let X be a Hausdorff topological space, ^(X) be the vector

space of continuons complex (resp. real) functions on X, *Jtb{X) be the vector space of
bounded complex (resp. real) measures on X and

{fe%{X) | /is bounded},

:= {fiG^b(X) | ju has a compact carrier}.

If & is a relatively countably compact set oftë(X) (resp. ^b(X))f for the topology of
pointwise convergence and a bounded set for the (t(^(X), Jtc(X))- (resp. a(^b(X),
Jtb{X))-) topology then on its closure in &(X) (resp. ^b(X)) for the topology of
pointwise convergence, this topology and the a(^{X\^c{X))' (resp. a(^h{X\
Jtb{X))-) topology coincide. In particular a subset of V(X) (resp. <œb(X)) is

relatively countably compact, countably compact, relatively compact or compact for the

a{^{X\ J?C(X))- (resp. (r(Vb(X)9 Jtb(X)\) topology if and only ifit is boundedfor
this topology and possesses the corresponding property for the topology of pointwise

convergence.
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Let us prove first that the couples (V (X), Jtc{X% (Vb(X), Jtb{X)) satisfy the

conditions a), b), c) of the proposition for the couple {JF, Jt}, This is obvious for
a) and b). For the couple fé(X), Jtc(X^) the condition c) follows from Corollary 5.16.

Let us consider the couple i^b{X\ Jtb(X)) and iieJ%b(X). Since \i is bounded there
exists a c-compact set A of X such that fi(X\A) 0. The condition c) follows from
Corollary 5.16.

The corollary follows now from the preceding corollary, from the next lemma and

from Lebesgue theorem. f

LEMMA 7.5. Let Xbea Hausdorff topological space, ^b (X) be the vector space of
bounded continuons real (resp. complex) functions on X, and Jtb (X) be the vector space

of bounded real (resp. complex) measures on X. If^ is a subset of<^>b(X) bounded for
the (%b{X),Jtb(X))-topology, then

<oo

xeX

Assume the contrary. We shall construct inductively a séquence (/n)weN in & and

a séquence (xn)neN in X such that

a) \fn(xn)\>isup\fn(x)\,
xeX

b) \fn(xn)\>6n(l + 3 Y sup|/(xm)|

for any neN. Assume that the séquences were constructed up to n— 1. Since !F is

bounded for the a(tfb(X% ^ft(Z))-topology we get

sup |/(xm)| < oo

for any m<«— 1. The existence of /„ and xn follows from the hypothesis of the proof
and from the fact that any fe^ is bounded.

Weset

where eXn dénotes the Dirac measure at the point xn. Then

1

- ^ ^ \fn(xm)\ - ^ 1 \fn(xm)\
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~ \fn (*.)l -Ç^ ^ SUp|/B (x)|) + ^
jn \fn (XH)\ > \ ^ 6-

m>n

for any weN, and we get the contradictory relation

oo > sup \ f d\i ^ sup /„
J weN J

00

Remark. If !F dénotes the vector space of bounded complex (resp. real) functions

/ on X which hâve the property that for any \ieJth{X) the restriction of / to
the carrier of \i is continuous, then we may replace in the above coroliary ^b(X)
by !F. Moreover IF being an Eberlein space for the topology of pointwise convergence
(Coroliary 5.33) a subset of& is relatively compact for the o{^, J(h (Ar))-topology if
and only if it is bounded for this topology and is relatively countably compact for the

topology of pointwise convergence.

COROLLARY 7.6. Let X, Y be Hausdorff topological spaces \i be a bounded

complex measure on Y andfbe a bounded complex function on X x Y such that for any
xeX and any compact set K of Y the function

is continuous and for any ye Y the function

is Eberlein continuous. Then the function

f(x,y)dn(yy.X^C

is Eberlein continuous. In particular if X is a espace (and a fortiori a compact space)
this function is continuous.

By endowing Y with the finest topology which induces on the compact sets of Y the

same topology as the initial one (which does not change the complex measures on X)
we may assume that

for continuous for any xeX. Let fâb(Y) be the vector space of bounded continuous

complex functions on Y and Jih Y) be the vector space of bounded complex measures

on Y. As it was shown in Coroliary 7.4. the couple (%b(Y)9 ^b{Y)) satisfies the

conditions a), b), c) from the proposition. Let (/, g) be a countably compact net on X
and let U be an ultrafilter on /, finer than the section filter of / and such that g (U)
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converges to an xoeX. Let ye Y. By the hypothesis we get

lim f(g(i)9 y) f(x09 y).

Let (p be the map of Xinto ^b{Y) which maps any xeXinto the function

We deduce from the above relation that (/, ço g) is a countably compact net
for the topology of pointwise convergence and that (pog(U) converges tocp (x0) in this

topology. By Lebesgue theorem and by the proposition we deduce that (p°g(U)
converges to (p(x0) in the c{%b(Y)9 Jth{Y))-topology. Hence

Hm f(g (*), y) dix (y) lim <pog(i)dn= <p (x0) d\i /(x0, j) du (y). t
»,u J i,u J J J

PROPOSITION 7.7. Let X be a completely regular space, X{X) be the vector

space of continuous complex (resp. real) functions with compact carriers on X and

Jt (X) be the vector space ofcomplex (resp. real) measures on Xsuch that any a-compact
and relatively countably compact set of X is offinite measure. If^isa relatively countably

compact set of 3f(X)for the topology ofpointwise convergence and a bounded set

for the a{of{X), Jt (X))-topology then on its closure with respect to the topology of

pointwise convergence, this topology and the a (X (X), Jt' {X))~topology coincide.

A subset ofJf(X) is relatively compact for the a(3f(X)9 Jt' (X))-topology if and only

if it is boundedfor this topology and it is relatively countably compactfor the topology of
pointwise convergence.

Let § be the closure of <& in Jf(X) for the topology of pointwise convergence.
By Lemma 7.3. it is sufficient to show that the closure of any subset of ^ in ^ for the

topology of pointwise convergence and for the a(jf(X), «^(Z))-topology coincide.
Let Jt be a subset of ^ and feJf(X) be an adhèrent point ofJt in the topology of
pointwise convergence. Since Jf (X) is a Smulian space in the topology of pointwise

convergence (Corollary 5.18.) Jt is sequentially dense (Theorem 3.22.). Hence there
exists a séquence (/w)n6N in Jt which converges to / in the topology of pointwise

convergence. We set

A:=\J{xeX\fn(x)^0}.
neN

A is a ex-compact set of X. We want to show that A is relatively countably compact.
Assume the contrary. Then there exists a séquence (*m)mgN i° A w^h no adhèrent

points. We shall construct inductively three séquences (n(k))keNi (m(k))keN, (ock)keN
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of natural numbers such that for any ^eNwe hâve

a) j <k=>fnU)(xm(k)) 0;
b) aJ/»(fc)(*«<fc))l - £ aii/»(fc)(xmo))i >k-

Assume that the séquences were constructed up to k—l. We take m(k) such that

*».(*)# U Supp/W(i),

then n(k) such that /W(jt)(xm(il))^0 and afc such that b) is fulfilled. If we set

fceN

where sx dénotes the Dirac measures at x, then fie^(X) and we get the contradictory
relation

oo > sup i hdfi > lim fn(k)dfi\
J fc-00 J I

00

Hence A is relatively countably compact. By Lemma 7.5.

sup \g(x)\ <oo

xeX

By Lebesgue theorem it follows

\ fdn= lim fn {k) dji

for any \ieJ({X\ Hence / is an adhèrent point of tf in the a(jf(X), Jt{X))~
topology.

The last assertion follows now from the fact that X (X) is an Eberlein space for the

topology of pointwise convergence (Corollary 5.18.). f

PROPOSITION 7.8. Let X be a locally compact space, JT(X) be the vector space

of continuous complex (resp. real) functions on X with compact carrier endowed with the

topology ofpointwise convergence and^ be a relatively countably compact set ofJ^(X)
such that the function

xh sup \f{x)\:X-*R

is boundedand with compact carrier. If*Jf(X) dénotes the vector space of complex (resp.
real) measures on X then the topology a (Jf (X), Jt (X)) induces on & the same topology
as the topology ofpointwise convergence. In particular tF is relatively compact for the

^(X)y topology.
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Let us dénote by X the topology of pointwise convergence on Ct{X). By Lebesgue
theorem if (/n)MeN is a séquence in ^ which converges to an feJf(X) in the X~

topology then

fi(f)=limfi(fn)
n-*oo

for any pi€JV(X). Since W is a Smulian space for the ï-topology (Corollaries 5.18.

and 3.17.) it follows that the restriction of any \itJt (X) to !F is Eberlein continuous
for this topology (Theorem 4.1.). Since Jf(X) is an Eberlein space for the ï-topology
(Corollary 5.18.) it follows that # is compact. Hence the restriction of any \ieJt(X}
to J^ is continuous (Theorem 4.2.). Hence the g(X*(X), ^(X))-topology and the

ï-topology coincide on JF, which is therefore compact for the g(cP{X\ Jt{X))-
topology. f

THEOREM 7.9. Let E be an Eberlein complète (resp. complète) locally convex
vector space which contains a weakly o-compact dense set. Let Xbea measurable space,

jâ be a measure on X andf be a map of X into E such that for any x'eE' the function
x' © / is fi-integrable. Then the following assertions are équivalent:

a) there exists xeE such that for any x'eE' we hâve

/*¦
b) for any séquence (resp. equicontinuous séquence) (xn)neN in E' converging to 0

for the cr(E', E)- topology we hâve

lim i x;<
n-*oo J

a=>b is trivial.
b => a follows from Proposition 6.24. f

COROLLARY 7.10. Let E be a reflexive Banach space, X be a measurable space,
be a meaure on X andf be a map of X into E such that for any xr eE' the function
'ofis fi-integrable. Then he following assertions are équivalent:

a) there exists xeE such that

for any x'eE';
b) for any séquence (x'n)nefi in E' converging to Ofor the g(E\ E\topology we hâve

lim fxio/^ 0. flim (x'n
W-+0O J
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COROLARY 7.11. Let E be an Eberlein complète (resp. complète) locally convex
vector space and Fbe a closed subspace of E which contains a weakly a-compact dense

set. Let Xbe a measurable space, \ibe a measure on X andf be a map of X into F such

that for any x'eE' the function x'°fis \i-integrable. Then the following assertions are
équivalent:

a) there exists xeF such that for any x'eE' we hâve

J <x, x'};

b) for any séquence (resp. equicontinuous séquence) (x'n)neN in E' with theproperty
that

lim (y, <> 0
n-*oo

for any yeF we hâve

lim x'nofdfi 0.
n-*co J

a => b is trivial
b=>a. By Proposition 6.21. Fis Eberlein complète (resp. F is obviously complète).

Since the weak topology of Fcoincides with the induced a (F, F')-topolgy, F possesses

a weakly cr-compact dense set. From b) and the theorem we deduce that there exists

x e F such that

y' o f d\i <x, y'y

for any y'eF'. Let x'eE' and (p be the canonical map E'-+F' E'IF°, where F°
dénotes the polar set of Fin F'. Then

J X'ofdfl J <p{x')of dli <X, (p(x')y <X, X'>.

COROLLARY 7.12. Let E be a quasi-complete (even for the Mackey topology)
locally convex vector space, Xbe a measurable space, \ibea bounded measure on X andf
be a map ofXinto Esuch thatf (X) is bounded and contained in the closure of a weakly

o-compact set of E and such that x' o fis fi-integrable for any x'eE'. Then there exists

xeE such that

for any x'eE'.
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Let E be the completion of E. By the next lemma there exists a closed subspace
F of E which contains f(X) and which possesses a weakly cr-compact dense set. Let

N t>e a séquence in E' such that

lim <x, x'n> 0
»->oo

for any xeF. We set

^4 is obviously a barrel of JF. Since F is complète A absorbs any bounded set of F
([5], ch. II, 8.5.). Hence

sup|</(0,*;>|<oo.
teX
neN

By Lebesgue theorem we get

lim x'nof dn 0.
n~+ao J

By Corollary 6.16. E is Eberlein complète. Hence by the preceding corollary there
exists xeF such that

J

for any x'eE'. But it is obvious that x belongs to the convex closed hull of ju (X) f (X)
Since E is quasi-complete and / (X) bounded this convex closed hull is contained in E.

Hence xeE. f

LEMMA 7.13. If a subset of a Hausdorff topological vector space E is contained in
the closure ofa a-compact set then it is contained in the closure of a o-compact subspace

ofE.
Let JE'be a Hausdorff topological vector space and A be a subset of E which is

contained in the closure of a cr-compact set. Then there exists an increasing séquence
(Kn)neN of compact sets of E such that

neN

For any neN we set

'= \ É <*iXi I M < n> Xi£Knî-

Then Ln is compact as the continuous image of a compact set. It is obvious that
U«eN Ai is a ff-compact subspace of E whose closure contains.^ t



Smulian-Eberlein Spaces 315

COROLLARY 7.14. Let E be a quasi-complète (evenfor the Mackey topology)
locally convex vector space, X be a Hausdorff topological space, fxbe a bounded measure

on X andfbe a fi-measurable map ofXinto E endowed with the weak topology such that

f (X) is bounded. Then x'°f is \i-integrable for any x'eE' and there exists xeEsuch that

for any x'eE'.
For any x'eE' the fonction x'° fis bounded and /i-measurable hence ^-integrable.

Let (Kn)n 6 N be a séquence ofcompact sets such that X\ (Jn 6 N Kn is ^-negligible and such

that for any neN the restriction of / to Kn is continuous for the weak topology of E.

We may assume without changing the problem that / vanishes on Ar\lJn6N Kn. Then

/ (X) is contained in a weakly c-compact set of E and the assertion follows from the

preceding corollary. t
Remark. It follows from this corollary that if E is a quasi-complete locally convex

vector space then any bounded measure on E which is carried by a bounded set pos-
sesses a barycenter.

COROLLARY 7.15. Let X, Y be Hausdorff topological spaces \i, v be bounded

complex measures on X, Y respectively andf be a bounded complex function on X x Y
such thatfor any xeX (resp. ye Y) and any compact set Kof Y (resp. ofX) the function

y^f(x9 y):K -> C (resp. x h» /(x, y):K -> C)

is continuous. Then for any compact set K of Y (resp. X) the function

y ^ J /(*, y) d/i(x):K -> C (resp. x^ J /(x, y) dv(y):K -> C)

is continuous and we hâve

J J f(x, y) dfi (x)) dv (y) j(j f(x, y) dv (y)) du (x).

Let X (resp. %') be the finest topology on Z(resp. Y) which induces on the compact
sets the same topology as the initial one. Then the function / is continuous separatedly
in each variable for the topologies X and X'. By Corollary 7.6. the fonctions

y»jf(x9y)dii(x):Y->C9 x^ J /(x, y) dv(y):X

are continuous for Xf and X respectively (since X endowed with X and Y endowed
with X' are c-spaces (Corollary 4.6.)) and this proves the first assertion.

Let us dénote by ^b(Y) the vector space of bounded ï'-continuous complex
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functions on Y. It is obvious that ^b Y) is complète for the Mackey topology associat-

ed to the duality <&b(Y)9 ^b(Y)) (J(b{Y) is the vector space of bounded complex
measures on Y, and is equal to the vector space of bounded complex measures on Y

endowed with X'). Let cp be the map of Xinto ^b{Y) which maps any jteXinto the
function

(pis Si X-continuous map ofX into ^b Y) endowed with the (%b F), Jtb Y ))-topology
(Corollary 7.4) and (p(X) is bounded. By the preceding corollary there exists

ge«*(r)suchthat

for any le<Jfb(Y). If we take as A the Dirac measure at y then we get

Hence

J (J /(*, y) àvi (x)) dv (y) j(j f(x9 y) dv (y)} d/i (x). t
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LIST OF LOGICAL CONNECTIONS

Explanation

6.2. (3.5, 3.17, 3.18, 3.21, 5.16, 6.0, 6.1) means that in the proof of Theorem 6.2 there were used:

Corollary 3.5, Corollary 3.17, Corollary 3.18, Lemma 3.21, Corollary 5.16, Proposition 6.0 and
Proposition 6.1.

1.1, 1.2(1.1), 1.3, 1.4;

2.1, 2.2 (1.3), 2.3 (1.2, 2.2), 2.4 (2.3), 2.5 (2.3), 2.6 (2.3), 2.7, 2.8, 2.9 (2.8), 2.10 (2.1, 2.9), 2.11 (2.10),
2.12,2.13,2.14,2.15;

3.1, 3.2(1.4), 3.3(3.2), 3.4(3.2), 3.5(3.2), 3.6(3.4), 3.7(3.4), 3.8, 3.9, 3.10(1.3), 3.11(1.2,3.10),
3.12(3.6, 3.11), 3.13,(3.11), 3.14(1.4), 3.15, 3.16(3.15), 3.17(3.6,3.16), 3.18(3.7,3.16), 3.19(2.4,
3.5, 3.18), 3.20(3.19, 3.21), 3.21, 3.22, 3.23, 3.24(3.3, 3.22), 3.25;

4.1, 4.2, 4.3 (4.2), 4.4 (4.2, 4.5), 4.5, 4.6 (4.4), 4.7, 4.8 (4.7), 4.9, 4.10 (4.9), 4.11 (2.1);

5.1, 5.2(2.8,3.7,5.1), 5.3(2.1,2.8), 5.4(5.3), 5.5(2.1,5.3), 5.6(3.4,3.8), 5.7(5.6), 5.8, 5.9, 5.10,
(2.1, 2.8, 5.9), 5.11 (5.10), 5.12 (5.11), 5.13, 5.14 (1.4, 2.4, 3.1, 3.5, 3.8, 4.2, 5.10, 5.13), 5.15 (1.4, 3.19,
4.5,5.10,5.14), 5.16(5.15), 5.17(3.16,3.18,5.16), 5.18(3.17,3.21,5.16), 5.19(5.5,5.15), 5.20(5.16,
5.19), 5.21 (3.14, 5.7, 5.16), 5.22, 5.23 (2.1, 2.8, 5.15), 5.24 (3.19), 5.25,(3.4, 3.8), 5.26 (4.11), 5.27 (3.6,
5.14, 5.26), 5.28 (5.27), 5.29 (3.1, 3.6, 3.8, 5.26), 5.30 (3.15), 5.31 (5.30), 5.32 (3.8), 5.33 (2.1, 2.4, 5.19,
5.32);

6.0 (3.4, 5.25), 6.1 (2.1, 5.3), 6.2 (3.5, 3.17, 3.18, 3.21, 5.16, 6.0, 6.1), 6.3 (6.2, 6.4), 6.4, 6.5 (3.17, 3.18,
5.21, 6.4), 6.6 (5.23,) 6.7 (6.6), 6.8 (2.1, 2.8, 5.2, 5.9), 6.9 (2.1, 2.8, 5.9), 6.10 (2.1, 2.4, 6.9), 6.11 (2.8,
6.9,6.12), 6.12, 6.13(3.18,5.18), 6.14(4.8), 6.15(4.2), 6.16(6.14,6.15), 6.17(6.16), 6.18, 6.19(6.16,
6.18), 6.20 (2.1, 2.4, 5.2, 5.10), 6.21, 6.22, 6.23 (6.21, 6.22), 6.24 (3.6, 4.1, 5.16), 6.25 (2.13, 6.16, 6.20),
6.26,6.27(2.1,5.19,6.26);

7.1 (4.1), 7.2 (7.1, 7.3), 7.3, 7.4 (5.16, 7.2, 7.5), 7.5, 7.6 (5.16, 7.1), 7.7 (3.22, 5.18, 7.3, 7.5), 7.8 (3.17,
4.1,4.2,5.18), 7.9(6.24), 7.10(7.9), 7.11(6.21,7.9), 7.12(6.16,7.11,7.13), 7.13, 7.14(7.12), 7.15

(4.6,7.4,7.6,7.14).
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