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Epimorphic Extensions of Non-Commutative Rings

Hans H. Storrer

Introduction

Let i?bea subring of the ring S. Following Isbell [9] we say, that an élément
de S is dominated by Riff(d)=g(d) for every pair of ring homomorphisms/, g:S-+T
having the property, that/(r)=g(r) for ail reR. The set of ail éléments dominated
by R is called the dominion Dom(i?, S). This is clearly a subring of S containing R.
The inclusion map R^S is an epimorphism in the category of rings if and only if
Dom(i£, S) S. If this is the case, then we will say, that S is an epimorphic extension
of R. Expressed otherwise, this means, that every ring homomorphism with domain
R can be extended to S in at most one way.

In this paper, various properties of the dominion and of epimorphic extensions

are studied. In the first section, we state a number of criteria for an élément to be

dominated. In section two it is shown, that the dominion behaves nicely (i.e. in the

expected way) under finite (though not under infinité) products, as well as under the
formation of matrix rings and of rings of the form eRe, where e is a suitable idempo-
tent. As a conséquence, the property of having only trivial epimorphic extensions is

Morita invariant.
The third section deals with flat epimorphic extensions. Fiat epimorphisms re-

cently hâve attracted considérable attention. We show, that flat epimorphic extensions
behave nicely under the various constructions mentioned above; this is done by
proving the corresponding results for flat ring extensions in gênerai. In the fourth
section, we characterize the flat epimorphic extensions of a left perfect ring as the

endomorphism rings of certain two-sided ideals. Another resuit is, that a right perfect
ring has no proper epimorphic extensions provided it contains a copy of every simple
right module. In the last section, it is shown, that if R is a principal idéal domain
contained in the center of S, then the inclusion of R in its dominion is a ring epimorphism.

This generalizes a resuit by Bousfield and Kan [4].
Ail rings under considération are associative and hâve a unit élément; ring

homomorphisms and modules are unitary. In particular, any subring R of a ring S contains
the unit élément of S. If M is an S-module and if we consider M as an i?-module, we
shall always mean the iî-module structure induced by the inclusion map.

The author wishes to thank M. André for some helpful comments. During the

préparation of this paper, the author was supported by "Schweizerischer National-
fonds zur Fôrderung der wissenschaftlichen Forschung".
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1. Characterizations of the Dominion

The following définition, adapted from [9], will be useful. A zigzag for se S over
(R, S) is a représentation

m n

»=ij=i
where xi9 yje S, a^eR, subject to the conditions

m

Z Xid^eR for 1 ^j^n

Sometimes it is convenient to write the zigzag in matrix form :

s XAY

where Z= (xf) is a row vector over S, Y= (yj) sl column vector over S and A (ay) a

m x « matrix over R.

PROPOSITION 1.1. Let R be a subring of S and let de S. Then the following
statements are équivalent:

(a) deT>om(R, S),
(b) if M is any S-S-bimodule and if me M has the property that rm mr for ail

reR, then dm md,
(c) d®\ \®din S®RS,
(d) there exista a zigzag for d over (R, S).
Proof The équivalence of (a), (b) and (c) was essentially proved by Silver [16, 1.1]

(see also [17, 13.5 and 13.6]), and (d) is due to Mazet [15, exposé 2], at least in the

commutative case. The proof uses lemma 10 of [3, chap. I, §2, No. 11] and works

equally well in the non-commutative case.

Another set of équivalent conditions is as follows:

PROPOSITION 1.2. Let R, S and d be as above. Then the following statements

are équivalent:
(a) d®\ \®dinS®RS,
(b) if M is a right and L a left S-module, then md®x=m®dx in M®RL for ail

meM, xeL,
(c) ifh:M-+N is an R-homomorphism of arbitrary right S-modules, then h(md)=

h(m)dfor ail meM.
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Proof. (a) =>(b). Apply the homomorphismp:M®sS®RS®sL-+M®RL send-

ing m®s®s' ®x to ms®s'x to the élément m®d®\®x=m®\®d®x.
(b)=>(c). Let q be the canonical homomorphism N®RS-+N and apply q(h®ls)

to the élément md®l=m®deM®RS.
(c) => (a). The map h : £-? S ®R S given by h (s)=s®\ is a homomorphism of right

i*-modules. Thus h(l)d=l®d=h(d) d®\.
It follows immediately, that a ring homomorphism R -> 5 is an epimorphism if

and only if the canonical map S®RS-+S is an isomorphism. Epimorphisms and
dominions in the category of commutative rings are also described by (1.1) and (1.2).
See e.g. [17, p. 76].

PROPOSITION 1.3. (a) Let R^S and deDom(R, S). If seS has the property,
that rs=sr for ail reR, then ds=sd.

(b) If R is commutative, then so is Dom(i?, S). In particular, ail epimorphic images

of a commutative ring are commutative.

Proof. (a) Apply (1.1, b) to M=5. (b) follows by using (a) twice: R commutes
elementwise with Dom(R, S), thus the latter commutes elementwise with itself.

Compare [16,1.2].
Isbell [10, p. 268] has given an example of a finite ring having an infinité epimorphic

extension. This cannot happen in the commutative case [18, 5.9]; however, a

finite commutative ring may hâve an infinité dominion: Let K be a finite field and
let S be the ÂT-algebra with basis éléments

l f°, t\ r2,...u0,Mi5M2,...

and multiplication given by

tHj ti+j9 utUj 0, uttj tJut ui+j for ail i, j.
The subalgebra JR spanned by 1, u0 and ut is finite. Now u2 tu0t is a zigzag over
(jR, S), whence u2eDom(R, S). Since u3 tuit is a zigzag over (Dom(jR, S), S) it
follows, that u3eDom(R9 S). Continuing in this fashion, we see, that ail the ut are

inDom(l*, S).
Finally, we recall two définitions [9, 18]. A ring R is dominant (or absolutely

closed) if Dom(R9 S)=R for ail rings S containing R, and a ring is saturatediï it has

no proper epimorphic extensions. A dominant ring is saturated, the converse does

not hold in gênerai. Among the dominant rings are the pure rings [5, 10,18], a class

of rings, which includes the von Neumann regular and the self-injective rings.
Commutative Artinian rings are saturated [18, 5.9]. Some necessary conditions are given
in [18, 19].
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2. Invariance Properties of the Dominion

In this section, we study the behavior of the dominion under various constructions.

PROPOSITION 2.1. Let R be the product of two rings Ru R2 with unit éléments

et, e2 andletR^S. ThenDom(R, S) D1xD2, whereDi T>om{Rh e^e^fori-l, 2.

Proof. Let eidiei + e2d2e2eD1xD2 and assume, that/,g:S-+T are ring homo-

morphisms coinciding on R. Thèse maps may be restricted to etSei (/= 1, 2) to yield
unitary ring homomorphisms eiSei ->/ (ef) Tf (e^ coinciding on Rh whence/ (e^e*)
g (e^i). This shows, that Dx xD2^Dom(R, S).Ontheotherhand, if deDom(R, S),
then d®l l®d in S®RS. Since by (1.3) the et commute with the éléments

of Dom(i?, S), we hâve ^irf=rfe/ e^ (i=l, 2), thus d=e1del-he2de2. Now S®RS
Sel®Rle1S®Se2®R2e2S by an isomorphism sending s®t to (se^e^t, se2®e2t),

and we hâve relations de^e^e^e.d. By the remark above e^e^e^e^e^e-^ but
this relation holds already in ^5^®^^^, since etSei is a direct summand of the

i?rmodules Set and etS. Thus eideieDi (/= 1, 2).

COROLLARY 2.2. In the situation of (2A) if RÇ: S is epimorphic then S=e1Selx
xe2Se2 and R^e^ei is epimorphic for /=1, 2. If Ri^St is epimorphic for i=l, 2,

r/ïe« jRt x i^2 c Si x S2 is epimorphic.
Of course similar results hold for any finite number of factors.

COROLLARY 2.3. A finite product of rings is dominant [saturated] if and only

if each factor is dominant [saturated].
An infinité product of epimorphisms need not be an epimorphism, however. In

order to give an example, we introduce the following définition. Let R^S and let

deDom(R, S). Then d has a zigzag XAY and by inserting zéros, if necessary, we

may assume, that A is a square m x m matrix. The rank oîdis defined to be the smallest

m occurring in ail such zigzags for d. If R is a finite ring and if the ranks of the éléments

of an epimorphic extension S of R hâve a finite maximum, then S is necessarily finite.
To see this, we note that if s=XAY, s'^X'A'Y' are zigzags with XA X'A\ A A\
AY=A'Y\ then s=XAY=X'A'Y~X'AY=X'A'Y' s'. Thus s is completely deter-
mined by the matrices and vectors XA, A and A Y over R, and the assumption on R

implies, that there are only finitely many of them. Hence S is finite. (Incidentally, the

argument shows, that the dominion of a finite ring is at most countable, and that
the dominion of an infinité ring R has the same cardinality as R. Compare [9,1.5])

Thus if R is a finite ring with an infinité epimorphic extension S (see [10, p. 268]
for an example), then S must hâve éléments of arbitrarily high rank. Let now jR*

(resp. S*) be a countably infinité product of copies of R (resp. S). If steS(l^i< oo)
is a séquence of éléments of strictly increasing rank, then s= (s^eS* cannot hâve a

zigzag over (R*, 5*), for if it had one of rank p, say, projection onto the factors



76 HANS H.SrORRER

would yield that rank s^p for ail i. This shows, that R*^S* is not epimorphic.
We now turn to matrix rings. The n x n matrix ring over R will be denoted by

R{ny There is a canonical embedding of R in R(n) sending reR to the diagonal matrix
diag(r,..., r) A{r). If f:R-+ S is a ring homomorphism, there is an obvious ring
homomorphisms/^ri^,,)-"?£(„). In particular, if R^S, then R(n)^S(n). Moreover,
every ring To between R(n) and S(n) is of the form T(n)9 where T is the set of ail coefficients

of the matrices in To. It follows, that Dom(i?(M), S(n)) D(n) for some ring D,

PROPOSITION 2.4. With the notation above, Z> Dom(jR, S).
Proof. IfdeDom(R9 S) and if/, ^r^-^rcoincide on R(n)9 then/A (d)=gA (d),

thus A (d)eDom(R(n)9 S(n)), whence deD. Conversely, if deD and if/, g.S-+T coin-
cide on R, then f(n)A (d)=g(n)A (d). This implies f(d)=g(d) and deDom(R, S).

COROLLARY 2.5. R is dominant [saturated] if and only if R(n) is dominant

[saturatedj.
Proof The "if" part follows directly from (2.4). To prove the "only if" part,

note that whenever Rin) is a subring of a ring S09 then So S(n> where S is the subring
of 5*0 consisting of ail éléments commuting with the matrix units [11, p. 52]. R can be

identified with a subring of S and (2.4) applies.

PROPOSITION 2.6. Suppose e is an idempotent of R such that ReR R. Let
R^S and let D Dom(JR, S). Then eDe T>om(eRe, eSe).

Proof Let edeeDom(eRe, eSe). Any two ring homomorphisms /, g:S-+T co-

inciding on R may be restricted to (unitary) ring homomorphisms eSe ->/ (e) Tf (e)

coinciding on eRe. Consequently f (ede)=g(ede), whence edeeeDe. The assumption
on e has not been used.

To prove the other inclusion, assume that £ Pjeq3 1 (pp q^R) and consider the

homomorphism h:S®RS-+eSe(g)eReeSe of Abelian groups defined by h(s®t)
One has to check, that h(sr®t) h(s®rt):

j
Z esPkeqkrPje ® eq$te £ espke ® eqkrp}eq3te
J,k J,k

£ espke® eqkrte h(s®rt).
k

If rfeDom(iÊ, S), then d®l l®rf. Now A(rf®l)=ecfe®e and similarly h(l®d)
e. Thus edeeDom(eRe9 eSe).
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COROLLARY 2.7. Let R and e be as above and suppose eRe is dominant [satu-
ratedj. Then R is dominant [saturated].

Proof. If R^S is epimorphic, then eRe^eSe is epimorphic, and thus eRe=eSe.
Since ReR R9 this yields R S. A similar argument works for the dominion.

An example to be presented later (3.8) will show, that some condition on e is

necessary in (2.6) and (2.7). The converse of (2.7) is also true. This will follow from
the resuit below. Two rings R, R' are said to be Morita équivalent, if the catégories
of right (or equivalently of left) jR-modules and i^-modules are équivalent. This holds

if and only if R'^eR{n)e for some n, where e is an idempotent of R(n) such that
R(n)eR(n) R(n) (see [6, p. 47]). A property of rings is said to be Morita invariant if it
is shared by ail rings in a Morita équivalence class.

PROPOSITION 2.8. The properties of being dominant or saturated are Morita
invariant.

Proof. It is sufficient to show, that if R and R' are Morita équivalent and if R is

not saturated (or not dominant), then so is R'. This follows immediately from (2.5),
(2.7) and the formula for R' quoted above.

3. Fiat Epimorphic Extensions

The ring homomorphism h:R-^S is called a right flat epimorphism if h is a ring
epimorphism and if S is a flat left JR-module for the jR-module structure induced by h.

Fiat epimorphisms hâve been characterized by Popescu and Spircu [14]; the reader
is also referred to the notes by Stenstrôm [17, Thm. 13.10]. Specialized to extensions,
their resuit is as follows:

PROPOSITION 3.1. IfR^ Sis a ring extension, then thefollowing statements are

équivalent:
(a) Rç=:S is a right flat epimorphism,
(b) (s-1 R)S=Sfor ail seS,
(c) the set g? of right ideals J of R such that JS=S is a topology (also called an

idempotent topologizing set) and there is an isomorphism gfrom S to Q% (R), the quotient
ring ofR relative to g, such that the restriction ofg to R is the canonical map R-*Q$ (R)>

For the theory of quotient rings, the reader may consult [17, §7]. By s~lR we

mean the right idéal of ail ae R such that saeR.
From (3.1, b) one sees, that every élément s of S has a zigzag of the spécial form

.s s £ ajyj with aj9 saj e jR and £ aiyi 1. (3.2)
j J

Thus one might be tempted to define, for an arbitrary extension R^S, the analog
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of the dominion as the set of ail se S having a zigzag of the form (3.2). This set is,

however, not in gênerai a ring, unless some additional conditions are imposed, such

as commutativity of R or flatness of RS. On the other hand, it follows from results of
Morita [13, 1.2], that the set of ail s such that sr has a zigzag of the form (3.2) for ail
reR is indeed a subring of S.

We now wish to show, that flat epimorphisms behave nicely under the various
constructions already studied in section two. We first prove three lemmas on flat
extensions in gênerai and we shall use freely and repeatedly the following well-known
resuit [3, chap. I, §2, No. 7, Prop. 8] : If R, S are rings and if RMS, SN are (bi)moduies
such that RM and SN are flat, then M®SN is a flat left i?-module.

LEMMA 3.3. Let i^S. (1 </<m) be rings and let R= fj Rit S= Yl St. Then

S is a flat left R-module if and only if St is a flat left Rrmodule for every i.
Proof Since direct sums and direct summands of flat modules are flat, it suffices

to observe, that S( is a flat i^rmodule if and only if it is a flat jR-module.

LEMMA 3.4. If Rç S are rings, then S is a flat left R-module if and only if S(n)

is a flat left R^-module.
Proof If RS is flat, then so is the left i?(n)-module S(n)^R(n)®RS, since R(n)

is a free jR-module. Conversely, if S(n) is flat as JR(w)-module, then the left .R-module

^"®*<n) $(n) *s flat> where Rn dénotes the direct sum ofn copies of R. Now h : Rn® R(n) S{n)

-+Sn given by h((ri)®(sij)) (^risij) is an isomorphism of left i£-modules, thus S"

and consequently S is flat.

LEMMA 3.5 Let R^Sbe rings and let e be an idempotent of R such that ReR=R.
Then S is a flat left R-module if and only if eSe is a flat left eRe-module.

Proof. If ReR=R, then the right i?-module eR is a finitely generated projective
generator ([2, II.4.4]) hence eR is finitely generated projective as left module over its
endomorphism ring eRe and furthermore Re®eReeR^R (see [2, II.4.2 and II.3.5]).
Of course ail this can be proved directly. To prove e.g. that eR is projective over eRe9

one observes, that if J^Pjeqj^l, then {eqj} and {fj} form a pair of dual bases

([2, II.4.5]), where fjieR-*eRe is given by fj{er)—erpje.
Suppose now, that RS is flat, then so is the left eite-module eR®RS^eS9 and

eSe is a direct summand of eS. Conversely, since Re®eReeR^R, there are isomor-

phisms

S ^Re ®eRe eR ®R S ®R Re ®eRe eR s Re ®eRe eSe ®eRe eR

and if eSe is a flat eite-module, then S is a flat .R-module.

As an immédiate conséquence of the three preceding lemmas and the results in
section two, we obtain the following statements:
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PROPOSITION 3.6. (a) IfR^Si (l^i^m) are rings and if R H Rif S=]J Su
then R^S is a right flat epimorphism if and only if R^Si is a right flat epimorphism

for every i.

(b) R^S is a right flat epimorphism if and only if R(n) c 5(||) is a right flat epimorphism.

(c) If e is an idempotent of R such that ReR R, then R^S is a right flat epimorphism

if and only if eReç^eSe is a right flat epimorphism.

PROPOSITION 3.7. (a) A finite product of rings has no proper right flat epimorphic

extensions if and only if each factor has this property.
(b) The property of having no proper right flat epimorphic extensions is Morita

invariant.

Finally, we give two examples to show, that some condition on e is necessary for
(2.6), (2.7), (3.5) and (3.6, c).

EXAMPLE 3.8. Let S be the full 4x4 matrix ring over a commutative field K
and let jR be the subring of S consisting of ail matrices of the form

Then, for any se S

4

is a zigzag of the form (3.2), where the etj are the matrix units [11, p. 52]. Thus R^S
is a right flat epimorphism by (3.1). This would also follow from the fact, that the

simple ring S is the complète right quotient ring of R. If ^=^22 + ^33 + ^44, then

eRe^eSe and the inclusion is not an epimorphism, since eRe is a commutative local
Artinian ring and hence saturated [18, 5.9]. Furthermore, eSe is not a flat left
démodule.

EXAMPLE 3.9 Let S be the ring of ail 3 x 3 matrices of the form
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and let jR be the subring consisting of ail matrices in S with e 0. Then S is not a flat
left /^-module, but for e=e22 eSe=eRe.

4. Epimorphic Extensions of Perfect Rings

We recall a few définitions. A ring R is left perfect if it satisfies the minimum
condition on principal right ideals. The Jacobson radical of R will be denoted by N.
R is left perfect if and only if R/N is Artinian and N is left T-nilpotent [1], A right
Artinian ring is both left and right perfect. A left perfect ring is called primary (resp.

local) if R/N is a simple ring (resp. a division ring). R is said to beprimary decomposable

if it is a finite product of primary rings. For a subset X of R, l(X) and r(X) dénote
the left and right annihilators; for any left perfect ring, l(N) is the right socle.

We now describe the flat epimorphic extensions of a left perfect ring.

PROPOSITION 4.1. Let R be left perfect and let I be a two-sided idéal of R such

that

(0 /2=/,
(ii) /(/)=0,
(iii) / is afinitely generated projective right R-module.

Then the monomorphism R -> Hom^ (IR9 IR) S sending reR to the homomorphism
induced by left multiplication with r is a right flat epimorphism.

Conversely, every right flat epimorphism Rç^S is of this form.

Proof We shall prove the first part in détail. From (i) it follows, that
S=HomR(IR9 RR)=I*9 the dual of/.

Since IR is finitely generated projective, there exist xtel, 5rie5'=/* (i'=l,•••,«)
such that

for ail xel (See [2, II.4.5]). Thus (1 - 5>i^) /=0 and from (ii) we obtain 1

Since sxtel for ail seS, we get a zigzag of the form (3.2) for s over (R, S). Thus R^S
is a right flat epimorphism by (3.1). Actually RS is finitely generated projective, being
the dual of the finitely generated projective module IR. Furthermore S is again left
perfect.

The converse follows by putting together several known results. From (3.1) we

know, that S is (isomorphic over R to) the quotient ring of R relative to the topology
3f {/1 75=5}. Since R is left perfect, it follows from [7], that the intersection / of
ail right ideals in 5 is a two-sided idempotent idéal which lies also in g, whence
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IS=S, and consequently /(/) 0. Furthermore, we hâve 5r=HomR(/R, IR) and IS=S
implies, again by [2, II.4.5], that / is finitely generated projective. See [20] for a

spécial case of this.

If R is a right Artinian ring with right singular idéal zéro, then the conditions of
the proposition are satisfied for I—l(N). See [17, 20] for more examples along thèse

lines.
Since every flat right epimorphic extension of R is contained in the complète right

quotient ring Q(R) [12], a right rationally complète ring (i.e. a ring with R=Q(R))
has no proper right flat epimorphic extensions. The converse does not hold; indeed
the ring R of [20, 7.2] is not right rationally complète, yet no idéal différent from
R satisfies (i), (ii) and (iii) of (4.1).

We now return to epimorphic extensions in gênerai.

PROPOSITION 4.2. Let Rbe a right perfecî ring and suppose, that every simple

right R-module is isomorphic to a minimal right idéal. Then R is saturated.

Proof. Let R^S be an epimorphic extension. Then S®RS^S or, equivalently,
S/R®RS=0. Thus Homs(SIR®RS, S)^HomR(S/R, Uoms(S, S)) 0 where S is

considered as i?-5-bimodule. Since Hom^S, S)^S as right i^-modules, we find that

HomR(SIR, S)=0. If S/R^09 then S/R maps onto a simple right /^-module [1],
which is isomorphic to a submodule of S by assumption. This contradiction shows,

Rings containing a copy of every simple right module are characterized by the

condition, that every proper right idéal has a nonzero left annihilator [17, 18.1]. Note
that this property is Morita invariant.

Among the left perfect rings, thèse rings are just those having the property, that

r(l(N))=N [20, 5.1]. We thus hâve proved the following resuit:

PROPOSITION 4.3. A left and right perfect ring is saturated ifr(l(N))=N or

COROLLARY 4.4. A left and right perfect ring R is saturated if it satisfies one

of the following conditions:

(a) R is primary decomposable,

(b) r(N)^l(N))[or l(N)^r(N)],
(c) R is a quasi-Frobenius ring,
(d) N is in the center of R.

Proof. Ail thèse rings satisfy the condition of (4.3) [20, 5.4].

The following resuit yields another proof of (4.4, a).

PROPOSITION 4.5 Let R be right perfect and let R^S be an epimorphic exten-
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sion. Suppose further, that S, as left R-module, maps onto every simple left R-module.
Then R-S.

Proof. As in the proof of (4.2) we hâve SjR ®RS=0. The assumption on S implies,
that S/R®RU=0 for every simple left i£-module U. Since R/N is a direct sum of
simple left jR-modules, it follows that SIR®RRIN^(S/R)I(SIR)N=O. But over a

right perfect ring a generalized form of Nakayama's Lemma holds [1]: MN=M
implies M=0 for ail right modules M. Thus S/R=0.

In order to obtain (4.4, a) from (4.5) we first note, that by (2.3) it suffices to con-
sider primary rings (actually, by (2.5), local rings would do). Now a primary ring has

only one isomorphism class of simple modules and S, as left module over a left perfect

ring has to map onto some simple module [1], hence onto ail simple modules.
Remark 4.6. For a différent proof of (4.4, d) see Isbell [10]. In the same paper,

Isbell proves that if a finite dimensional algebra R over a field i^has proper epimorphic
extension, then it has two orthogonal primitive idempotents contained in a copy of
the 2x2 triangular matrices over K, but not contained in the full 2x2 matrix ring
over K. This follows directly from (4.4, a). Indeed, if R is not saturated, then R is not
primary decomposable. This is équivalent to the condition, that there are orthogonal
primitive idempotents e,/such that eRf^O and eR is not isomorphic tofR. This in
turn translates readily into Isbell's condition.

We now turn to dominant rings. It has already been noted, that self-injective
rings, in particular quasi-Frobenius rings, are dominant. Thus a stronger resuit than
(4.4, c) holds. We are now going to show, that there are left and right Artinian rings
which are dominant, but not quasi-Frobenius.

If M is a right i?-module, then it is a left ^-module over its endomorphism ring
E— Hom^ (M, M), and there is a canonical ring homomorphism/: R -> Hom£ (M, M).
Mis said to be balanced iffis surjective. The reader is referred to [8] for récent results

on balanced modules and balanced rings (rings for which every module is balanced).

PROPOSITION 4.7. If every faithful right R-module is balanced, then R is dominant.

Proof Let R^S and let rfeDom (R, S). Applying (1.2, c) to M=SR we see, that
h(md)=h(m)d for every h€HomR(S, S)=E. Thus deHomE(S9 S), whence deR.

We can now give the promised example. The exceptional ring R constructed in
[8, Lemma III.7.1] is balanced (thus left and right Artinian), but not self-injective.
Indeed, one readily checks, that not every right jR-module homomorphism from the

radical of R to R is obtained by left multiplication with some élément of R.
Other examples can be obtained as follows. A finite dimensional algebra R is

called a QF-1 algebra if every finitely generated faithful JR-module is balanced [21].

If JV2 0, then, according to a private communication from C. M. Ringel, it follows,
that every faithful iî-module is balanced. An example of a QF-1 algebra with N2=0
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which is not quasi-Frobenius is given in [21]. This example also shows, that the class

of dominant algebras properly contains the class of pure algebras, for a (finite dimen-
sional) pure algebra is quasi-Frobenius. The last statement may be proved using [5,
Theorem 5.5].

As another application of (4.7) we hâve the following resuit, which has indepen-
dently been proved by C. M. Ringel.

COROLLARY 4.8. A commutative Noetherian ring is quasi-Frobenius if and only
if every faithful module is balanced.

Proof. It is well-known, that quasi-Frobenius rings hâve this property. Indeed,

every faithful module is a generator and generators are balanced [8, 1.2.3]. Con-
versely, it was shown in [19], that a commutative Noetherian ring which is dominant
is a quasi-Frobenius ring.

5. Epimorphic Extensions of Principal idéal Domains

In [4, 2.2] Bousfield and Kan proved, that for any commutative ring S the homo-
morphism Z-»Dom (/(Z), S) is a ring epmiorphism, where/(Z) is the image of Z
in S. Their proof does not seem to be applicable to the case where S is non-com-
mutative. In this section, we shall présent the following generalization of this resuit.

PROPOSITION 5.1. LetRbea commutativeprincipal idéal domain andletf: R-+S
be a ring homomorphism mapping R into the center of S. Then f induces a ring epi-
morphism R-*Dom(f(R), S).

Proof We first settle the case where/is not injective. Then/ (R) is a proper homo-
morphic image of R, hence self-injective (actually a quasi-Frobenius ring). This is

readily proved by using Baer's criterion for injectivity. It then follows from [18, 5.4]
that / (R) is dominant, whence / (R) Dom / (R), S

Thus we may assume, that R is a subring of the center of S. Let deDom(R9 S) D
with zigzag d=XAY. Now A is a mxn matrix over a principal idéal domain, thus
there exist invertible mxm resp. nxn matrices P and Q over R such that PAQ is a

diagonal matrix. Then

is also a zigzag for d. In terms of components, this new zigzag reads

for suitable xuyteS, ateR and each d^xfl^i is a zigzag over (R, S), We hâve to
show, that dt has a zigzag over {R, D) and for this it is sufficient to find éléments sh tt
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of D such that x^^â^i and 0^ 0^, for then di siaiti will be the reqmred zigzag.
The existence of st (and similarly of tt) now follows from the next lemma.

LEMMA 5.2. Suppose xa=b with xeS, a, beR. Then there exists seD such that
xa sa.

Proof. Let c be the greatest common divisor of a and b (determined up to a unit),
then c aa' + bb' with d9 b'eR. Now xax is a zigzag for x2a xb over (R, S) (recall
that jR is central in S), thus xb eD, and it follows, that xc xaa' + xbb' e D. Furthermore
x2c xcx is a zigzag over (D, S) and this implies, that x2ceD. By induction xtlc

— xn~1cx is again a zigzag over (D, S), whence x?ceD for ail «^ 1.

We claim, that there exist éléments q, reR and a natural number m such that
5i=xmcr+^GD satisfies the desired relation xa=sa. To this end, let a=a1c, b — bxc.

Hère ax and &! are relatively prime. Let now ct be the product of ail the prime factors
of c9 that divide al9 and c2 the product of ail the others. Then ax and c2 are relatively
prime, and ct divides a suitable power ofal9 i.e. there existspeR and a natural number
m such that clp=a™~1 holds, as well as

cp^aTlc2. (5.3)

Since at and b™~1c1 are relatively prime, we hâve

1 axa" + b^~1c2c\ with a", c"ei*. (5.4)

If we put u — czd\ r=pc" and q bxd\ then from (5.3) and (5.4) we obtain

cr aT"1M, (5.5)

bl=qal + b^u. (5.6)

From xaxc^b^, we compute x2aic=jcûr1è1c=jcaô1 =bbx -=b\c, and continuing in
this fashion, we get

xma7c £7c. (5.7)

Then sa (^ncr+q) a=x?na™~1uca1 + qaïc bnlcu + qa1c=b1c=b xa. The first equal-

ity holds by (5.5), the second by (5.7) and the third by (5.6). This complètes the proof
of the lemma and hence of proposition (5.1).

We note, that the conclusion of (5.1) remains valid, if R is an epimorphic extension

of a principal idéal domain Ro. Indeed, in this case Dom(/£, S) Dom(RQ, S)
and since R0^Dom(R09 S) is epimorphic by (5.1), so is R^Dom(R, S).

Another conséquence of (5.1) is, that if the principal idéal domain R is central in
S and if de S is dominated by R in S, then d is already dominated in a commutative
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subring So of S, viz. Dom^, S). We do not know, whether such a statement holds
for commutative rings in gênerai, with or without the assumption of centrality.

Finally, we answer the following question: Which rings are absolutely central in
the sensé, that they are in the center of every ring containing them?

PROPOSITION 5.8. The ring S is absolutely central if and only if there is a ring
epimorphism g:Z-*S.

Proof. If g is not injective, then by the argument used in the proof of (5.1),

S^ZI(m) for some non-zero integer m, and this ring is clearly absolutely central.

If S is an epimorphic extension of Z, and if Tcontains S, then Zc£ç Dom(Z, T).
Since Z is central in T, so is S by (1.3), thus S is absolutely central.

To prove the converse, consider an extension R^S of commutative rings, which
is not epimorphic. Let d$T)om(R, S), M=S®RS and z=l(g)l. Let T be the semi-

direct product of S and M, i.e. the direct sum S®M with product defined by (s, m)
(s', m') (ssf, sm' + ms'). S can be considered as a subring of T in the obvious way,
but as such it is not central in T since (d, 0) (0, z)^(0, z) (d, 0). Thus if S is to be

absolutely central, it must be an epimorphic extension of every subring, or, equivalent-
ly, of its smallest subring. This is either Z/(ra), m^O (in this case S=Zj(m)) or Z.
In either case, there is an epimorphism g as required.

In [4], Bousfîeld and Kan hâve given a description of ail the epimorphic images
of Z as certain direct limits.
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