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The spherical derivative of integral and
meromorphic functions

by J. CLUNIE and W. K. HaAymAN

1. Introduction

In a recent paper LEHTO and VIRTANEN [2] introduced the spherical deri-
vative

|1 (2)]
e(f(2)) = THIFEF

as a measure of the growth of f(z) near an isolated singularity. This point of
view was further pursued by LerTO [1]. If the singularity is taken to be at
2 = oo then LEHTO obtained the following results.

Theorem A. Suppose that f(z) is meromorphic for R < |z| < o, and has an
essential singularity at z = oo. Then

lim sup |z| ¢(f(2)) = 3. (1.2)

Equality holds for functions of the form

__Ha,—2
f(z)——llfav+z, (1.3)
where a,, 18 a sequence of complex numbers such that
——-——-—aa"“ —> o0 (v—> ). (1.4)

Theorem B. If f(z) satisfies the hypotheses of Theorem A and in addition
(2) 18 regular near z = oo, then (1.2) can be replaced by

lim sup |2] ¢(f(2)) = co. (1.5)

Following Lenro, we denote by h(r) a positive function such that
h(r) = o(r) (r > o0). The connection between ¢ (f(z)) and Prcarp’s Theorem is
strikingly brought out by the following result of LErTO [1].
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Theorem C. Let f(z) be meromorphic for R < |z| < oo. If for a sequence
{z,}, im 2z, = oo and
e lim h(lz,)e(f(z)) = = (1.6)

then P1carp’s Theorem holds for f(z) in the union of any infinite subsequence of the
discs

Cv:{zzlz_zvl<€h(|zvl)} (17)
for each e > 0.

Conversely if there exist discs (1.7) such that Picarp’s Theorem is true tn every
[+

union \J C,, for every > 0 then (1.6) is satisfied. (V. Gavrirov has pointed out
E=1

to us that the converse must be modified here. (1.6) is satisfied for a sequence z,
instead of z,, where |z, —z,| = o {h (|2,])}. This condition is also sufficient
for the existence of the disks (1.7)).

In particular it follows that if f(z) has an essential singularity at z = o then
f (z) possesses a JULIA direction provided that

ligsgplzle(f(z)) = oo, (1.8)

From Theorem B we see that every transcendental integral function possesses
a JoriA direction. If (1.8) is not satisfied there is not, in general, a JuLiA
direction as the examples (1.3) show if ¢, > 0.

2. Some further results for meromorphic functions

Our aim in this paper is to obtain some extensions of Theorems 4 and B. We
may suppose without loss of generality that f(z) is meromorphic in the whole
plane. First we consider whether or not a restriction on the growth of f(2) as
defined by its order imposes any restriction on g (f(z)), or conversely. For
meromorphic functions no restriction on g (f(z)) is implied by a restriction on
the growth of the characteristic 7'(r, f). Consider, for instance,

(1 —z2a,)
f2) = —

where X |a,|, X'|b,| converge. Since f(a,) = 0, f(b,) = oo it follows that

Je(f2)) |dz| ==,

where the integral is taken along the segment I', joining a,, to b, . In particular
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JT

e (f(z,) = To —al

for some point z, on I',. By choosing a,,, b, close enough together we can make
the right hand side bigger than any preassigned function of |z,].

On the other hand a result in the opposite direction is possible. It is convenient

to set ulr, ) = sup o (f(2)) .

zl=r
Suppose that for » > r, we have
u(r, ) < Kre. (2.1)
By Theorem A this is only possible when ¢ > — 1 or when ¢ = — 1 and
K > 1. In the usual notation of NEvaNLINNA Theory,

To(r, )= [ 26 a

where ) ”':‘
8@, f) = — [ [ @ (f(te™)) tdtdy
20
< 2fu’(t,f)tdt.
0
Thus if 6 = — 1in (2.1),

S(r,f)=0(logr),To(r,f)::0(log2r). (22)

The examples (1.3) with a, = 4v(4 > 1) show that the order of magnitude in
(2.2) cannot be sharpened.
If (2.1) is satisfied with 0 > — 1 we obtain

8(r, f) = 0(r***), Ty(r, f) = O(r***?). (2.3)

Hence a meromorphic function of proper order k > 0 cannot satisfy (2.1) for

any g < k_ 1. The implication from (2.1) to (2. 3)is sharp as our first theorem
) p

shows.

Theorem 1. Suppose that 0 < A < oo and that

foy = £ L0

nmi NA® —2zn T

Then f(2) has perfectly regular growth of order 2/A and satisfies (2.1) with

1
T—1L

(2.4)

0 —
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2vnt

The function f(z) has poles at the points 2z =n*¢» (»=0,1,..., n —1;
n > 1). The number of poles in 2| <7 is }p(p + 1) where p is the largest
integer such that p* <r, i.e. p = [#1A]. Thus n(r, f), the number of poles of
f(z) in z < r, satisfies

n(r, f) ~3p* ~ 3?2 (r—> ),
and so

N(r,/)z_—f "‘(‘t”) dt~£'—r“/"(r——>oo). (2.5)

0

We now estimate |f(z)|. Assume that

—P <zl <(p+ P, (2.6)

where p is a positive integer. 4 (1) denotes a positive constant depending only
on A and is not necessarily the same at each occurrence. Let n be an integer
satisfying n > p and put n = p + v so that » > 1. We have, in the range (2. 6),

K2 N et o A T P Gk 1
n* n Q n
<e (-2,
Hence, when z lies in the range (2. 6),
2 (—lpm|_m e-(-Dr
”_"‘::+1 nin __ an S'E'l 1 —e-(-3)* = A (2). (2.7)

When 1 < n < p and z lies in the range (2.6) then, if n = p — vy with» > 1,

n —_— An — in
w2 () e (e
2(1 + v;%)u(nzk). (2.8)
Now
— Y P — 1Y pin
——----—-—-'(nm“_)_z” =(._.. 1)»+1+ (fn,l" _)__”;n

and so if we choose k in (2.8) to be [—;J + 1 so that Ak > 2, assuming that
p> [%—] + 1, we find that in the range (2.6)



The spherical derivative of integral and meromorphic functions 121

p—1 (___ l)n 2n —-1 (__ l)nnln
nln)m__ Sl+ n=1 n\r — 2n
k-1 1 ® 1
<1 —I— Z' + 2 ; = A(A).
l I —1 y=1 1 + ”_i —1
n k
From this and (2.7) we obtain
— 1)Pp
o) — S| <4 (2.9)

in the range (2.6) for p > [%] + 1. It is easy to see that consequently (2.9)

holds in the range (2.6) for p > 1.

If |z] = ¢ and (2.6) is satisfied then using (2.9) we see, in the notation of
NevANLINNA Theory, that

m(t, 1) = 5 § log* |(te)|do

3 P

f log* plp | 48 + A()
S———jlog‘* ldz‘)—{—A().)
— A(}).

From this and (2.5) we deduce that
A
T(?", f) = m(r, f) -+ N(r’ f) N‘Z rﬁlk, (7’-—> o)

so that f(z) is of perfectly regular growth, order 2 and type Ti— .

A
It remains to be proved that f(z) satisfies (2.1) with ¢ = -:T — 1.
We have
, . @ nn+lgn—1
O =2V gy
+150-1
= (1 B e, sy,

where f,(2) is defined by the series for f(z) with the pth term omitted. Now, by
the above, f,(2) is regular and bounded by 4 (4)in (p —3/4)* < |z| < (p + 3/4)A
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and each point in (p — 1/2* < |2z| < (p + 1/2)! is the centre of a disc which
pr1
lies in the larger annulus with radius - A @ Hence, from CAucHY’s integral,

1f,(2)] < A(A)p < A(4) |z]1A1,
for
p—122 <zl <(p+1/2) (p=1). (2.10)

Therefore in the range (2.10),

5

)] <iW
plp+1

= |z|p+1

+ A |27

2P 2
(w—zv)
<A@ -E T2 ,w B+ ARz T

by (2.9). Consequently, in the range (2.10),

I @) P e
TP =AW T4 1=

< A(A)|z]VA,

Since the ranges (2.10) cover all the plane apart from a disc, the proof of the
theorem is complete.

3. Positive theorems for integral functions

The remainder of the paper will be devoted to obtaining improvements of
Theorem B and to showing that these are best possible. We assume without
loss of generality that f(z) is an integral function. It will also be assumed that
f(2) is always transcendental. In this section we state our positive theorems.

Theorem 2. If f(z) i an integral function of proper order o (0 < ¢ < oo), then

lim sup —lg’gi‘l,fli(’,{—’ﬁ > dyf0 + 1), (3.1)
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where A, 18 an absolute constant. In particular

M 8UP —jog r oo, (3.2)

Inequality (3.2) sharpens (1.5) which is equivalent to

lim sup ru(r, f) = .

rf—> o

Theorem 3. If f(z) is an integral function satisfying (2.1) for all large r with
— 1 < 0 < oo, then for large r
A, K
c+1

log M(r, f) < ro+l (3.3)

where A; = 25e log 2.

It follows from (1.5) that the restriction ¢ > — 1 is necessary in Theorem 3.
The theorem shows that for integral functions (2.1) implies that

T(r,f) =0(").

This is significantly stronger than (2.3) which is the best possible result for
meromorphic functions by Theorem 1. Note that if f(z) is of perfectly regular
growth then Theorem 3 is a consequence of Theorem 2.

As we shall see later, if f(2) is an integral function such that the growth of
log M (r, f) is properly of the order of log?r in the sense that

O<]imsup_!9;g_'_M_(11j_).

r—> o log’r

then no improvement of (3. 2) is possible. On the other hand our next theorems
show that if log M(r, f) # O(log?r) or log M(r, f) = o(log?r) then we can
log M(r,f)
log?r
becomes respectively. However, there is no sharp difference in the behaviour of
p(r, f) as we pass from one of the above classes of functions to another. By this

we mean that if ¢ (r) — oo(r — o), then there is an f(2) from each of the above
classes such that

improve (3. 2), the improvement depending on how large or how small

: ru(r, f)
h:n _.f up @(r)logr

Before stating our next theorem we give an indication of how one arrives at
an improvement of (3.2) if log M (r, f) # O(log&r) for K suitably large. If
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3
pir, f) < K287

u(r, f) in § 2, it follows that
To(r, f) = O(log’r).

for large r then, from the inequality involving 7'(r, f) and

Hence if log M (r, f) # O(log®r) we see that (3.2) can be improved to

: ru(r,f)
hfn_fgp logtr

Our next result gives the improvement of (3.2) for functions f(z) such that
log M (r, f) # O(log?r), but log M (r, {) = O(log®r).

Theorem 4. If f(z) is an integral function and (r) /" o (r /' o) and

lim sup lOgM(r,f)

T S W > 0, log M (r, f) = O(log*+'r), (3.4)

where 2 < o < oo, then

: ru(r,f)
h:n_)s:p 2 (r) log™ir > 0. (3.5)

When « = 2 in (3.4) then (3.5) is the improved form of (3.2). For func-
tions such that log M (r, f) # O (log®r), log M (r, f) = O (log®r) take
@(r) = {log (r + 1)}'”? and choose « so that both conditions (3.4) are satisfied
and x > 2-5. The improved form of (3.2) is then

lim sup 72 (r, f)

m SUP log 7P "

To deal with functions such that log M (r, f) = o(log?r) we have the fol-
lowing result.

Theorem 5. If ¢(r)isincreasing and f(z) 18 an integral function such that

log?r

—> oo .6
@(r) r ) 3-9)

I%an=0§

then

: rur,f) _ (3.7)
lim sup — ) logr — >
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4. Proofs of the positive theorems

4.1. We require a number of preliminary lemmas.

Lemma 1. Let f(z) =ay+ a,(z —2) + ... be regular in |z —z)| < &
and satisfy |f(z)| = 1 there. Then

2 log|a
la,| < L agl ol ) (4.1)
and for |z —z| <r<
= 3tr
lao| 347 < |[(R)] < @po-r. (4.2)
If further |f(z))| = 1 for some z, with |z, — zy| = O then for some z on the
segment joining z, to z,
log | ay| ||
e(f@) = 106 log 2 = 20 |ay| log 2 (4.3)
(4.1) and (4.2) are classical.
Suppose that
[f(z + de'?)| =1 (2, =2 + de’?).
If
[f(zo + 0e'?)| <2 (0< <) (4.4)

then |a,| < 2 and
8
lao} — 1 < [f(z + 0€") — [(20)| S‘;f |f' (20 + te*?)| dt

< 6 max |f (% + te)].

0<<t<s

If { =2+ t,et® is a point where the maximum on the right is attained then,

(@) = A1%L=1 5 1og |l
and so
_ @)l [F'(Q)]  log|a|

Hence the first inequality of (4.3) is true in this case.

If (4.4) is false let o be the largest number with 0 < ¢ < é such that
|f(zo + 0e®)] = 2. Take = 2z, + t,e** to be a point for which |f'(z)| is
greatest when z = z, + te'?(p <t < 8). Then |f({)| < 2 and so

@ IO
T+IF@QF =5
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Also s
1 <|f(z + 6€™) —f(20 + 0€®)| < [|f (20 + te'®)| dt
e
< (6 —2)|f ()]
Further, by (4.2) and the fact that |f(z, -+ ge*®)| = 2, we have

3—¢

|ag|o+e < 2,
and hence
a_es(6+g)log2 2610g2.
log | a,| log | ay|
From the above it follows that
(9] 1 ()] 1 log |a,|
V=T fOF 2" 5 Z5(6—¢ = T0olog?

This completes the proof of the first inequality of (4.3). The second follows

immediately from (4.1).

Lemma 2. Suppose that f (z) is an integral function such that for somer, > 0

min If(z)l =1,
[2] =71

and that
[f(2)] > 1(r, <|z]| <3m).

Then for some r satisfying r, < r << 2r, we have

e " log M(r, f)
pir,f)> 107 log 2

In particular if the conditions are satisfied for arbitrarily large r, then,

. ru(r,f) e
im $UP Tog M (r, /) = T0log 2 °

Let 7, = 27, and let z, = r,¢'® be such that
[f(z)| = M(ro, f).
There is a #, with |#; — §y| < & such that

”(rleiﬂ:” =1.

(4.5)

(4.6)

(4.7)

(4.8)
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Foreach {, with |{| = 7o, |[f(2)| > 1for |z — | <7, = 7o and so (4.1) gives

2
o _4
7O Tog 17T = °

Thus
a (X4
o log 1og 1/ (net)|| < 4
and so
log | f (ree*®1)|
18 Tog | Flrae®)| | <+

from which it follows that
log | f(roe'®")| = €47 log | f (ree'®)| = e~47 log M (r,, f).

In the closed disc |z — ryet®| < 129 we have |f(z)] > 1 and, at the point

2, = r,€**1 on the boundary, |f(z,)| = 1. Consequently, by (4.3) with 6 = kL]

there is a point £ on the segment joining 7,e'*®* to 2z, for which 2

log | {(raei®)| _ e~*"log M (ro, )

e(f(€)) = Grolog2 = 57y log 2

If |&| = r, then f2—°— < r <7, and hence we deduce that

e 47 log M(r, f)
107 log 2

plr,f) =

This proves Lemma 2.

The next lemma is required to cope with possible irregularities in the growth
of log M(r, f).

Lemma 3. Suppose that ¢ (r)(ry < r < o) is continuous, positive and strictly
increasing with a sectionally continuous locally bounded derivative ¢ (r). [At points
of discontinuity we define @' (r) as the limit from the left.] Suppose that for positive
o, f

limsupm>ﬂ. (4.9)

T—>® re

Then given o' (0 < &’ < ) there exist arbitrarily large r for which the following are
satisfied :
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"’r(a) > fes; (4.10)
Z((:)) > (4.11)
plr+ 2———((-g<e‘<p(r). (4.12)

We assume that ¢’ (r) is never zero. This really involves no loss of generality.
First of all we show that there are arbitrarily large values of r such that (4.11)
and

—"3}“’1 > (4.10)

@(r)

are satisfied. Now e is unbounded as r - oo and so for arbitrarily large »

it must be locally nondecreasing. For such r,

_ o) {¢'(r)
| @(r)

Y
ri=

and so (4.11) is satisfied. If for all large 7, ¢ (r) > fr* then we obtain the desired
result. Otherwise there are arbitrarily large values of r such that ¢(r) < gr*.

From (4.9) there is a smallest R > r such that ¢(R) = R>. But then (pfa)

is nondecreasing at R and so ¢ ((II;)) > — , a8 in the previous argument, and
ﬂé—f)— = fB. Hence the result.

Nowset h=h(r) =2 9?/(( )) and note that

r+h
log ¢(r + k) —log p(r) = f . ((f)) dh < h mex, %((13)“

Consequently if (4. 12) is false for » =r, thereis an r, such that ry<<r; <7+ h(7)
and

P 4 _ e

@(r1) h (ro) @ (7o)

Suppose that 7y, 74, ..., 7, have been defined in this way so that (4.12) is false
for r =7r,(0 <v <m) and
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p(r,
2 —
rv<rv+l STV—'— (Pl(rv) (OS‘VS”L 1)’

@' (ry11) ¢'(r,)
—r >2 = (0<v<n—1).
¢(rv+1) ‘P(rv) ( )

Then we can define r,,, so that
/ !
V) Lo @0 L 90

@ (71) @(rs) @' (ra)

If this process continued indefinitely then we should have

@' (1)
@(rs)

—> o0 (r—> o0)

and

5 . 9 5 ®(ra)
”=0(rn+l 7‘,,) < =0 ¢’(rn)

< 2 09(7'0) § 9-n
@' (1) "o

_ @ (7o)

=4 @' (ro)

!
Thus r, would tend to a finite limit and so ~%gﬁ))——> oo. This contradiction
shows that the construction of the r, must terminza,te after a finite number of
steps.

Take now as 7, a value such that (4.10)" and (4.11) are satisfied for r = r,.
If (4.12) is not satisfied for r = r, then there is a sequence 7y, r;, ..., 7y 88
above such that it is not satisfied for r = r, (0 < n < N — 1) but it is satisfied
for r = ry. Then for 0 <n < N,

(P, (rﬂ+1)

@' (1) _ gnus (7o)
(p(rn-ﬂ)

=20 o (ro)

and so

N-1 N-1
_ _ @ (ro) 1
N To = i: (r'n+l rn) < 2 ¢I (TO) ot 9n

@ (ro)
@' (ro)

<4

7
<4;‘°7

9 CMH vol. 40
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by (4.11). Hence if o’ is near enough to «,
4

Since (4.10)' holds for r = r,,

@(rn) = @(rg) = Brg = Bry (1 + 5/a) > Be~Sry.
Also

vix) 9 o o
@ (rn) @ (7o) To TN

Hence the proof of Lemma 3 is complete.

4.2. Proofs of Theorems 2 and 3 for o > 6.

Suppose now that f(z) is an integral function of order ¢ > 6. We apply
Lemma 3 with ¢ > &' > 5 to ¢(r) = log M (r, f) so that for some arbitrarily
large r, (4.10), (4.11) and (4.12) hold simultaneously. For such an r there
is a point z, = re*® so that [see e.g.3, Lemma 2, p. 136.]

| (z0)| = M(r, f),
f'(2) :
== = @' (r).
fla) |~ 70
It now follows from Lemma 1 that if § = 8(r) is the radius of the largest disc
with centre z, in which |f(z)| > 1 then, by (4.1),

) < 2 M IoB G _ 5 o) _2r 2

|f (20)] ¢'(r) ~ &
By (4.3) there is a point z with |z —z)| < d(r) and
log | f(z)|
() = 155 log 2

__ 9
10 4(r) log 2

o'g(r) 13
20rlog 2 ° (4.13)

If |z| = R, then R < r + 4(r) and so, by (4.12),

¢(r)
P(B) <9+ 30D < (r+2-50) < 4o,
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Hence, since also B > r — 6(r) > 3/5r,
o' et (R)
#(E, 1) 2 e(f) = 356 Ry Tog 2

_ a'elog M(R, f)
- 40 R log 2

From R > % r it follows that as r - «« then R — o and so we arrive at

1 ‘R”(R’ f) 03_4
lim sup 12 (R, /) = 401og 2 °

since o' can be taken as near to ¢ as we please. This proves (3.1) and so
Theorem 2.

We next prove Theorem 3 for ¢ > 5. Suppose in fact that (3.3) is false for
some arbitrarily large r where A, is some positive constant. We may apply
Lemma 3 as before with « = ¢ + 1, &’ = ¢ and any quantity § such that

AK

0</9<a_{_1 : (4.14)
Then (4.13) yields for some z with |2| = R
op(r) afebr°
e (12)) = 55,7057 = 2070 2 (4. 15)

Also

= ¢(r) 2
sl =R<r+ o) <r+2-50 gr(l n o)

by (4.11). Therefore
Re < r"(l + —(2;)0 < e?re,
Then (4.15) shows that

ofe” o,
#(B, N = 557052 Tog 2 R

for arbitrarily large values of R. From (4.14) we see that

cA, K e?
o+ 1 20iogs =%

and so
o+1

g

Consequently it is only for such A, that the result of the theorem is false.
Hence it must be true with 4, = 257 log 2. This proves (3.3) for o0 > 5.

A <

20 €7 log 2 < 25¢€” log 2.
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4.3. Completion of proot of Theorem 3

Suppose that the hypotheses of Theorem 3 hold with — 1 <o < 5. Let n
be a positive integer such that

n(o+1)>86 (4.16)
and consider ¥ (z) = f(z*). Then for all large » we have

__IF@ _ artfe)
eWE) = T Fer T T e

< Knr*1pmo (|2 =17r)

by (2.1). Hence F'(z) satisfies (2.1) with K= in place of K and n(s 4 1) — 1

in place of ¢. In view of (4.16) we can apply the previous result to ¥ (z) and

obtain

A; Knrrlet) 4 K
nc+1)  o+1

log M(r, F) <

rn (g+1) .

As M (r, F) = M (r™, f) this completes the proof of Theorem 3.

4.4. Completion of proof of Theorem 2

We assume that f(z) is of order ¢ < 6 and consider F(z) = f(2'?). Since, as
above,

o (F(2)) = 12|z o (f(z1))

and F (z) is of order 120 it follows that if (3.1) holds for ¥ (z) then

. ruir ) 1
i SUP Tog M (r, /) = 1z o120+ 1)

and this is the result for f(z) if 4, is adjusted. Consequently it is sufficient for
o < 6 to prove the theorem for F (z).
Now for some constant 4, we have
log M(4r, F) < Ay,log M (r, F) (4.17)

for arbitrarily large values of r. Otherwise for some 7, we find that

log M(47 71y, F) > A log M (1, F') (n > 1)
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log 4,

so that the order of F(z) is at least
log 4

F (2) is of order less than 72.

We consider arbitrarily large r for which (4.17) is true. If for an infinite
sequence of such r, |f(2)| = 1(r < |z| < 3r) then the result follows from Lem-
ma 2. Hence we assume always that for some R in r < R < 3r there is a z on
|z| = R where |f(z)| < 1. From the periodic nature of F (z) we see that there
is a disc S(R) centred on { where || = R, |F({)| = M (R, F) such that
|F(z)] > 1 in S(R), |F(2)] =1 at some boundary point and the radius of

. This is impossible if 4, > 47 as

S(R) does not exceed lf By Lemma 1 it follows that
12 log M(R, F)
nit, F) = 10nRlog2 °

for some ¢ satisfying R———~R—<t R—|——n—§—, 80 thatER<t<}—R. If
12 12 3 3

t < R then we get

12log M (t, F)

10x - $¢log 2

__4logM(t, F)

~ bmtlog2

p(t, B) =

If t > R then, since R < 3r,t < 4r and so, using (4.17) we have

12 log M (t, F)
# F) 207t Tog 2

__Blog M(¢, F)
— b5A,ntlog 2

As t> 3R > §r it follows that one of the above inequalities must hold for
arbitrarily large ¢. Hence the proof of Theorem 2 is complete.
4.5. Proof of Theorem 4

For any function f(z) of order less than 1 with f(0) # 0 we have the well
known inequalities [see e.g. 4, p. 28]

 n(t) M, f) () ()
f—Tdtglog |f(0)| )sf dt + r f 2 dt, (4.18)

where n () is the number of zeros of f(z) in |z| < ¢. The restriction f(0) # 0
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clearly involves no loss of generality. From the second condition of (3.4) and
the left hand inequality of (4.18) it follows that

n(r) = O (log®r). (4.19)
From (4.19) we find that

- )

rf nt(zt) dt = O (log®r). (4.20)

r

Hence for r such that log M(r, f) > ne(r)log*r, where n is some positive
constant implied in the first condition of (3.4), we obtain, from (4.18) and
(4.20),

log M(r,f) = {1+ o(1)}f-’3'-gldt. (4.21)

Assume now that we are dealing with values r of the above kind. By a known
result we have for some R in (—;;, —;—) , log |f(z)] > Hlog M (R, f)(|z]| = R)

where, here and elsewhere, H depends only on f(z) [5, pp. 64—65]. For suffi-
ciently large r let R’ be the smallest number such that |f(z)| > 1(R' < |z| < R).

We deal with two cases: a) R’ >—; b) R <-— 1 for arbitrarily large values

2
of R'. It is clear that in fact R’ does take arbitrarily large values.

Case a). If |f({)| = 1(¢ = R'e*®) we consider the largest disc D centred

on Ret” in which |f(z)| > 1. The radius of D is at most 3 ——{—é— == —i5—2— r and

so D liesin |z| < - + g T <r. By Lemma 1, (4.3),forsometm—l-§<t<r
we have

ult, f) > H log lr'ff(R, H

From (4.18), (4.19) and (4.21) it follows that

L 4

logM(T%,f)>Hlog M, -—-fiit—)dr-l' O (logr)

ri/is

> Hlog M(r,f) 4+ O(log*r)

= H(1 + o(1)) log M (r, f).
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Hence we see that
r) log>r
ut, f) > B PO LET
> g2® ;og"‘t ’
for arbitrarily large values of ¢. This proves the theorem in this case.

Case b). In this case |f(z)| > 1(R' < |z| < 3R') and |f({)| = 1({ = R'e™).
We see from the proof of Lemma 2 that

ut, f) > o DEMCELD (4.22)

for some ¢ satisfying R’ <t < 2R’. Now from (4.19) and (4.21)

n(%)logr>Hj£4—p—gldt=H(f—7—%—§t—)—dt—fﬁ:—t)—dt)

r/a
> He(r) log*r — H log*r

and so

n ({—) > He(r) log*r.
But (R’, —‘-;—) is free from zeros and so

n(R') > He (r) log*r.
Hence, by (4.18),
log M (2R, {)
1£(0)]

2R’

= f lz—it—)dt = n(R') log 2
RI

> He(r) log*1r.
Therefore we find that in (4.22),

ut, f> HeOIEE

Since this holds for arbitrarily large values of ¢ the theorem is proved in this
case.

4.6. Proof of Theorem 5
From the left hand inequality of (4 18) we get

n(r)logrsf n (f) dt < log M (73, f)

g log?r
e
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and so, since ¢ (r) is increasing,

n(r) = 02 l;%r; (4.23)
Using (4.23) we obtain
. n(t) ., 1 r log ¢
rf 7 dt—O?(P(r) r 2 dtg
A flogr)
=0, o) | (4.24)

. . log r
Hence if we put B(r) =9 V‘P ) Tog ()’
f(2), then, by a known result [5, pp. 64-65],in (1 —B(r)) <|z] <r(1 + B(r))

where 7 > 0 and depends on

log |f(z)| > H log M (|2, {)

outside a set of circles the sum of whose radii is at most Hrf2(r).

Consider now values of r such that f(z) has a zero on |z| = r. Let z, = re'®
be such a zero. Then from the above, if r is large enough, for some R satisfying
r — Hrf?(r) < R<r we have

log |f(Re*%)| > Hlog M (R, f).

Let D be the disc with centre Re*® in which | f(z)| > 1, assuming r is sufficiently
large, with |f(z)| = 1 somewhere on the boundary. Then, by Lemma 1 and
the above for some z in this disc

e (f(2) > HIOE;{:)R:/) _ (4.25)

Now as B(r) > 0 as r - oo it follows that for large r,—;—< R < r andso

R
log M(R, f) = {1 + o(l)}f—’—z—g)—dt

> {1 4+ o(1)} ;log M, f) —-—fﬁé—t—)— dtg
R
= {1 + o(1)} {log M(r, f) + O(log )}

= {1 + o(1)} log M(r, f),
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where we have used (4.23), (4.24), (4.18) and the obvious result that
log r = o(log M (r, f)). Hence, from (4.25),

Hlog M (r,f)
z)) >
e (f(z) ()
__ Hep(r)logr (| log M(r, f) |2
o 7»r | logr }°
Now in (4.25), —;— < |z| < r for large r and so if |2| = ¢ then for large r we

find that

p()logt (log M(r,f) \:
pit, fy > 5 2008t (B RN )

since ¢(t) is increasing. As the final factor above tends to co with r and the
inequality holds for some arbitrarily large ¢ this proves Theorem 5.

b. Counter examples

The first theorem shows that (3.2) is best possible and that the properties of
f(z) referred to in §3 preceding Theorem 4 do in fact hold.

Theorem 6. Given ¢(r) " oo (r /7 o) there is a sequence of increasing integers
k, such that if

f =1 (1 =) " e = (1 — )"

he) =11 (1 — )"

then for g(z) = f(2), f1(2) or f,(2)

The sequence {k,} will be seen later to satisfy L% > 4 and in this case

it is easy to verify that b
0 < lim sup W < oo, log M (r, f,) = o(log?r), log M (r, f;) # O(log?r).
r—>w®

The next theorem shows that Theorem 2 is best possible
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Theorem 7. Given o(0 < 0 < o) there is an integral function of proper order
o and very regular growth when o > 0 such that

- rulr, f)
P Tog i,y <D

for some absolute constant C .

5.1. Proof of Theorem 6

The proof of the theorem requires & number of lemmas. We assume that
besides any other conditions that the integers k, will be required to satisfy,
that they will always satisfy

-%ﬂz4m>1xh22. (5.1)

We confine our attention to f(z). The proofs for f, (z) and f,(z) are similar.

Lemma 4. On |z| = 2***! and on |z| = 2¥»7,

|f(2)| > H]z|.
On |z| = 2¥»*! we have
n kn+1 km ﬁ 2kn+1 km
o= (5 125

From (5.1) each factor in the first product is at least 1 and so

n 2k"+1 km 2kn+1 k1
I (G =)= (g )

> H - 2+l = H|z]|. (5.2)
Also, from (5.1),
-] 2k”+1 km o0 —km
i (1_—--;—) > 1T (1—2
M= +1 2%m Mun +1
> H. (6.3)

From (5.2) and (5.3) the lemma follows for |z| = 2F#+1,
In dealing with |z| = 2¥#~! we assume for convenience that n > 1. This
clearly involves no loss of generality. On |z| = 2¥*~! we have

n—1/ 9kn km © 2kn \km
|f(z)|2H (—EE—TI—_-I) « 2-kn JT (l-—w) .

Meam1
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By (5.1) each factor in the first product is at least 1 and so

n—1 2kn km 2kn ky
7 (gomer —1) "> (i —1)

me=1
> H . 2%kn-1 (5.4)
since &k, > 2. As before
o (1= 2 \" n 5.5
S~ ST > . .
o1 ( 2km+1 ) ( )

Hence on |z| = 2*#~! by (5.4) and (5.5),
£ > H - 2%t 2
— Hob 1 — H|2|.

Hence the lemma, follows for |z| = 21,

We see from Lemma 4 that when z is large the regions in which |f(2)| < 1
are disjoint, with one in each annulus 2*»~! < |z| < 2*¥»+! Denote these by
D, . Clearly D, contains the zero at z = 2%»,

Lemma 5. If the k, increase sufficiently rapidly then on the boundary of D,
when n s large

szn—kl—kg—... kn_] < Iz _ 2kn| < H2kn-—-k1—... k’l-l .
We have

n—1 2 km |z S 2kn' kn [ 2 km
e e I L
Now on the boundary of D,
n—1 2 km lzlk1+...+kn_1 n-1 2km km
m[f_ll 1 — 9km = ok13 + kg3 + ... +kn_1? m=l 1 — z (5'6)

When 7 is large then 27! < |z| < 2¥#+! by Lemma 4 and so, if the k, increase

sufficiently rapidly to ensure that the final product in (5.6) lies between %
and H, we obtain on the boundary of D,

H 2(kn—1)(k1+...+k”_1) fﬁl 2 km 2(kn+1)(b1+...+ku-1) 5.7
) 2k1’+...+kn_.1’ <m_1 1 — 2km 2k1’+...+kn_1’ * ( ° )
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Again, from Lemma 4, it follows that on boundary of D, when = is large,

km

"< H. (5.8)

H< II — S

n=m+1l

1

From (5.6), (5.7) and (5.8) we find that on the boundary of D, when » is large

1
27;-(k1’+ oo+ kn_1?)

1
1———) (kg +...+kn-
l 2( kn) 1+...+kn_y)

L k... En®)
2 kn
H- 2t <|2—2kn| < H 2¥n

1
14+ ———} ky+...+kn-1)
2(+kn)(1+ +kn-1

From these inequalities the lemma follows provided the k, increase sufficiently
rapidly to ensure that
B4 ...+k_ =0k, (n—>c). (5.9)

Lemma 6. Forlarge n we havein 284~ < |z| < 2¥»+1, but outside D,,, provided
that k,, increases quickly enough,
/’ (z) kn2k1+...+’m—1

fl@) 2]
F&) _ 3k

<H

We have

f(z)  m=1 2—2Fm °
If the k, increase sufficiently rapidly then, for 281 < |z| < 2¥»+?

-1 n—1
”2 o < X Fom

m=1 2 —2km T, 2kn—1 __ Okm
2 n-—1
< 2kn-1 mz_'l km

k,

< H Skn (5.10)

Also,
km

%km 9kn+1

<H§'k”‘

memni1 2FM
H ® k,,
2kn =

Mump 41

@ km S’
ey ol
Mme=n+1 IZ—-?"‘"‘] Mme=n+1

<

km
2

2

< o (5.11)
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From Lemma 5 it follows that if the k, increase rapidly enough then

k k.2k1+...+kna
E’fm < H 2 oFn . (5.12)

From (5.10), (5.11) and (5.12) the lemma follows.

Lemma 7. If the k, increase sufficiently rapidly then for 2¥7+1 < |z| < 2kn+171
we have

1
z)) =0 (———) .
e(f(2) ]
If the k, increase quickly enough then on |z| = 2¥**! we obtain
H" kn2k1+-..+kn-1
T < H
|12 |2[®
H
< —
|}
by Lemmas 4 and 6. The same inequality is also true for |z| == 2*»+1~1 Now

2f' (2)

2(2) is subharmonic in 2f**! < |z| < 2¥»+1=! and since it is bounded

by H on the boundary it is bounded by H inside the annulus. Therefore in

9kn+1 < |z| < 2kn+1—1,
r@l (1
eV <Ymg)r = O(Izl)'

Lemma 8. In 27! < |z| < 27+ we have

k"2k1+--.+kn—1
| 2]

e(f(z) <H

provided the k, increase quickly enough.

In 22— < |2| < 288+ but outside D, it follows, if the k, increase quickly
enough, that
2f'(2)
f*(2)

by Lemmas 4 and 6 and the use of subharmonicity as before. Hence the lemma
is true in this region.
On the boundary of D, we get

< Hk, 2%+ .+kn (5.13)

|2f' (2)| < Hlk, 2kt +Ens (5.14)



142 J. CLovie and W. K. HAYMAN

and so, by the maximum modulus principle, this also holds inside D,. From
(5.13) and (5. 14) the lemma follows.

Given ¢(r) as in the theorem choose an increasing sequence of integers £k,
so that the above results hold and also

2k1 +...+kn-a < @ (2bn—-1) .
Then from Lemmas 7 and 8 we see that

; ru(r, f)
i e g log r
since ¢ (r) is increasing.

This completes the proof of the theorem. In should perhaps be pointed out
that given ¢ (r) where @ (r) - oo (r — o) it is not difficult to find a y () such that
p(r) > oco(r— o), @(r) = y(r) and y(r) is increasing. Consequently ¢(r) was
assumed to be increasing in the theorem only for convenience.

5.2. Proof of Theorem 7

A number of lemmas are required.

2
eﬂA

Lemma9. If A>1 and f(2) = ﬁ(l +
1

very regular growth and order loiA .

[4m)
) then f(z) is a function of

For em4 < |z| < )4 we have

log M (r, f) = log |f(e"4)]

> (4" — 1) log 2. (5.15)
Also, in this range,

log M(r, f) <log M(e+"4, f)

n+1 [~}
< X Am log {1+ e('n+l—-m)A} 4+ 2 A4Am log {1+ e(n+l—m)4}

M=l Me=n 2

n+1 ®
< ‘-‘E' Am{log2 + (n + 1 —m)A} + X AMem-n-1A4

M=l Mme=n -+ 2
A+ Jog 2 A -
STA— TATM I g A L Ave

< K(4)A», (5.16)
From (5.15) and (5.186) it follows that for e74 < |z| < entV4
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(A» — 1) log 2 log M(r, f) K(4). 4~
Antl < y(og 4)/4 < An ’

and so the result follows.

n—2 [}
Lemma 10. If ¢,(z) = (Z + X ) [A™]log |1 + ;,% then for
A 1 n+1
% < |z < 2e4,

— 4™ < ,(2) < nd~

where . = n(4) > 0 and n— 0(4 — o0); n 18 not necessarily the same at each

occurrence.
We have, in the range of the lemma,

n—2 n—2 Qen4
> (4] log <"T Amlog (1 + )
1 1

emA

z

n—2
<X A™{log4 + (n —m) A}
1
An1log 4 g v+ 2
<—a— T4 ELw

<n(4)- 4. (5.17)
Also, in the above range,

@® ® 2end
2 [A™] log < X A™log (1 + )
n+1 n+1

emA

2

@0
n+1

— 24" I (Ae-4)

y=1

<n(4)A4~ (5.18)

From (5.17) and (5.18) the right hand inequality of the lemma follows.
In the range of the lemma we also have, if €24 > 4,

n—2 eﬂA
> 2 [A™] log( — l)
1

>0, (5.19)

"5 [4™] log
1

2
1+ ma

and, if e4 > 4,
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2z

 [4™] log
n+1

> % Am log (1 —
n+1

2en4
emA

> 43 Amen-ma
n+41

= _..4Aﬂz‘(Ae——A)v

yam]
> —n(4)4, (5.20)
From (5.19) and (5. 20) the left hand inequality of the lemma follows.
en4
Lemma 11. For |z| = —5 and |z| = 2en4,
(3 —n)4r <log |{(2)] < (3 + ) 4n.

eﬂA
If |z] = 5~ we have
z 1 e4
[An-—l] 10g 1 -+ 'ém < A lOg 1 + ——é—)
< Ar1(log 2 + A)
< (1 + 7) 4An. (5.21)
eﬂA
Also for |z| = —5
[A"] log |1 + —;:—I < A7 log 3/2
< An. (5.22)
From (5.21) and (5.22) and Lemma 10, the right hand inequality of Lemma 11
A
follows for |z| = e’;
A
We have for |z| = %—— , if e4 >4,
An1 log |1 4 —° Ar1log (&5 —1
[4"1] log |1 + “EahA | = [4"~1] log 5

> (4Ar 1 —1) (4 —log 4)

> (1 —n)d~; (6.23)
and
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[4"] log .1 + e:A > — Anlog 2
> —3A4n, (5.24)
From (5.23) and (5.24) and Lemma 10, the left hand inequality of the Lemma 11
nA
follows for |z| = 3
The result for |z| = 2em4 follows in a similar manner to the above.
nA nAa
Lemma 12. If z satisfies |z + em4| > 2‘1— and 62 < |z| < 2em4 then
f'(2) An
f(z) S(4+77) e"‘A °
We have
fe) _2_[4m
f(2) 1 24 ema
en4
For |z| > 5 if e4 >4,
n—1 [Am] n—1 Am
l{: z+emA Szl: enA mA
—e
2
4 n—1
S end %’Am
- 44"
(A —1)en4
and for |z| < 2em4, if e4 > 4,
® [Am] ® Am
”{1 _z_+ emA S”‘El emd __9end
® Am
= 21&{1 emA
Anr © A
= 2 Y ::.’1 (Ae4)
n
<Nz - (5.26)

10 CMH vol. 40
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" . end
Finally, if |z + er4] > ¥ then
[4"] 4A”
|z + e“A} )

From (5.25), (5.26) and (5.27) the lemma follows.

(5.27)

eﬂA
Lemma 13. For —5 < |z] < 2en4,

wir h < K(4) 2"

provided A 1is sufficiently large.
When A4 is large enough we see from Lemma 11 that the set |f(z)| <1
splits into a number of components. Each zero e”4 is contained in a component

D,, say,

n

nA

tained in D, . From Lemma 10 it follows that in this disc,

log |f(z)| < [A" ] log |1 + m-m + [4"] log

1+—é—§—;l+nz‘1"

< An1llog (l + —2 eA) — (A" —1)log 4 + nA"

< 4n1 (log——g— + A) —(A™ —1)log4 4+ nAn
<0,

provided A is large enough, independently of n. Hence we arrive at the desired
conclusion.
From Lemma 12 and the above it follows that when 4 is large then on the

boundary of D,

el =58 < e

Therefore in D, and on its boundary,

e(f@) < (&) < (4 (5.28)

nAd .
In the annulus —e—2~ < |z| < 2¢m4 outside D, it follows that when A is large
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n
e (f) < 7) oA (5.29)
by Lemma 12.
2 end
< < r < 2em4 the lemma follows from (5.28) and
en r 2
(5.29).
. en+l) 4
Lemma 14. Forlarge A, if 2em4 < r < 5 then
K4
uer f) < AL
From Lemmas 11 and 12 it follows that
2f'(z)
<K@
Ter | <
eln+l)4
on the boundary of 2em4 < |z| < 5 Since the function on the left above
is subharmonic in the annulus it follows that the inequality holds throughout
the annulus. Hence the lemma follows because g (f(z)) < : ; (S)llz ;

5.3. Before completihg the proof of Theorem 7, we observe that the
constants K (A) appearing in Lemmas 13 and 14 remain bounded as 4 — .
From Lemmas 11, 13 and 14 it follows that

T ru(r,f) B,
DS Tog M(r, )

where B is an absolute constant for all f(z) for which 4 > 4,, 4, being some
fixed value.

We proceed to prove Theorem 7.

If 0<o< log 4, in Theorem 7 we take f(z) as above with 4 given

4,
by ¢ = loiA f 0> —1%%—*—41 we proceed as follows. Let A4, > A4, be
0
defined by 2 loiAl == 10:g4A0 Let »n be the smallest positive inte-
1 0
ger such that — < Jog 4 . Then, since n > 2, 7 _ > log 4, and so
n A, n—1 A,

2 n—1 logd, 1 log 4 rpperefore - log 4

p - 4, = y = A where 4, < 4 < A,.
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We now take, as a function for Theorem 7, F (z) = f(2") where f(2) is constructed
as in Lemma 9 with this value of 4. Then

_ ru(r,F) .. nrtu (r® f)
BSIP Tog M(r, F) — votuP Tog M (r, )
<nB
__log 4 n B-A
T A "7 logd
24,B
log 4, ?

Thus the theorem is proved for 0 < ¢ < oo.
It can be shown by the same methods as above that if K is large enough then

F(z) = ﬁ (1 + ze—Kn')n®
1

is a function of order 0 satisfying the conclusion of the theorem.
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