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More Characteristic Classes for Spherical Fibre Spaces

by JAMES STASHEFF

The object of this paper is to continue Milnor’s computation of H*(Bg; Z,) [2],
which is:

THEOREM A. In dimensions less than 2p(p—1)—1 the cohomology ring H*(Bg; Z,)
is isomorphic to a free commutative algebra generated by the Wu classes q; and the
Bockstein coboundaries B q;.

MILNOR computes using a Postnikov system for B;. He denotes by BI%'~11 the
space obtained by killing all the homotopy groups 7;(Bg¢) for i=1.

THEOREM B (MILNOR). If 2<m<p, and r=2(p—1), the algebra H*(B'*™"~11; Z )
is isomorphic in dimensions less than pr=2p(p—1) to the free commutative algebra on

generators P pP i>0

a Pk, BPk, iz0

where § corresponds to the first Wu class and where k,, is the p primary component of
the (mr+ 1)-dimensional k-invariant. If m<p—1, (m+1) #' —mp2?") k,,=0.

In the present paper we extend Milnor’s computations, first by computing
H*(B™1; Z ) for m<p in dimensions <2pr and next in this range of dimensions
for m<2p. The change in dimensions must proceed the change in m in order to com-
pute the k-invariants. The reason for stopping at level 2 pr is partly expository; certain
new ideas are fairly simple as needed for p <m <2p but might be much more obscure
if lost in the welter of bookkeeping required in higher dimensions.

THEOREM 1. For n<2pr, the algebra H*(B'>™; Z ) is isomorphic in dimensions
<2pr to a free commutative algebra. The subalgebra which survives to H*(Bg) has
generators which can be obtained by suitable elements of the Steenrod algebra A acting
on generators

q of dimension r if nzr
y of dimension pr if nz2r
e, of dimension pr—1 if nzpr-1.

In proving the theorem, there will be given a specific set of generators modulo the
image of later k-invariants.

THEOREM 2. In dimensions <2 pr, H*(B;) is isomorphic to a free commutative
algebra on the Wu classes q;, their Bocksteins B q; and certain exotic classes 0 e, where 0
ranges over an additive basis of A|AP*.
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1. Milnor’s machine

Our method of attack is to use Milnor’s approach as much as possible, feeding in
additional information (such as secondary cohomology operations) when forced to.
In the hopes that the present paper does not represent the limits of this approach, we
identify components of the machine that seem conceptually significant.

In broadest outline, Milnor’s approach is, inductively, to identify the k-invariant,
compute the action of the Steenrod algebra on it and hence compute the transgression
in the fibring and then compute H* of the total space using the Serre spectral sequence.
The latter step is, for Milnor, always of the following form.

PROPOSITION. Let F->E-% B be a fibration. Assume F connected, B simply connected,
both with homology of finite type. Let H*(F)and H*(B) be free commutative algebras on
generators f;, i=1,...,m and b;, j=1, ..., n such that ©( f)=b;i=1,..., r and ©(f;)=0,
i=r+1,...,m. Then H*(E) is free commutative on generators p*(b;) i=r+1,..., n and
e, i=r+1,..., m such that i*(e;)=f;. [Topa, 3, p. 105].

Since we are concerned with the fibrings K(=,,,, mr)— Bt ™"1— BI% ™" the generators
of the fibre are easily labelled in terms of the Steenrod algebra acting on the funda-
mental class. The corresponding non-zero transgressions are helpfully labelled in terms
of the Steenrod algebra acting on the k-invariant. In the range Milnor computes, the
essence of his argument is that the generating classes which restrict non-trivially to
the fibre at each stage are precisely the transgressions of generating classes in the fibre
at the next stage. Certain exact sequences of Toda are relevant here. As we extend the
range, we find this remains true most of the time; a major problem is that of keeping
books on the few classes which are not disposed of so neatly. Let us look at Bt% 2"
in detail.

2. B1o2"]

According to MILNOR, the first k-invariant 4, is (2 2! f—B2") q and the second,
hs, restricts to (32! f—2B P") u, where q is the fundamental class in K(Z,, r) and u,
is the fundamental class in K(Z,, 2r). According to ToDA [4; I: Prop. 1.5}, if 4 repre-
sents the Steenrod algebra the sequence 432 =282 4221087 4 is exact, where the

maps indicate a—a(2 2! f—BP"), etc. We compare this with our fibrings by

182881 2p18—8 P!
3916-289! 291442}

A A A

v v v
H*(Z,,31) 3 H*(Z,,2r)>H*(Z,, 1)

where the vertical arrows are a—ou,, m=1,2, 3, u;=q. Thus generating classes in
B2 which restrict non-trivially to the fibre K(Z,, 2r) are the transgressions of
generating classes in K(Z,, 3r) except possibly when the class survives for unstable
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reasons, €.g.
(PP 2u,)=pP* 'Bq— BP* ' q=— B(q") = 0.

Let y be a class which restricts to 2P~ 2u,. In dimensions <2 pr, we find that #'y
and B2'y restrict to #? " u, and PP 'u, and that these are the only classes in
B'%271 which restrict non-trivially mod transgression from K(Z,, 3r).

On the other hand, there are classes in K(Z,, r) which survive to B'% 2", Specifi-
cally in dimensions less than p*r we have

PP g j<p-1 pisi<(-1)(+1)
P Pigq j<p-1 piSis(p-1(+1)
g(p—l)(j+1)ﬁgjq j<p—1

ﬂg,)(p—l)(.i'ﬂ)ﬁgiq 0<j<p—-1

In dimensions <2 pr this reduces to

Py i<p PP q psi<2(p-1)
PBq isp-1 PPPq pLi=2(p-1)

We call these classes Wu generators; their relation to Wu classes is given by MILNOR
in dimensions <pr and in the remaining cases will be given in § 9. We have thus
verified Theorem 1 for B!% 2" and listed the generators which survive to B33,

3. The inductive step

Consider the fibring K(Z,, mr)—B%™1— Blo:-=brl for m<p. According to
MILNOR, the k-invariant h,e H™ *!(B>™1;Z ) restricts to
(mP' p—(m—1)p 2" ) u,_, in K(Z,,(m—1) r). According to Toda

mPLp—-(m—1)p P!

. A(m—l)g‘ﬁ‘('n"Z)ﬂ?;

A A

is exact, so in the stable range the generating classes in B'®™"1 which restrict non-
trivially to K(Z,, (m—1) r) are precisely those in the image of transgression from
K(Z,, mr). By the stable range here we mean dimensions less than p (m—1) r. This
is the standard “stable range mod p” in the sense of %-theory for K(Z,, (m—1)r)
since that space is (m—1) r—1-connected. Equivalently, this is the range in which
A-H*(Z,,(m—1)r;Z,) givenby a—au,_,, is a monomorphism, and onto a gener-
ating set. '

This observation together with the basic Proposition gives Theorem 1 for B ",
n<(p—1)r. The generators which survive are in fact precisely those already listed
in B1%27],
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4. The first exotic class

The next homotopy group after n(,_,,, is not =n,, but rather n,,_,. GITLER and
STASHEFF [1] have shown the k-invariant is zero, i.e. Bt®Pr—1l~ plo:(p=1rly
K(Z,,pr—1). A generator in cohomology corresponding to the fundamental class in
K(Z,, pr—1) has been called e;. Thus for BI%?"~!), Theorem 1 is true if it is true
for BIO (P11,

S. The k-invariant £,

The homotopy group r,,, is Z,,. We wish to show that h,e H?"*1(Bl%?r~11; Z )
comes from a class which reduced mod p restricts to f2'u,_, in K(Z,,(p—1)r).
Let us go down to BI>®~™»7 and look at p#'h,_,. Since h,_; restricts to
(—2'B+2BP"Yu,_,, BP h,_, restricts to zero and hence comes from a primitive
element in H*(B'>®~¥1; Z ). The only primitive elements are generators and their
p'-powers; these never occur in dimensions congruent to 2 mod r. (This remark will
continue to be true up to at least dimension p®r.) Thus 2" h,_, =0. Let V, be a class
which restricts to B2, u,_,. Since H?**1(B1®P =11, Z N P71 (BI%®~ V7 7 ) via
the projection map, Milnor’s proof (3.10) goes through to show ¥, can be chosen so
that 4, reduced mod p is the image of V.

Because 7, is Z,,, we find it necessary to pay attention to higher order torsion.
In particular we are interested in the second order Bockstein ,4,. 8, can be thought
of as a secondary operation based on f§ =0. Alternatively we make use of the integral
Bockstein f for the sequence 0—»Z— Z— Z,—0and the integral secondary Bockstein f8,.
That is B, =1/p B when such division by p is possible. Of course j3, is well defined only
modulo B. The mod p secondary Bockstein S, is just the mod p reduction of f, and
is well defined modulo . Since the homotopy groups of B are all finite, H*(B'*™"1; Z)
contains no elements of infinite order. Every element therefore has non-trivial §; for
some 7 or is in the image of f; for some i.

The next section will be devoted to computing f,4,. The reader who wishes to
proceed to section 7 should take our word for it that:

THEOREM. In the fibring K(Z,, (p—1)r)—>B> P~ D BlOEP=Dr 1 we have
i*ByV, =i P Bu,_,, A+0eZ,.

6. Computation of j,4,

The following result is of some use in computing secondary Bocksteins.

PROPOSITION. Let K (Z,,, 9)->YBX be a fibre space induced by ve H** ' (X; Z,). Let
ue H"(X; Z,) be a class such that p*fu=0. Let 0 be a stable primary cohomology
operation suchthatQv=Pue H"*'(X;Z,). Theni* B, p* u= 01, modulo i* H"(Y; Z,).
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Proof. K(Z,,, n) can be represented as a fibre space K (Z,,n)—»K(Z,,, n)—»K(Z,, n)
induced by f1,. Since p* Bu=0, a map representing u can be lifted to give a map of
fibrings:

K(Zw q)_>K(Zp’ n) \ﬂ

v oo\
Y ———K(Z,,,n)>K(Z,,n+1)
v v

X——K(Z,n)

The map f3, is characterized by the commutativity of the triangle. Let w be the induced
map of fibres. From the diagram we see i * §, p* u=fw. Transgression is natural with
respect to maps of fibrings, so tw=u*11,=u*fin=pfu=0v. On the other hand
t1,=v50 7(01,)=0v. Thus w— 01, pulls back to H*(Y; Z,). Now B, p*u is well defined
modulo i*BH*(Y; Z,). On the other hand we have shown fw=p60:1, modulo
Bi* H*(Y; Z,) so we are done.

Thisresult may well be known to the practitioners of the art of secondary operations.
Of course it is true of more general secondary operations. If 8, is replaced by an
operation ¥ based on the relation ay=0 in the Steenrod algebra, then we assume
p*yu=0 and v="yu and conclude i* Y p*u=001, modulo i*a H*(Y; Z).

We apply the proposition to K(Z,, 2r)—B!>2— B> with u=2"""84. We
conclude i*B,p* PP~ Bq=BP? 2 Bu,.

In lower dimensions, the torsion is easy to handle. MILNOR lists explicit generators
for H*(B!° ™) and we can see they are paired by B, i.e. as far as generators are con-
cerned: ker f=image B. Thus the first higher order torsion is B,(g?)+0. In BI® 2" we
have y which restricts to #?~2y, and By which restricts to B#?~2u,. However in
Bt% 211 the restriction of the transgression of 27 3u; is —2BP?~ 2y, so that in
B%311 By must come from B,

LEMMA. y can be chosen so that in BI% 3" By can be used in place of #7~!fq as
a generator.

Proof. In B; we have the Wu formula Bg,=%"""Bq,+poly(q; Bq:, i<p). We
know that g, must be of the form Ay + ufe, + poly (q;, fq; i <p). By changing
our choice of y we can assume g,=Ay+pupe,. Since fq,+0 or since g,+0 in By,
we know A can be assumed to be 1. Thus we have

By=2"""Bq, + poly(q; Bai i <p).(*)

This establishes the lemma.

We study this relation further. Since in B! 2%, By restricts to BP?™2u,, this
relation (*) does not hold in B® 2" but must hold in B! 3", Therefore in B> 3" we
have PP~ Bq, = — B poly(q;, Bg;, i <p). Since the left hand side is primitive, the right
hand side must be also and therefore is zero; so B#?~ 1B q, lifts to zero in B> 3"}, Now
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in B 2"1 we have seen B, 27! Bq restricts to PP~ % Bu,. In other words, B#?~ 1 fq
is p times something, call it z, which restricts to 1, B#?~2 Bu, where 4, is not divisible
by p. For B#?~! Bqtolift tozeroin BL% 371, it must be killed by the transgression of some
multiple of B#?~3u,, since there is no other potential assassin. Now 2P~ 2y, is
killed by 2P~ Bus but there is no integral class in K(Z,, 3r) which can kill 3?2 fu,
so z survives to B®3" but its mod p reduction lifts to zero, i.e. z lifts to p times
something which must restrict non-trivially to the fibre, which is to say to 13 82 3 fu,
for some A; not divisible by p.

LEMMA. 8, #P~™h,, restricts to A,_; fPP """ Bu,,_, for A+0eZ,.

Proof. #?~™h,, restricts to PP " 1y, _,, but BPP ™+ 1y, | transgresses to
B#P~™*1h, _, which by induction is non-trivial. Therefore 2P ™h, is not the re-
duction of an integral class and so f#P~™h,, must be non-trivial. Since B PP ~™h,, is
zero, PP~ ™h,, must be divisible by p. In this dimension, the image of Bl% ™~21 jg
all of order p (p times B, P ™*1h,, _, has been killed by B#?~™*1y__,) so the only
classes which can possibly have order greater than p are those which restrict non-
trivially to the fibre, i.e. to A,,_; B#? ™*! Bu,,_,. Since the fibre has no more than
p-torsion in this dimension, the class in B'% ™~ 11 has order at most p%. Therefore
B, PP "h,, is non-zero and restricts to A,,_; PP "1 Bu, _,.

For m=p, we have a slight modification due to the fact that 4, is a class of BI% P~ 11,
not B~ We can still show §, V, restricts to 4,_, f2" u,_ . Since some choice
of V, lifts to h,, B,h, is the image of §, V,.

7. H*(B' ") for n=(p—1)r and pr—1

So far we have used Toda’s exact sequence for the Steenrod algebra and the fact
that the Steenrod algebra approximates H*(Z,, n; Z,). What of H*(Z,,, n; Z,)? The
description is formally the same as for (Z,, n) except that for every element 6 of the
Steenrod algebra such that 01, is a generator of H*(Z, n; Z,), the class 6,1,
appears as a generator of H*(Z,,, n; Z,), which thus stably is additively isomorphic
to A/ 45+ (A/4p) B2 Consider

BPL-BPLE  —PLB+2 B P!
il

AJAB + AJAB A A

v v v
H*(sz’ pr){;tH*(Zp’(P - 1) r)?H*(Zp,(p - 2) r)

where the vertical maps are as before except for the first which is («y, a;)—>a;1,,—
1/2,-1(23 B2 1,,). Our computations of h,_y, h, and f,h, give commutativity of the
diagram. The top line is exact by ToDA. [There is a crucial misprint in Toda but the
dual sequence (Proposition 1.1) is correct and gives the above.] We conclude that in
the stable range (i.e. dimension less than p(p — 1) r) the generators in BI% ?~ V"1 which
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restrict non-trivially to the fibre are the transgressions of generators in K(Z,,, pr).
Thus we have verified Theorem 1 for n=(p—1) r, and the surviving generators remain
the same. Since the k-invariant for #,,_, is trivial, we easily check Theorem 1 for
n=pr—1.

8. nz=zpr

In B~ D" we can compute directly that the restrictions of 2'B,h, and
A,—1BP" h, agree. Milnor’s remarks again apply to show (#'8,—24,_, fZ") h,=0.
We set V. =2"'B,u,— A, BP" u, and would like to show that 4, , restricts to a
non-zero multiple of V,,,.

Unfortunately the next homotopy group is not n, , ;), but rather n, ;. 1),_,. If Bis
a generator of m,,_; and «; is a generator of the stable group =,.,_,(S"), then
Tp+1)r—2(Bg) is generated by fa, [4, I1: Theorem 4.15]. Since «; is detected by #',
the k-invariant for 7, ;,, - , must restrict to #' e, in K(Z,, pr—1). [A direct cohomo-
logical argument can be derived from Toda.] Since H*(B%?"1) has no cohomology
in dimensions congruent to —1 mod r except for classes involving e;, ' e, and ge,
are the only classes in dimension (p+1) r—1. Since the k-invariant is primitive and
e, is, the k-invariant must be #'e,.

Modulo classes which restrict non-trivially to K(Z,z, pr) or K(Z,, (p+1) r—2),
H* (B @+ Dr=2) is freely generated by the images of generators of H*(B!%®~1rl)
and classes corresponding to an additive basis of (4/42") e,.

Now let us look at 4, ,, the k-invariant for 7,4,

LEMMA. A, can be used as a generator of H*(B!%®*Dr~2))in place of a class
which restricts to V., ;.

Proof. We apply Milnor’s argument (3.10) after first noting that
H®*Dr*1Y(K(Z,,(p+1) r—2)=0so that &, is in the image of BI*»?".1f h,, , were
not the image of V,,, for some V,,, which restricts to (Z'B,—4,-;2") u,, it
would be the image of a primitive class in BI%?"~!1 The only such classes are
BP'Be, and possibly polynomials in B!y and the other Wu generators. Since
h,4+, is in dimension (p+1) r+1, every term of the polynomial must contain a
bockstein. In B> ?* 11D Bocksteins are zero in dimensions <(p+ 1) rsince they
are zero in Byandin dimension (p+ 1) r as observed by MILNOR. Milnor’s argument
(Lemma 3) again shows 4,,, does not go to zero in B ®*V7~1 5o the lemma
follows.

To compute H* (B! P1), we turn to Toda’s exact sequence

ALZZ g+ 4jAptT L 4
and conclude in the stable range that the generators in B®?'} which restrict non-
trivially to K(Z,, , pr) are the transgressions of generators of K(Z,, (p+1) r). From
here on the argument is very similar to Milnor’s for BI®™" 2 <m<p, simplified by
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being in the stable range and by using Toda’s sequence. In general for 2<m<p, h
restricts to some non-zero multiple of

ptm

(m#?'B—(m-1)pPYu,p—y in K(Z,(p+m—1)r).

Finally we consider the exoticgroupr, ,,_ ; generated by f §, where f, em,,_ 5 . ,(S")
corresponds to f. B, is detected by a secondary operation ¢ based on the relation
PP~1 P! =0. Since 2" e, has been killed by 7,4 1),-2, @e, is defined and is the only
primitive classin this dimension (congruentto — 1 mod r). Itis therefore the k-invariant.

From Toda’s exact sequence [4; I: Prop. 1.6]

P Ppp-1 Pt

A—>A —>A—A
we can conclude that in dimensions less than 2 pr, H* (B! 27"~ 3]) s freely generated by

Pq i<p-1 PPq pLi<2p-1) y, 2y, Py
PBq i<p-1 PP Bqg psig2(p-1)

and {0e,} where 6 runs over an additive basis of 4/4 2. Since the next homotopy
group is 7, ,,, the same statement holds for H*(B) in dimensions <2pr.

9. Wu classes

THEOREM 2. In dimensions <2pr, H*(By) is freely generated by the Wu classes g;,
their Bocksteins fq; and {0e,} where 0 runs over an additive basis of 4/42!.

Proof. As MILNOR has observed, g, can replace #’q as a generator for j<p—1.
By the same reasoning, g;,;+; can replace Z*P/q for j<p—1 since #'q;, =
(=1 W*rDE=D-1) g.. .. +polynomial in lower g, and the binomial coefficient is
non-zero for pj<i<(p—1)(j+1), j<p—1. This gives usq, for ISk<p-1 and
p+2=k=2p—1. The Wu class g, is independent of g; for i <p in By and hence must
be of the form Ay + poly(g;, f¢;, Be;) with A0, s0 g, canreplace y. Again ' q,=¢, .+,
modulo lower g, 50 g, ; can be used in place of 2!y, Similar computations show that
PP Bq, canbe replaced by fg;, ;. soastogiveus g forl Sk <pandp+2=k=2p.
The remaining g, appears to replace §2'y.

10. The case p=3

Certain modifications are necessary when p =3. The computation of H*(B'>2"; Z )
is altered because pV;=0 and B, V; must be used instead, but the general remarks
about 4, still apply and the classes y, #'y, 2"y appear just as for p>3. The results
are isomorphic.
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