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Groups of Self Homotopy Equivalences of Induced Spaces

John W. Rutter

Introduction

Methods hâve been given for effectively calculating, at least up to extension, the

group of homotopy classes £(X) of self homotopy équivalences of a topological
space X in case X has a very simple structure: for example when X has a two stage

Postnikov System (3.3 of [10]), when Xn+i is obtained from Xn~^ by attaching one

cell of appropriate dimension (6.1 of [2]) or when X'\% a pseudo-projective plane (see

[11]). The purpose of this article is to give effective methods for calculating, up to

extension, é*(X) and its important subgroups when X is an induced fibre or cofibre

space in terms of information available from the fibre or cofibre séquence. Thèse

methods can for example be applied inductively to a Postnikov décomposition to

effectively compute $(X) when the penultimate stage of the Postnikov décomposition
is an H-space.

Let QK-^Ph-^B-^K be an induced fibre séquence. Then there is an action

QKxPh^Ph making Ph-+B into a principal morphism in the homotopy category. In

§ 2 I show that with certain restrictions on the range of dimensions of non-zero

homotopy groups of QK and B, the group ^(Ph) may be calculated up to extensions

in terms of $(B) and aut QK: this particular extension theorem is a corollary to the

results of [13].
In § 3 an alternative extension séquence is obtained which specializes in case

Ph-^B is part of a Postnikov System to the séquence

0 -* HS(B; GVMin{(B\ 1) -> ^(A) -> #(h) ~> 0.

As an application #(X) is determined in § 4 for the three stage Postnikov system with

second fc-invariant the cup product \J:K(n, m)xK(G, ri)-*K(n®G, m+ri). Finally
§ 5 contains an extension séquence for the group of fibre homotopy classes of fibre

homotopy équivalences.
The dual results are discussed concurrently and are marked with an asterisk.

1. Preliminaries

Let Jf be the category of based spaces having the homotopy type of CW
complexes and base point preserving homotopy classes of maps1): the zéro object is a one

x) The same symbol is used for a map and its homotopy class.
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point space and zéro morphisms are the classes of constant maps: products and sums

are simply ordinary topological products Xx Y and wedges Xv Y (unions with base

points identified) : the set of morphisms Z-> Y is denoted (X, Y). The group objects
in this category are //-spaces, that is spaces, G, with a multiplication G x G-+G having
the constant function as homotopy identity and having a homotopy inverse ; and the

cogroup objects are i/'-spaces. The class of/:X-+ Fis an équivalence if /is a homotopy

équivalence; this is true if and only if/is bijective between sets of path compo-
nents, induces an isomorphism of the fundamental groups, and either isomorphisms
of ail homotopy groups nr (r^2) or, equivalently, of ail homology groups Hr (r^2)
of the universal covering spaces.

Given a space Kwith base point *, the space PKis the set of maps {l:I-+K; 1(0) *}
with the compact open topology where /= [0, 1] is the closed interval. The loop space
QK is the subspace of PB of maps with /(0) * /(l), and is a group object in M7.

Let h:B-+Kbe a map and define the induced fibre map p:Ph->B by

Ph {(b,l)eB xPK:h(b) 1(l)} and p(b,l) b.

The (reduced) cône on K is CK=KxljKx {0}(J* x/; the (reduced) suspension
of K is the quotient space SK=KxIjKx {0}\jKx {l}(J*x/ which is a cogroup
object in Jf ; and the (reduced) cylinder is KytI=KxIj*xL Let h\K-+B be a map
then the mapping cône, or induced cofibre space, is Cf B\jf CK, the quotient space
obtained from the topological sum B + CK by identifying (k, 1) and f(k) for each
k in K. Then C, S and Cf are dual to P, Q and Pf.

The group of self équivalences of X in 3tf is denoted $(X); and, if/:Z-* Y, the

group of self équivalences of X retracting to self équivalences of Y is denoted &f(X),
the group of self équivalences of F lifting to self équivalences of JHs denoted £?f(Y)\
thus the diagram is commutative in ffî — or commutative up to homotopy in

X-+X

Also &j(X) and <&}(Y) dénote respectively those équivalences retracting or lifting
to the identity.

2. The Exact Séquences

Let Ph-+B be the fibre space induced by h:B-+K, then an £l£-action on Ph is given
by taking k:QKx Ph-+Ph to be the class of the map (/, (b, m))-+(b, /4-m), &ndp:Ph->B
is then a ^-principal morphism (définition in § 5 of [13], and full détails in § 2 of [17]):
there is in gênerai no différence morphism (§ 7 of [13]) for p in the category Jf. Let

Î^~*P* be the inclusion2) and define i>:(Ph, QK)->(QK, QK) and ^:(fi, QK)-+
2) Clearly the inclusion is in the same homotopy class as /e(l, *):QK-+QK x Ph-+Pn.
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-+(Ph, Ph), as in § 3 of [13], by ib(Q £i +1 and *,({) *({, 1). As in § 3 of [13] binary
structures x and ©are defined on (F*, GiT)by£ x£ £/£ + Ç + £and£©£ £K(Ç, 1) + C.

(Ph9QK)K-l(Ph9Ph)

(QK9 QK)

The properties of ib and k* v/s à vw the structures x and © are given in § 3 of [13].
The next lemma is an elementary conséquence of theorem 6.1 of [4].

LEMMA 2.1. p:Ph-*B is a K-principal ê-morphism?^)
It is possible to apply the exact séquence theorem 5.5 of [13] to this situation with

certain restrictions on homotopy groups and &p(Ph) can thus be calculated, up to
extension, provided the kernel k^ÇI) is known. Let hp be the composite homomor-

phism

V 7tf-(B; p)—npt"(K, hp)^7^(K; •) (P* QK)

where (hp\ is the isomorphism5) given by a nulhomotopy of hp. Of course {hp\ is

not unique, but any two such isomorphisms differ by an inner automorphism of
(Ph9 QK); thus hp is unique in case K is an //-space and in this case Qip\ is the

isomorphism described in § 1.2 of [12] (see ii) and iii) of 1.2.2 of [12]). If further B is an

if-space, hp may, for subséquent purposes, be replaced by the homomorphism

A(h, p):(Ph, QB)^7t?(B9 P)J^^(K9 M—(P*, QK)

whose properties are given in § 1 and § 2 of [12]; and which is calculated explicitly
in theorem 2.4.1 of [12] when Kis a. product of Eilenberg-MacLane spaces.

Nowby theorem 3.5 of [13] k$: k*1 é{Pl)^ê{P}) is a homomorphism with respect

to the ©-structure on the first group. Thus k;^1^) is a group; clearly © and the

opération + of the group (Ph, QK) give the same structure on it. The next lemma is

now elementary from remarks in § 1.3 of [12].

LEMMA 2.2 The function hp:n1[h{B9p)'^K^1{\) is an epimorphism with respecthp

to the structure © on the group Kf"1(l).
Now let t:PhuCQK-+SQK be the collapsing map, and n:PhuCQK-+B the

3) Defined in §5 of [13]: ail morphisms QK-+QK lifting éléments of ëtp1 (P/t) must be

équivalences.
4) Rather more than this is true if the base is simply connected. Using the five lemma and the

usual arguments on weak homotopy équivalence on the homotopy séquence of the fibration, it is

elementary that &Pl (Ph) k$ i^1 £(QK) (cf. lemma 5.4 of [13]).
5) The isomorphisms (hp\ and later p^ are not to be confused with the function ib defined above.
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extension ofp:Ph-*B which is constant on CQK.

PhKjCQK >SQK

PRINCIPAL FIBRE SPACE THEOREM 2.3. Let A: B-+K induce the principal
fibre mapp:Ph-+Bfor which Ph is (m—l) connectedandQKhas non vanishing homotopy
groups®) nr(QK) only in a range n^r^m+n— 1. Then hp n^h(B;p)c:Çi aut QK as a
subgroup, and there is an exact séquence of homomorphisms

0 -? ib~ * aut QK/hpiti^B, p) ^ &p(Ph) -> &p(B)\Se\(B) -> 0

with respect to the x structure on thefirst group. Ifalso1) B has homotopy groups only
in the range ra^r^n — l(m^2),

then g (Ph) 0tp (Ph)9 2\ (B) 1 and aut (QK) g (QK) ;

and Ç1 aLUtQK/hp n[h(B; p) is a group extension*)

^KB, l)un*~1t*(SQK9 QK)^^'1 aut QK/h^(B; p)

where L ker((SQK, K)-*(PhvCQK, K)).
Proof. By lemma 7.2 (Ph, QK) ^~K(Ph, QK)9) and thus the © and x structures

are the same by proposition 3.7 of [13]. The first part of this theorem is now immédiate
from lemma 5.3 of [13] and the exact séquence theorem 5.5(i) of [13]. Also g(Ph)
@p(Ph\ &lp(B)= 1 and autOAT= ê(QK) are lemmas 7.4, 7.5 and 7.1. In the following
diagram n* is an isomorphism by an obstruction theory10) argument based on 1.1

of [5] and a Postnikov décomposition for QK; also the horizontal séquences are

6) Including r 0.
7) Of course (for m ^ n) K is an Espace; and, with the further restriction that nr(QK) is non

zéro only in a range /i^r<m + « — 2(n>2), any fibre space over B with fibre QK is équivalent to
an induced one (see for example theorem 3 of [8]): this latter resuit is extended in theorem 2.4 and
corollary2.5of[6].

8) The group (B, QK) is abelian (see lemma 3.3 of [13]) since Kis an /ï-space.
9) yK(Ph,QK) is the set of /c-twisted morphisms {: Pn-+QK: that is classes satisfying

ire ÇiPl +Pl + ip2 _i?1 (see § 3 of [13]).
10) For lemmas on obstruction theory see § 8.
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exact (see theorem 1 of [14] in case of the lower séquence).

(SQK, QK) ^ (Ph u CQK, QK) -? (Ph, QK) -? (QK, QK) -+ (Ph u CQK, K)

(B, QK)

With the dimensional restrictions indicated K is an //-space, hence hl and hp are

unique and the diagram is commutative by 1.2.2 of [12] : an elementary argument now
gives the second séquence of the theorem. This complètes the proof of theorem 2.3.

The group &\(B)\££\(B) may, in the exact séquence, be replaced by/?* <f (i?)nker

As mentioned previously, in case B is an Espace hpnp1h(B,p) can be replaced by
A {h, p) (Ph9 QB), and thus the theorem can be used to calculate the group of homotopy
équivalences of a simply connected space with a finite Postnikov décomposition
whose penultimate stage is an /f-space.

In the dual case, which is considered next, the full force of the theorem applies

only when there is at least one homology dimension missing between the cobase and

the cofibre; so that, theoretically at least, the dual is not quite so useful.

Dually then let A-*ChbQ induced by h:K->A, then an &K-coaction on Ch is given

by taking A;Ch-+SKv Ch to be the class of the map which collapses the slice (K, |)
of the cône to the base point, and i:A-+Ch is then a A-coprincipal morphism. Let

p:Ch-+SK be the projection onto the cofibre and defîne pK.(SK, Ch)->(SK, SK) and

X*:(SK, Ch)^(Ch, Ch\ as in § 3 of [13], by /(£)=K + 1 and /(£) (£, 1) *. As in

§ 3 of [13] binary structures x and ® are defined on (SK, Ch) by ^ x Ç £

(SK, SK)

The proof of the next lemma is elementary using the usual arguments on

homotopy équivalences.
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LEMMA 2.1* Let SK be simply connected, then i:A->Ch is a X-coprincipal
i-morphism.11)

Let h1 be the composite homomorphism

hl:nt(Ch; i)^~-*nï(Ch; ih)^n«(Ch; *) (SK, Ch)

where (/A)b is the isomorphism given by a nulhomotopy of ih; as above (ih)^ is not
necessarily unique, but is unique in case K is an /T-space, and in this case is the

isomorphism described in § 1.2 of [12] (see ii) and iii) of 1.2.2 of [12]). If further A is an
/J'-space, h1 may, for subséquent purposes, be replaced by the homomorphism12)

r(î, h):(SA, Ck)-^itî(Ch; î)—nf (Ch; ih)-^(SK9 Ch)

whose properties are given in § 3 of [12]; and which is calculated explicitly in theorem
3.4.3 of [12] in the case A and Kaxz both suspensions.

By theorem 3.5* of [13] A*:^*"1 #(Ch)->£(Ch) is a homomorphism with respect
to the ©-structure on the first group. Thus À*~l(\) is a group; clearly ® and the

opération + of the group (SK, Ch) give opposite 13) structures on it.

LEMMA 2.2* The function h^.it^iÇ^O-^À*"1^) is an anti-epimorphism with

respert to the structure ® on the group X*~l(\).
Now, for the cofibration A-^Ch-^SK, the spacePp, defined as in § 1, is the fibre

of/?. Let i:A-*Pp be the lifting of / given by i(à) (i(à)), *).

A -^ Ch -i SK

QSK -> Pp

COPRINCIPAL COFIBRE SPACE THEOREM 2.3.*14) Let h:K-+A induce
the principal cofibre map i:A-+Ch for which Ch and SK are respectively (m— 1) and

(n-l) connected (n^2), and let SK hâve non zéro intégral homology groups Hr(SK)
onlyforr^m+n-2 with QXt(Hm+n_2(SK), nn(SK)®nm(Chj)=0. Then h1 ni (Ch;i)
^p9'1 &utSK as a subgroup, and there is an exact séquence of homomorphisms

u) Defined in §5 of [13]; ail morphisms SK-+ SK retracting éléments of Se\ (Ch) must be
équivalences.

12) Again ib hère should not be confused with the function ib\{Pn, QK)-+(QK, ÛK) defined
previously.

13) In the dual case the structures are equal.
14) In this theorem hypothèses are made demanding that certain top dimensional homology

groups are free. This is done to avoid complicated statements: in fact ail that is necessary is that
thèse homology groups make certain ext functors vanish: the détails are clear from the proof and
the lemmas of § 7 and § 8.
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with respect to the x structure on thefirst group. Ifalso A has homology groups only
in the range m^r^n-2 (m^2) and Hn_2(A) isfree and SK has homology groups15)
only in the range n^r^m+n-3 and Hm+n_3(SK) isfree,1*) then <?(Ch) &i(Ch),
&l(A) l, and SL\itSK=<?(SK); and p^1 autSKjti ni(Ch;i) is a group extension

0 -> (SK, A)lhlnî{A; 1) u £lu+ (SK, QSK) -> /"* aut SK/h1^^; i)

-»(L + l)nax\tSK-*0

where L=ker((Ar, QSK)->(K, Pp)).

Proof. The proof of the first part is dual to that of theorem 2.3 using lemma 7.2*.
Also <?(Ch) &i(Ch), @l(A)=l and antSK=*(SK) are lemmas 7.4*, 7.5* and 7.1*.

In the following diagram i* is an isomorphism by an obstruction theory argument
based on lemma 3.1 of [5]; also the horizontal séquences are exact as in the dual case

(SK, QSK) " (SK, Pp) -+ (SK, Ch) -+ (SK, SK) -> (K, Pp)

0(SK, A)

With the dimensional restrictions indicated K is a suspension, hence h1 and h1 are

unique and the diagram is commutative by 1.2.2 of [12]. The theorem now follows

as before.

3. An Alternative Séquence

Alternative extension séquences are now considered which in some applications
are more useful than previous ones.

DEFINITION. An équivalence of h:B-+K is a pair of équivalences c:B-*B and

â:K-+K satisfying âh=hc. The group of équivalences of h, with composition (à, c) x

(âf, c')=(ôa', cc% is denoted $(h) and is regarded as a subgroup of S£h x 0th.

Clearly S(h) is the isotropy group of h under the obvious action of é?(K) x $(B)
on (B, K).

Now with the restrictions on homotopy groups given in the hypothèses of the

following theorem, each élément b of &p(Ph) détermines unique classes of équivalences

15) Of course (for m<n — l) Kisa. suspension.
16) If this is extended to the range n^r^m-\-n — 2 with Hm+n-% (SK) free, then the remainder

of the theorem is valid except that, in the exact séquence, the fonction
(SK, AW mA (A\ï)\) i*-1 u* (SK, QSK) ~*p>-lmtSK/himA (Ch;i)is not mono.
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â:K-+K a,nd C.B-+B, making the following diagram commutative:

QK -* Ph -+ B X K
Qâ\ b\ ci î â

QK-+Ph-+B^K

Full détails and proof are given in § 6. Thus there is a homomorphism q: é%p(Ph)-+

-*<£h(K) x ^th{B) and using standard constructions the image of this homomorphism
is seen to be ê{K). The following theorem is proved in § 6.

PRINCIPAL FIBRE SPACE THEOREM 3.1. Let B hâve non zéro homotopy
groups nr(B) only in the rage m^r^n (m^2), let K be simply connected and let QK
hâve non zéro homotopy groups only in the range «<r<ra + w—1. Then the inducedfibre
séquence QK-^*Ph^+B-+K gives rise to the exact séquence of homomorphisms17)

0->p*(B, QK^hpiz**1 (B\p)K-* 0tp(P,,)-> ê(h)-»0.
where thefirst set has the standard group structure induced by QK, Furthermore if B
has non zéro homotopy groups only in the range m^r^n—l then @p(Ph)=<£(Ph)-

This theorem contains as spécial cases theorems 2.1 and 3.2 of [10].
Now the function p* induces an isomorphism

(B, QK^h^f^B; l)un*~1t*(SQKf QK)->p*(B, QK)jhpn{h{B; p)

where t:Ph\jCQK^SQK is the quotient map and n:PhuCQK->B is the extension
of p which is trivial on CQK: détails are given in § 6. Thus in case (SQK, QK)=0,
the exact séquence of the theorem may be rewritten in a basically simpler form where
the first and last groups do not involve Ph. This is the situation that exists in the
various stages of a Postnikov System for example. The following corollary is now
proved.

COROLLARY 3.2.18) Let B hâve non zéro homotopy groups nr(B) only in a range
1 (m>2), and let K=K(G,s + l)9 s^n9 be an Eilenberg-MacLane space.

Then there is an exact séquence of homomorphisms:

Other exact séquences relating the équivalences between various stages of a
Postnikov system hâve been considered by Kahn [9], Arkowitz and Curjel [1] and Shih
[16].

17) In case B is an iï-space, hpnphi (B; p) may again be replacée! by A (h,p) (Ph, QB).
18) In case B is also an Eilenberg-MacLane space, then nBi (B; 1) 0 as in § 1.2 of [12], and this

séquence is corollary 3.3 of [10] and is a correction to corollary 2 of [16].
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The following corollary is a simple application of either of the principal fibre

space theorems.

COROLLARY 3.3. Let X hâve non zéro homotopy groups only in a range
f, and let thèse groups be finite, then $(X) isfinite.

Dually with the restrictions on homology groups given below, each élément b of
détermines unique classes of équivalences c:K->K and a:B-*B making the

following diagram commutative

K X A -> Ch -> SK
c[ % bi 1SC

K-*A-+Ch->SK
h

Thus there is an epimorphism Gié'(Ch)-*é>(h).
The following theorem is proved in § 6.

COPRINCIPAL COFIBRE SPACE THEOREM 3.1*. Let A and K be simply
connected and let A hâve non zéro homology groups only in the range m^r^n — 2 and

SK hâve non zéro homology groups only in the range19) n^r^m+n — 2 with Hn_2(A)

and Hm+n_2(SK)free. Then the induced cofibre séquence K—+A-^>Ch-?+SKgives rise to

the exact séquence of homomorphisms

0 -> i*(SK, A^h^iCn; i) ^ £(Ch) ^£(h)-+0

where thefirst set has the standard group structure induced by SK.
This theorem contains theorem 6.1 of [2] as a spécial case.20)

Also ** induces an isomorphism

where u:QSK-+Pp is the inclusion of the fibre and i:A-+Pp: note that in case

— 3, i* is an isomorphism. This équivalence can undoubtedly be used to

simplify computation particularly if A is an abelian suspension in which case

tfnîiA; l)=r(l, h) [SA, À] can be calculated by theorem 3.4.3 of [12]. There is,

however, no dual to corollary 3.2 since, for a Moore space K, (SK, QSK) is not

generally zéro.

19) Because of the missing homology dimension emodied in thèse hypothèses, this theorem, as

theorem 2.3*, is potentially less useful than its dual in the gênerai theory.
20) A related exact séquence has also been obtained by Y. Kudo and K. Tsuchida(see theorems

2.2 and 2.8 of [18]).
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4. Some Calculations

EXAMPLE 4.1. Let X=K(n,rn)xK(G,n) with m<n. Then by corollary 3.2,

there is an exact séquence

ab' + bc'
ce'

0->/T(K(7r, m);G)->^(X)-»autrc x autG-»O.

By direct considérations this séquence is a semi direct product and $(X) may be

faithfully represented as the group of upper triangular matrices f
n j ceautrc,

a e aut G and beHn(K(n, m); G) with the usual operator structures and the usual

matrix multiplication:

fa b\(a' b'\_(aaf
\0 c) \0 c')~ \ 0

and inverse

fa by1 fa~l -a
1Q J ~ 1 0 c

EXAMPLE 4.2. Let X be the space induced by a cup product map \J :K(n, m) x

xK{G,ri)-*K(n®G,m+n). (see §2.2 of [12]). Assume m<n, then X has a three

stage Postnikov System with first k invariant kx *. Let p:Pu^>K(n, m) x K(G, n) be

the fibration induced by [J with fibre K(n®G, m+« — l). Dénote by Tthe subgroup

of triangular matrices (^ considered in example 4.1 for which cub 0 in
\° c)

Hm+n(K(n, m), n®G): note that

ce' u (ab' + bcr) (c®a) (c u b') + (cub) c'

and that

c"1 u(- a-'bc'1) - (c-1 ® a"1)(eu b) c"1.

Clearly <sf (IJ) is canonically isomorphic to T. According to 2.3.2 and 2.5.1 of [12],

à({J,l):(K(n, m) x K(G,n% K(n, m - 1) xX(G,n-l))
-+ (K(n, m) x K(G, n), K(n ® G, m + n - 1))

given by J((J, 1) jc=(- l)w iujc for21) xeHn'x(K(n9 m), G), ieHm(K{n, m), n)
e fundamental class, and iKjxeHm+n~1(K(n, m), tc®G). On applying corollary

21) Using the usual representability of cohomology: see 2.2 and 2.5 of [12].
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3.2, the following exact séquence is obtained

Since Tis fully described above, this détermines «f(Pu) UP to extension.
As an elementary example let (J :K(Z, 2) x K(G, ri)^>K(Z®G, n +2), then, since

the cohomology ring H* (K(Z, 2)) is the polynomial ring generated by î, the exact

séquence is

0 -» ext(G, G) -> <^(Pu) -> T -? 0

where T=Z2 x(autG) in case w^3 is odd, and in case n^4 is even T is the semi

direct product

0-»G-+T->Z2 x(autG)->0

with structure Z2 x autG->autG given by (a, jS)->/?a where Z2 acts on G in the non
trivial way.

5. Fibre Homotopy Equivalence

The principal fibre space theorem 2.3 détermines immediately the homotopy
classes of fibre homotopy équivalences as an extension. With only minor changes

in proof, the fibre homotopy classes can be similarly determined.

According to theorem 6.1 of [4] any homotopy équivalence Ph-+Ph over \:B-+B
is necessarily a fibre homotopy équivalence. Moreover it is elementary that the

principal action QKx Ph~*Ph gives an action of (Ph9 QK) on the set of fibre homotopy
classes Ph-+Ph which is both effective and transitive thus determining a bijection.

Let &l(Ph) dénote the fibre homotopy classes of fibre homotopy équivalences with
the group structure given by composition. Then, making minor amendments to the

proof of theorem 2.3, the following theorem is obtained.

THEOREM 5.1. Let h: B^K induce the principal fibre map p:Ph-*Bfor which B

has non vanishing homotopy groups only in the range m^r^n— 1 and QK has non

vanishing homotopy groups only in the range n^r^m+n—l, then there is an exact

séquence ofhomomorphisms

O-+CB, QK)ln*-1t*(SQK9 QK)-»!st\(Ph)i(L + l)nautGK-0
whereL=ker ((SQK, K)-> (Ph u CQK9 K)).

For example if K is an Eilenberg-MacLane space then the set of fibre homotopy
classes of équivalences which préserve the fibre of Ph-+B is isomorphic to {B9 QK)

(cf. theorem 1 of [7]).
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Dually let J?j(Ch) dénote the cofibre homotopy classes for a cofibre séquence
A-+Ch-+SK. With the dimensional restrictions of the following theorem, any homotopy

équivalence Ch-+Ch extending \\A^A is necessarily a cofibre homotopy équivalence

by using the standard cellular argument for example.

THEOREM 5.1.* Let h;K-+A induce the principal cofibre map i:A->Ch for
which A and K are simply connected A has homology only in the range m^r^n — 2

andSKhas homology only in the range n^r^m+n — 3 with Hn.2(4) andHm+n_3(SK)
free. Then there is an exact séquence of homomorphisms

0 ->(SX, A)li~lu*{SK, QSK) -> S\ (Ch) *X (L + 1) n aut SK -> 0

where L ker((K9 QSK)-+(K, Pp)).

6. Proofs of § 3

Some of the secondary lemmas needed in thèse proofs are delayed to § 7 and § 8.

In particular § 8 contains several lemmas on obstruction theory which are used

extensively hère and elsewhere, often without explicit référence.

Proof of theorem 3.1. The séquence QK?->Ph^>B-+K with the stated conditions
on homotopy groups gives rise to the following commutative diagram, where ail the

séquences are short exact:

0 0 0

i ï i

4 I i
0 0 0

To see this observe first of ail that &\ 1 by lemma 7.5. Also &ha&p by the standard
construction. Conversely each lifting équivalence of p lifts to a fibre homotopy
équivalence by 6.1 of [4] whose restriction to QK is therefore an équivalence (not
uniquely determined) which is the loop of an équivalence ofXsince (K9 K)-*(QK, QK)
is bijective by lemma 7.3 ; it is now immédiate from theorem 4.3 of [15] that this is a
retraction of the original équivalence of B, which proves &p=3êh. Thus the second
and third horizontal séquences and the third vertical séquence are exact by the Jâ?—0t

duality theorem 2.2 of [13]. Consider now the second vertical séquence; since



248 JOHNW.RUTTER

(QK, QB)=Q by obstruction theory, the obvious homomorphism 8%p-±0lic\&nh is

well defined by 2.8' of [17] applied to the fibre séquence of Pp->Ph. De-looping the

image gives, since (K, K)-+(QK, QK) is bijective, an élément of ££h by theorem 4.3 of
[15]. It is now clear that the first and second vertical séquences are exact. According
to theorems 4.1 and 4.3 of [15] an élément of 3?\ détermines a unique élément of 9t\
and clearly the first horizontal séquence is exact. The diagram is commutative. In
the usual way then the séquence22)

is exact in the category of sets and ail functions except (h*9 — h*) are linear. The image of
0tv-+££h x 9th is $(h), which proves the exactness of the séquence of homomorphisms

Consider now the following commutative diagram of track group homomorphisms:

j* i*

tt?(B; 1) -L>7cïh(jB; p)

A* I j /i*

7if(X; /i)-^7rîh(X; /ip)-^^(Pfc, ££)
The top séquence is exact by theorem 1 of [14] and thus, since n1K(B;pi)tt(QK, QB)=0,

j* is an epimorphism. By theorem 1.1 of [5] the function n:PhKjCQK-*B is (m+n)
connected and hence, by lemma 8.2, n* is an isomorphism. It is now clear that

hp 7iih(B;p)cz(hp)sp* nf(K; h). In the next commutative diagram the first and

fourth séquences are exact (see theorem 1 of [14] for the first), and each of the func-

tions 7i* is an isomorphism as above.

nph u cdk (R. hn^ ^ n{h (K ; hp) X n°K (K ; hpi)
I

p* il il
ni(K;h) -> npth(K; hp)-+ n°K(K; hpi)

(B,QK) -* (Ph,QK) -> (QK,QK)

- -I ,-. il - il
(SQK, QK)-+(Phv CQK, QK)±+ (Ph,QK) -? (f2X, GK)

22) There is also the exact séquence
A \ (M 1 11 G<? 1 ^. Cfi 1 -v CBt 1 ^ (IP ^ ^P 1.1 **P*\ ,-k fi

which is clearly related to the first principal fibre space theorem 2.3.
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Now (hp\p* nBx(K\h)=p*(B,QK) from the exactness of the second and third
séquences, and i71(l) i*"1(0)=jp*(^, QK). It is clear that/?*:(£, QK)->(Ph9 QK) is

anti-linear with respect to the x structure on (Ph9 QK)9 and thus is linear when K is

an i/-space; and also that K$:p*(B9 QK)-*0l\c\3?\ is an epimorphism with kernel

hp n^h(B;p). This complètes the proof.

Proofof corollary 3.2. In the particular case that K\s an Eilenberg-MacLane space,

(SQK, QK) 0 and thus p*:(B9 QK)-*(Ph9 QK) is a monomorphism by the exactness

of the lower séquence. This proves that K$p*:(B9 QK)-*0t\r\&\ is an epimorphism
with kernel ht nB (B; 1).

Proof of theorem 3.1*. The séquence K—>A-^>Ch-^SK, with the stated homology
conditions, gives rise to the following diagram where ail the séquences are short exact:

0-»

0-»

0

4

4

4

4

0

0

4

—y0l\-+
4

4

4

0

0
4

4

^(
4

4

0

The proof of this basically dual to that of theorem 3.1, using the usual arguments
on weak homotopy équivalence in place of Dold's resuit; the duals of the results
referred to in the proof of theorem 3.1 are to be found in the same places as their

counterparts. Thus the exact séquence of homomorphisms is obtained:

Now by lemma 3.1 of [5] i:A-+Pp is m +n — 2 connected. In each of the following two
commutative diagrams of homomorphisms the homomorphisms i* are epi by lemma
8.3*. In the flrst diagram the top séquence and in the second diagram ail horizontal
séquences are exact.

î
)Xni(Ch;i)

h*ï lh* \h
)+**(Ck; ih)-*(SK, Ch)

(»/!)#
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*f (P,; ih)^>n*(Ch; ih)^n«(SK; pih)
î î î

nUA; h) ^n*{Ch; ih)-*vf(SK; pih)

(SK, A) -^ (SK, Ch) -+(SK, SK)

QSK)-+(SK, Pp) — (SK, Q) — (SK, SX)

Thus as before A* rcf(Cfc; î)c(//i), /* 7rf(^;A) since tcÎ(SK; pi)&(SA9SK) 0;
also (ï/i)#i>^(^;/î)=^(SK,^) jpb"1(l). In this case i*:(SK, A)-+(SK9 Ch) is

linear with respect to the x-structure on (SK,Ch); and JL*:im(SK, À)-+£e\c\0L\
is an epimorphism with kernel h1 n\{Ch\ ï). The theorem now follows from lemma
7.4*.

7. Several Lemmas

The proofs of the lemmas in this section rely on obstruction theory (see § 8).

LEMMA 7.1. Let QK be path connected and hâve non vanishing homotopy

groups2*) nr(®K) only in a range2*) «<r^2/*-l, then

Proof, A proof is given which can be roughly dualized. Consider the short exact

séquence of homomorphisms

0->(S(QK X QK)9 K)^(S(QK x QK), K)^(S(QK v QK), X)->0
II

(SQK, K) x (SQK, K)

Let jr:QKvQK^QK-*QKx QK r= 1, 2 be given by j\(p, q)=(p, *) and j2(p, <Ù

(*, q), then (S/i)* +(Sj2)* is a (non linear) splitting for the séquence in the sensé that

(St)* {(Sjx)*+{Sj2)*}^l. Given g:QK->QK, let g:SQK-*K be its adjoint and
consider the élément g(SmnK)=gmQK:S(QKxQK)-+SQK->K. Clearly g(SmQK) (5t)
g(Sc) where c:QKv QK-+QKis the folding map. Now w=g(SmQK)-g(Sc) (Sj\ +Sj2)
is the obstruction to the linearity ofg; g is linear if and only if w=0. Also (St)*w=0
and therefore we(Sn)* (S(QK%QK),K); this latter group is zéro under the conditions

indicated on the homotopy groups by the usual obstruction theory argument
based on a Postnikov System for QK. The lemma is immédiate.

2a) Includingr=0.
24) The proof in case n 1 is elementary.
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LEMMA 7.2. Let Phbe(m—\) connectedandlet QKhâve non vanishing homotopy
groups nr(QK) only in a range n^r^m+n-l then (Ph9 QK) ^K(Ph, QK).

Proof. Again a proof is given which can be dualized. Consider the short exact

séquence of homomorphisms

0-^(S(QK * Ph\ K)^(S(QK x Ph% K)^(S(QK v P.), K)—0
II

(SQK, K) x (SPh9 K)

With the given connectivity conditions the left hand group is zéro. Thus, as in the
proof of 7.1, for £\Ph->QK

&Pi + Pi + £P2 ~ Pi

LEMMA 7.3. The loop map (K, K)-+(QK, QK)&(SQK9 K) is bijective for QK
having non zéro homotopy groups only in a range n^r^ln (n^2).

Proof. According to 3.2 of [3], the fibre of the évaluation SQK-+Kis S{QK*QK)
which is 2n connected. Applications of the Whitehead theorem, the universal coefficient

theorem, and obstruction theory on a Postnikov System for K, now yield the
resuit.

LEMMA 7.4. (Corollary 1 of [15]) Let B hâve homotopy groups only in the range

-l, and let QKbe (n-\) connected, then

LEMMA 7.5. Let B hâve homotopy groups only in the range 2^r^n and let
QK be (n-1) connected then Se\{B)=\.

Proof. The function (B, B)-+(Ph9 B) is injective by obstruction theory based on a
Postnikov décomposition for B: the resuit is immédiate.

LEMMA 7.1*. Let SK be («—1) connected and hâve non zéro intégral homology
Hr(SK) only for r^2« —3, or for r^2n — 2 ifalso

ext (H2n-2 (SK), nn(SK) ® nn (SK)) 0, then £(SK) aut SK.

Proof Consider the short exact séquence of homomorphisms

0 -> (K, Q(SK b SK)) -» (K, Q(SK v SK)) -> (K, Q(SK x SK)) -> 0
II

(JC, QSK) x (K, QSK)

Now (SK\> SK) has the weak homotopy type of S(QSK% QSK) (see § 2 of [5])5 which
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is 2n — 2 connectée!; and by the usual arguments in obstruction theory using the
universal coefficient and Kunneth theorems, the left hand group is zéro. The remainder
of the proof is dual to that of lemma 7.1.

LEMMA 7.2*. Let Ch and SK be respectively (m — l) and (n—l) connected and
let SK hâve non zéro intégral homology groups Hr(SK) only for r^m+n — 3, or for

-2 ifalso ext(f/w+M_2(SX), nn(SK)®nm(Ch)) 09 then

Proof. Consider the short exact séquence of homomorphisms

0 -> (X, Q(SK b Ch)) -> (X, Q(SK v Ch)) -* (X, Q(SK x Ch)) -> 0

II

(K9QSK) x(K9QCh).
As above (SK\> Ch) has the weak homotopy type of S(QSK% QCh) and the first group
in the séquence is zéro. The proof is now dual to that of lemma 7.2.

LEMMA 7.3*. The suspension map (X, X)->(*SX, SK)&(K, QSK) is bijective for
Ksimply connected and SKhaving non zéro homology groups only in a range n < r < 2n—4

withH2n.4(SK)free.
Proof According to the generalized EHP séquence (see 5.4 of [5]) tt3ij_5(X)->

-+n3n-5(QSK)-+7i3n-s(KxK)-^'~9 the map K->QSK is (2n-3)-connected. The

resuit follows by obstruction theory.

LEMMA 7.4*. (Corollary 1* of [15]). Let A be simply connected and hâve homology

groups only in the range 2^r^n—l with Hn_1(A) free and let SK be (n— 1)-

connected then

LEMMA 7.5*25). Let A-+X be m-connected and let A be simply connected and

hâve non zéro homology groups only in the range r^m—l withHm-t(A) free,26) then

al(A)=i.
Proof The function (A, A)^(A, X) is bijextive by obstruction theory.

8. Obstruction Theory

The présent section contains several lemmas on obstruction theory which are used

extensively in the previous proofs. The first four are standard: their proofs are

elementary and are omitted.

25) This lemma is weaker than its dual; in particular it does not allow consécutive homology
dimensions for A and XIA.

26) This situation occurs for example when (m +1) cells are attached to a complex of dimension
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LEMMA 8.1. Let P be m connected (m^ 1), and let Q hâve non vanishing homotopy

groups only in the range l^r^m, then (P, Q) 0.

LEMMA 8.1*. Let Q be m connected (m^l) and P simpîy connected with non

zérohomology only in the range l^r^m with ext(Hm(P), nm+i (Q)) 0, then (P, Q) 0.

LEMMA 8.2. Letf:A-+B be m-connected(m^ 1), and let Xhâve non zéro homotopy

groups only in the range l^r^n, thenf*:(B, X)->(A, X) is bijective for
and injective for

LEMMA 8.2*. Let f\A-+B be n connected (n^l), and let Xbe simply connected

with non zéro homology only in the range 2<r<« with Hn{X)free, then (X, A)->(X, B)
is surjective. If further X has non zéro homology only in the range 2^r<«—1 and

Qxt(Hn_1(B), k) 0 where k is the kernel of the epimorphism nn(A)-+nn{B), then

(X, A)-+(X, B) is bijective.

LEMMA 8.3. Let f:A-+B be n-connected (n^l), let X hâve non zéro homotopy

groups only the range l^r^m, and let g:B-*X; thenf*:nBs(X\ g)^nf(X; gf) (s** 1)

is mono for m — s^n and iso for m~s + l ^n.
Proof Let Pr:Xr-+Kr+2(nr+1(X)) be the ^-invariant for a Postnikov décomposition

of X, and let gr:B-^>X-^>Xr. Consider the following commutative diagram.

^(Xrl gr) > nf(Xr; grf)
ï ï

^(Kr+2;Prgr) > nf(Kr+2;prgrf)
| |

t Hr-s+2(B;nr+1(X))^H"-s+2(A;nr+l(X)) J

ns-l(Xr+llgr+l) ^-lPC+i; gr+lf)
ï 1

<- 1 &r\ gr) > nf-liXrl grf)
I I

The vertical séquences are exact (see theorem 1 of [14]) and the diagram is commutative

by lemma 1.2.2iv)of [12]. Also/*:#'(5; n^^H'iA; nr+1) is iso for t^n-\
and mono for t—n\ thus by an induction on r using the five lemma, the function
f*:7ts-i(Xr+1;gr+1)-+nf^i(Xr+l;gr+1f) is epi for r-s+3^n, and by a further
induction on r is mono for r-
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LEMMA 8.3*. Letf:A-^B be n-connected («^ 1), let X be a simply connected m
dimensional CW complex, and let g\X-*A; then f*:n*(A; g)->ft*(B;fg) (s^l) is iso

for m+s^n—\ andepifor m+s^n.
Proof. Let <xr: v Sr-*Xr be the attaching map and let gr=f\ Xr. Consider the

following commutative diagram.

?{M) T(B/)

I

ï IInr+s(A)-+ IIn,+s(B)
«;_ i (A ; gr+ 0 > <_ i (B; /gr+x)

I I
^U; g,) >*£i (B; /g,)

4 I

The vertical séquences are exact (see theorem 1* of [14]) and the diagram is commutative

by lemma 1.2.2iv) of [12]. Also f*:nr+s(A)-+nr+s(B) is iso for r+s^n — 1 and epi

for r+s=n. An induction on r, using the five lemma, proves that
g, Vr +1 / x vr +1 / _ - \/*:<_! {A\gr+1)-^K.1 (B;fgr+1)

is epi for r+s^n, and another induction on r then proves that the same function is

mono for r+s^n— 1. The resuit now follows.
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