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The spherical derivative of intégral and

meromorphic fonctions

by J. Clunie and W. K. Hayman

1. Introduction

In a récent paper Lehto and Virtanen [2] introduced the spherical deri-
vative

e(/(!)) TJ£^
as a measure of the growth of f(z) near an isolated singularity. This point of
view was further pursued by Lehto [1]. If the singularity is taken to be at
z oo then Lehto obtained the following results.

Theorem À. Suppose that f(z) is meromorphic for R < \z\ < oo, and has an
essential singularity atz oo. Then

);>*. (1.2)
Z—> 00

Equcdity holds for functions of the form

f(z) n |ï-p|, (i.3)

where av is a séquence of complex numbers such that

av+l oo (v-> oo). (1»4)

Theorem B. // f(z) satisfies the hypothèses of Theorem A and in addition
f (z) is regular near z oo, then (1.2) can be reptaced by

limsup \z\ g(f(z)) =oo. (1.5)

Following Lehto, we dénote by h(r) a positive function such that
h{r) o(r) (r-> oo). The connection between g(f(z)) and Picard's Theorem is

strikingly brought out by the following resuit of Lehto [1].
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Theorem C. Let f(z) be meromorphic for R< \z\ < 00. // for a séquence
{zv}, lim zv 00 and

JAen Picard's Theorem holds for f(z) in the union of any infinité subsequence of the

dises

Cy={z:\z-zy\<ch(\zv\)} (1.7)
for each € > 0.

Conversely if there exist dises (1.7) such that Picard's Theorem is true in every
00

union \J Cvh for every c > 0 then (1.6) is satisfied. V. Gavrilov has pointed oui
* i

to us that the converse must be modified hère. (1.6) is satisfied for a séquence zv

instead of zv, where \zv — zv\ o {h (\zp\)}. This condition is also sufficient
for the existence of the disks (1.7)).

In particular it follows that if f(z) has an essential singularity at z 00 then
f(z) possesses a Julia direction provided that

Umsup|z|e(/(z)) oo. (1.8)
z —>¦ 00

From Theorem B we see that every transcendental intégral function possesses

a Julia direction. If (1.8) is not satisfied there is not, in gênerai, a Julia
direction as the examples (1.3) show if av > 0.

2. Some further results for meromorphic fonctions

Our aim in this paper is to obtain some extensions of Theorems A and B. We

may suppose without loss of generality that f(z) is meromorphic in the whole

plane. First we consider whether or not a restriction on the growth of / (z) as

defined by its order imposes any restriction on g(f(z)), or conversely. For
meromorphic fonctions no restriction on q (f (z)) is implied by a restriction on

the growth of the characteristic T(r, f). Consider, for instance,

n(l-z/an)

where Z \an\~\ Z \bn\-x converge. Since f(an) 0, f(bn) 00 it follows that

jg(f(z))\dz\ ;>*,
where the intégral is taken along the segment Fn joining an to bn. In particular
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for some point zn on Fn. By choosing an, bn close enough together we can make
the right hand side bigger than any preassigned fonction of | zn |.

On the other hand a resuit in the opposite direction is possible. It is convenient
to set (/)/(/) p

1*1-'
Suppose that for r > r0 we hâve

p(r,t)<Kr°. (2.1)

By Theorem A this is only possible when a > — 1 or when a — 1 and
K ^ \. In the usual notation of Nevanlinna Theory,

where

TE

r

0

Thusif o —1 in (2.1),

8{r, f) O(log r), ro(r, /) O(log2r). (2.2)

The examples (1.3) with av AV(A > 1) show that the order of magnitude in
(2.2) cannot be sharpened.

If (2.1) is satisfied with a > — 1 we obtain

8(r, f) O(i»+%), 5P0(r, /) 0(r2"+2). (2.3)

Hence a meromorphic function of proper order k > 0 cannot satisfy (2.1) for
k

any a < — — 1. The implication from (2.1) to (2.3) is sharp as our first theorem

shows.

Theorem 1. Suppose that 0 < A < oo and that

f(z) fias perfectly regidar growth of order 2/A and satisfies (2.1) with
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2vni

The function f(z) has pôles at the points z n*e n (v 0, 1,..., n — 1 ;

n ;> 1). The number of pôles in \z\ <> r is %p(p + 1) where p is the largest
integer such that p* <; r, i.e. p [r1/A]. Thus n(r, /), the number of pôles of
/(z) in z <,r, satisfies

and so

(2.5)

We now estimate |/(z)|. Assume that

(P — i)A ^ \z\ ^ (P + i)A> (2.6)

where p is a positive integer. A (X) dénotes a positive constant depending only
on A and is not necessarily the same at each occurrence. Let n be an integer
satisfying n > p and put n p -f v so that v ^ 1. We hâve, in the range (2.6),

»
\*» L (r-
; -»1 ^

Hence, when 2 lies in the range (2.6),

Z -
n-p-fl

(2.7)\ri i_e-<-i)*
When 1 < n < p and 2 lies in the range (2.6) then, if n p — v with v ^ 1,

(2.8)

Now

V ; T

and so if we choose k in (2.8) to be I
-y

I + 1 so that X k > 2, assuming that

[21
L^J

y I + 1, we find that in the range (2.6)
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p-l (_ \)nn\n
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n-x — zn «i nXn — zn

"y1 1 1
A(X).

From this and (2.7) we obtain

A (A) (2.9)

in the range (2.6) for p > k- -f 1 • It is easy to see that consequently (2.9)

holds in the range (2.6) for p ^ 1.

If \z\ t and (2.6) is satisfied then using (2.9) we see, in the notation of
Nbvanlinna Theory, that

From this and (2.5) we deduce that

T(r, f) m (r, f) + N(r, f) ~ A (f

2 A
so that /(z) is of perfectly regular growth, order -=- and type —

A 4c

It remains to be proved that f(z) satisfies (2.1) with a -^ 1.

We hâve
-l

where fp(z) is defined by the séries for f(z) with the pth term omitted. Now, by
the above, fp (z) is regular and bounded by A (X) in (p — 3/4)A ^ | z | ^(p + 3/4)A
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and each point in (p — 1/2)A <\z\ < (p + 1/2)A is the centre of a dise which

lies in the larger annulus with radius ~j Hence, from Cauchy's intégral,A

for

Therefore in the range (2.10),

pkp+izp-i

(2.10)

!/'(*)! A{k)\z\T

_ ZP AW\z\T

by (2.9). Consequently, in the range (2.10),

Since the ranges (2.10) cover ail the plane apart from a dise, the proof of the
theorem is complète.

3. Positive theorems for intégral fonctions

The remainder of the paper will be devoted to obtaining improvements of
Theorem B and to showing that thèse are best possible. We assume without
loss of generaHty that f(z) is an intégral function. It will also be assumed that
f(z) is always transcendental. In this section we state our positive theorems.

Theorem 2. // f(z) is an intégral function ofproper order a (0 <> a <, oo), then

oo logiif(r,/)
(3.D
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where Ao is an absolute constant. In particular

limsup r^r>f) =oo. (3.2)
r-x» logr v '

Inequality (3.2) sharpens (1.5) which is équivalent to

lim sup rfi(r, f) oo.
f —>• 00

Theorem 3. // f(z) is an intégral function satisfying (2.1) for ail large r with
1 < a < oo, then for large r

/)<-A^_r-+if (3.3)

where Ax 25 e log 2.
It follows from (1.5) that the restriction a > — 1 is necessary in Theorem 3.

The theorem shows that for intégral functions (2.1) implies that

This is significantly stronger than (2.3) which is the best possible resuit for
meromorphic functions by Theorem 1. Note that if f(z) is of perfectly regular
growth then Theorem 3 is a conséquence of Theorem 2.

As we shall see later, if f(z) is an intégral function such that the growth of
log M(r, f) is properly of the order of log2r in the sensé that

n logJf(r,/)0 < hm sup ——t—^-^- < oo^ logar

then no improvement of (3.2) is possible. On the other hand our next theorems
show that if log M(r, f) ^ 0(log2r) or log M(r,f) o(log2r) then we can

improve (3.2), the improvement depending on how large or how small — \ A
becomes respectively. However, there is no sharp différence in the behaviour of
ft(r, f) as we pass from one of the above classes of functions to another. By this
we mean that if <p (r) -> oo (r -> oo), then there is an / (z) from each of the above
classes such that

i. ** #(**/)hm sup
q> (r) logr

Before stating our next theorem we give an indication of how one arrives at
an improvement of (3.2) if log M(r9f) # 0(logKr) for K suitably large. If
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/*(r> /) < K—-— f°r large r then, from the inequality involving T0(r, /) and

(i(r, /) in § 2, it follows that

Hence if log M(r9 f) ^ O(log8r) we see that (3.2) can be improved to

hm sup T ; oo.r log2r

Our next resuit gives the improvement of (3.2) for functions f(z) such that
log M(r, f) # 0(log2r), but log M(r9 f) O(logV).

Theorem 4. // f(z) is an intégral function and <p{r) /* oo(r /* oo) and

lim^sup

where 2 <, oc < oo, éAew,

Um sup ïï?9l\ > 0. (3.5)

When ^x 2 in (3.4) then (3.5) is the improved form of (3.2). For functions

such that log M (r, /) ^ O (log3 r), log M (r, /) O (log6 r) take
(p(r) {log (r + 1)}1/2 and choose oc so that both conditions (3.4) are satisfied
and oc ;> 2 • 5. The improved form of (3.2) is then

To deal with functions such that log M(r, f) o(log2r) we hâve the fol-
lowing resuit.

Theorem 5. // q> (r) is irwreasing and f (z) is an intégrai function such that

log M(r,f)
<p(r)

then

(r-*oo) (3.6)

(3.7)
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4. Proofs of the positive theorems

4.1. We require a number of preliminary lemmas.

Lemma 1. Let f(z) aQ -\- at(z —zQ) + be regular in \z —zo\ <, ô

andsatisfy \f(z)\ > 1 there. Then

^L; (41)
and for \z — z^\ < r < ô

8—r d+r
|oo|â+ï <: |/(2)| ^ao»=-r. (4.2)

If further \f{zl)\ 1 for some zt with \zt —zo\ ô then for some z on the

segment joining z,, to z±

^ 20|o,|Iog2 • l3)

(4.1) and (4.2) are classical.
Suppose that

\f{z,+ âe")\ l (z1 zQ+ de").
If

|/(zo+ eet<p)\ < 2 (0<Q<ô) (4.4)
then \ao\ <,2 and

ôe>*)-f(zo)\ < J \f'(z0 + te")\dt
0

^ ô max |/'(«b + «e^)|.

If C Zo + tQei<p is a point where the maximum on the right is attained then,

and so

5,5

Hence the first inequality of (4.3) is true in this case.

If (4.4) is false let g be the largest number with 0 < g < ô such that
1/(380 + Qe^)\ 2. Take Ç Zo + ^e"1 to be a point for which |/'(z)| is
greatest when z % + <e""(e <, t <, ô). Then |/(C)| < 2 and so

If (01 ^ l/'(0l
1 -h |/(C)I* 5
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Also t
e")\ ^ J |/'(z0 + te»)\ dt

Purther, by (4.2) and the fact that |/(Zq + qei<p)\ 2, we hâve

|||| 2,
and hence

((S + g)log2 2<Hog2
e^ logK| ^ Iog|a0|

•

From the above it follows that

5((5 — g) ^ 10<5 log 2
#

This complètes the proof of the first inequality of (4.3). The second follows

immediately from (4.1).

Lemma 2. Suppose that f (z) is an intégral function such that for some rx > 0

min \f(z)\ 1, (4.5)
l*l-n

and that

\f(z)\>l(r1<\z\<3r1). (4.6)

Then for some r satisfying rt < r < 2rt we hâve

In particular if the conditions are satisfied for arbitrarily large rx then,

Let r0 2rx and let z0 roe**0 be such that

There is a ^ with \êx — &01 ^ jr such that
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Foreach £, with | f | r0, |/(z)| > 1 for \z — £| < ^ -~ and so (4.1) gives

I/'(OI

Thus

and so

1/(01 log |/(C)|

-jÇ log log |/(roe«)| <; 4

from which it follows that

log 1/(^)1 ^ e-*" log |/(roe<#»)| tr* log If (r0, /).

In the closed dise \z —roe**°| <. -£¦ we hâve \f(z)\ ^ 1 and, at the point
là

zi — fi^1 on the boundary, 1/(^)1 1. Consequently, by (4.3) with ô -^
there is a point f on the segment joining roeiûl to zx for whieh

6r0log2 5r0log2

VIf | f | f 9 then -~ ^ r ^ r0 and hence we deduce that

W*"^ 10rlog2
This proves Lemma 2.

The next lemma is required to cope with possible irregularities in the growth
oflog M(r,f).

Lemma 3. Suppose that <p(r)(r0 < r < oo) is continuons, positive and strictly
increasing toith a sectionally continuous locatty bounded derivative <p' (r). [At points
of discontinuity we define cp' (r) as the limit from the left.] Suppose that for positive

(4.9)

Then given oc1 (0 < a' < <x) there exist arbitrarily large r for which the following are
mtisfied:
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(4.10)

ç>(r) r '

(412)

We assume that <p' (r) is never zéro. This really involves no loss of generality.
First of ail we show that there are arbitrarily large values of r such that (4.11)
and

——^P (410)'

are satisfied. Now ^, is unbounded as r -> oo and so for arbitrarily large r

it must be locally nondecreasing. For such r,

9?(r) r
0

and so (4.11) is satisfied. If for ail large r, q> (r) > /?ra then we obtain the desired
resuit. Otherwise there are arbitrarily large values of r such that q?(r) < /?ra.

From (4.9) there is a smallest R>r such that <p(R) pR<*. But then ^~-
is nondecreasing at R and so /r>v > -=- as in the previous argument, and

p. Hence the resuit.

Now set h h(r) 2 -^\- and note that
9 v)

log V(r + h) - log ?(r) rJf £Mtdt^h max

Consequently if (4.12) is false for r r0 there is an rx such that ro<r1 < rQ + A (^o)

and
v1 (fi) *

2 y'fo)
Ç'('-i) A(»"o) Ç'('-o)

'

Suppose that r0, rx, rn hâve been defined in this way so that (4.12) is false

for r — rv (0 <, v <, n) and
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rp < rv+1 £ r, + 2 -Ï

Ç>(*Vn) <p(rv)

Then we can define rn+1 so that

w'(r ,-,) œ1 [rT \ n-X-Xf «^ Ç% T \ flf „.

If this process continued indefinitely then we should hâve

Z./1 \ ">o° (r-*°°)
and

Z(rn+l-rn)<L2
00 V Vn)

9 y(f°) r 2-»
V (r0) o

V'fro) '

Thus rw would tend to a finite limit and so ; n:—> oo. This contradiction
<p(rn)

shows that the construction of the rn must terminate after a finite number of
steps.

Take now as r0 a value such that (4.10)' and (4.11) are satisfied for r r0.
If (4.12) is not satisfied for r rQ then there is a séquence r0, rx, r# as

above such that it is not satisfied for r rn (0 <, n <; N — 1) but it is satisfied
for r m. Then for 0 <, n < N,

9(^+1) ^( 9

and so
N-l w(r\ N-l

0 9 VO) n=0 *

A 0

9CMHvol.40
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by (4.11). Hence if <xf is near enough to a,

rN<r.(\ +
Since (4.10)' holds for r r0,

<P(tn) > <p(r0) > ffi >Pr«N(l
Also

" v (p'(r*) oc' a1

<p(r0) rQ rN
*

Hence the proof of Lemma 3 is complète.

4.2. Proofs of Theorems 2 and 3 for a > 6.

Suppose now that f(z) is an intégral function of order a ;> 6. We apply
Lemma 3 with a > oc' > 5 to <p(r) log M(r, f) so that for some arbitrarily
large r, (4.10), (4.11) and (4.12) hold simultaneously. For such an r there
is a point Zq — re™ so that [see e.g.3, Lemma 2, p. 136.]

M(r,f),

It now follows from Lemma 1 that if ô ô (r) is the radius of the largest dise

with centre z0 in which \f(z)\> 1 then, by (4.1),

2
r

By (4.3) there is a point z with |z — zo| < ô(r) and

20rlog2 '

If |z| R, then jB < r + <5(r) and so, by (4.12),

<p(r + d(r)) <L <p (r + 2 -J^

10«5(r)log2

*>W (4
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Hence, since ako R> r — ô(r) > 3/5r,

' 20 (2i?) log 2

oc'e~* log M(R,f)
40R log 2

From R > — r it follows that as r -> oo then iî -> ex? and so we arrive at
5

log M(R,f)
since oc' can be taken as near to a as we please. This proves (3.1) and so
Theorem 2.

We next prove Theorem 3 for a ^ 5. Suppose in fact that (3.3) is false for
some arbitrarily large r where A1 is some positive constant. We may apply
Lemma 3 as before with oc a + 1, oc' a and any quantity f} such that

Then (4.13) yields for some z with \z\ R

Also

by (4.11). Therefore

Then (4.15) shows that

for arbitrarily large values of R. From (4.14) we see that

aAtK e~7 „
a + 1 20 log 2 '

and so

Ax <> °+ 1
20 e7 log 2 < 25 e7 log 2.

Consequently it is only for such Ax that the resuit of the theorem is false.
Hence it must be true with Ax 25 e7 log 2. This proves (3.3) for a ^ 5.
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4.3. Completion of prooî of Theorem 3

Suppose that the hypothèses of Theorem 3 hold with — 1 < o < 5. Let n
be a positive integer such that

n(a + 1) > 6 (4.16)

and consider F(z) f(zn). Then for ail large r we hâve

- r)

by (2.1). Hence F(z) satisfies (2.1) with Kn in place of K and n(a -f 1) — 1

in place of o. In view of (4.16) we can apply the previous resuit to F(z) and
obtain

As M (r, F) Jf (rw, /) this complètes the proof of Theorem 3.

4.4. Completion of proof of Theorem 2

We assume that f(z) is of order a < 6 and consider F(z) /(z12). Since, as

above,

and .F(z) is of order 12a it follows that if (3.1) holds for .F(z) then

and this is the resuit for f(z) if Ao is adjusted. Consequently it is sufficient for

a < 6 to prove the theorem for F (z).
Now for some constant A2 we hâve

logM(4r,F) ^A2\ogM(r,F) (4.17)

for arbitrarily large values of r. Otherwise for some r0 we find that

log M(4«r0, J1) > ^J log M (r0, J1) (n > 1)
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so that the order of F (z) is at least ° a This is impossible if A2 > 472 as

F(z) is of order less than 72. ®

We consider arbitrarily large r for which (4.17) is true. If for an infinité
séquence of such r, \f(z)\ > l(r < \z\ ^ 3r) then the resuit follows from Lem-
ma 2. Hence we assume always that for some jRinr<JB^3r there is a z on
| z | R where | / (2;) | < 1. From the periodic nature of F (z) we see that there
is a dise S(R) centred on J where |f| R, \F(Ç)\ M(R,F) such that
\F(z)\ >l in S(R), \F(z)\ 1 at some boundary point and the radius of

$ (J?) does not exceed —— By Lemma 1 it follows that
\2

for some t satisfying R —- < t < R + -—-, so that —- R < t < — R. If
t-» 1 i

A Z 1^ o o
^ < jR then we get

41ogJf(«,J)
log 2

If t> iî then, since jB <; 3r, < < 4r and so, using (4.17) we hâve

61og3f(<,

As t > f jR ^ f r it follows that one of the above inequalities must hold for
arbitrarily large t. Hence the proof of Theorem 2 is complète.

4.5. Proof of Theorem 4

For any function f(z) of order less than 1 with /(O) ^ 0 we hâve the well
known inequalities [see e.g. 4, p. 28]

J t
n(t) f n{t)dt + rj{m)

0 Orwhere n(t) is the number of zéros of f(z) in |z| < t. The restriction /(O) ^0
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clearly involves no loss of generality. From the second condition of (3.4) and
the left hand inequality of (4.18) it foliows that

n(r) 0(logar). (4.19)
From (4.19) we find that

00

f^ (4.20)

Hence for r such that log M(r, f) > r}<p(r) log*r, where rj is some positive
constant implied in the first condition of (3.4), we obtain, from (4.18) and

(4.20),

logM(rff) {l + o(l)} J ^p-
o

(4.21)

Assume now that we are dealing with values r of the above kind. By a known

resuit we hâve for some R in (-j-, — J, log \f(z)\ > H log M (R, f) (\z\ R)

where, hère and elsewhere, H dépends only on f(z) [5, pp. 64-65]. For suffi-
ciently large r let R' be the smallest number such that | / (z) | > 1 (R' < \ z | < R).

We deal with two cases : a) Rf > —- ; b) Rf < ~ for arbitrarily large values

of R'. It is clear that in fact Rf does take arbitrarily large values.

Case a). If |/(C)| 1(C Rrel<p) we consider the largest dise D centred
T T 5

on Rei9> in which \f(z)\ > 1. The radius of D is at most — — — — r and

T 5 T
so D lies in | z \ < — + tô r < r • -^y Lemma' 1> (4.3), for some t in — <t<rZ lZ Ï.Z
we hâve

From (4.18), (4.19) and (4.21) it follows that

logJf^,/)>iriogJf(f,/) -J^-dr + Oilog'r)
lltfl/lt

o(l))logM(r,f).
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Henceweseethat ï
^ a y(<)>H

for arbitrarily large values of t. This proves the theorem in this case.

Caseb). In this case \f(z)\ > l(R' < \z\ < 322') and |/(f)| l(f Re").
We see from the proof of Lemma 2 that

for some t satisfying R' < t < 2R1. Now from (4.19) and (4.21)

0 0 r/4

> Hcp{r) logar — H logar
and so

But [Rf, -~| is free from zéros and so
\ 4/

n(Rf)>H<p(r)log*-1r.
Hence, by (4.18),

2R'
logM(2R'9f) ^

1/(0)1

Therefore we find that in (4.22),

Since this holds for arbitrarily large values of t the theorem is proved in this
case.

4.6. Proof ol Theorem 5

From the left hand inequality of (4.18) we get
r*

n(r) log r ^ / -^- dt <> log M(r2, f)
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and so, since <p (r) is inereasing,

Using (4.23) we obtain
00

r
r

Hence if we put B(r) r\ 1/—, v, ^rt v where r\ > 0 and dépends on
\ (p(r)logM(r)

f(z), then, by aknownresuit [5, pp. 64-65], in r(l —p(r)) < \z\ < r(l + p(r))

log\f(z)\>HlogM(\z\,f)

outside a set of circles the sum of whose radii is at most Hrfp{r).
Consider now values of r such that f(z) has a zéro on | z\ — r. Let Zq reiû°

be such a zéro. Then from the above, if r is large enough, for some R satisfying
r — Hr(P(r) < B<r we hâve

log|/(tfe'*)|>£TlogJf (*,/)•

Let D be the dise with centre Re%ê° in which \f(z)\ > 1, assuming r is sufficiently
large, with \f(z)\ 1 somewhere on the boundary. Then, by Lemma 1 and
the above for some z in this dise

V
Now as P(r) -> 0 as r-> oo it follows that for large r9 — <R<r and so

R

l(t) dt

{1 + o(l)} {log M (r, /) + 0(log r)}
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where we hâve used (4.23), (4.24), (4.18) and the obvious resuit that
log r o(log M(r, /)). Hence, from (4.25),

ffy(r)logr jJogitf(»vOj2
rfr \ logr

rNow in (4.25), —- < \z\ < r for large r and so if \z\ t then for large r we
find that

^ i72^ \ logr

since <p(t) is increasing. As the final factor above tends to oo with r and the
inequality holds for some arbitrarily large t this proves Theorem 5.

5. Counter examples

The first theorem shows that (3.2) is best possible and that the properties of
/ (z) referred to in § 3 preceding Theorem 4 do in fact hold.

Theorem 6. Given y (r)f oo (r /* oo) there is a séquence of increasing integers
kn such that if

hn Q0/ 2 \kn/?(i)
then for g(z) f(z), ft(z) or ft(z)

r/j,(r,g)hm sup fv i < °° •

The séquence {kn} will be seen later to satisfy -~- > 4 and in this case
it is easy to verify that w

0< limsup }^MpA <oo>i0g M(ryfx) o(logar), log M(r,f2)

The next theorem shows that Theorem 2 is best possible
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Theorem 7. Qiven a(0 <^ a < oo) there is an intégral function of proper order
a and very regvlar growth when a > 0 such that

lim sup r*ff? f)u < C(a* logJf(r,/) v

for some absolute constant C.

5.1. Proof of Theorem 6

The proof of the theorem requires a number of lemmas. We assume that
besides any other conditions that the integers kn will be required to satisfy,
that they will always satisfy

%L^4(n>l),*1^2. (5.1)

We confine our attention to / (z). The proofs for ft (z) and /2 (z) are similar.

Lemma4. On \z\ 2*n+1 andtm \z\ 2*»"1,

\f(z)\>H\z\.
On \z\ 2*n+1 we hâve

From (5.1) each factor in the first product is at least 1 and so

M1)̂
|z| (5.2)

Also, from (5.1),
/ 2»+ \« «»

>H. (5.3)

From (5.2) and (5.3) the lemma follows for \z\ 2*n+1.

In dealing with \z\ 2kn"1 we assume for convenience that n> 1. This

clearly involves no loss of generality. On |«| 2kn~~1 we hâve

\*-i



The spherical derivative of intégral and meromorphic functions

By (5.1) each factor in the first product is at least 1 and so
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>H 22**"1

since kx ;> 2. As before

Hence on \z\ 2kn~1, by (5.4) and (5.5),

\f(z)\>H-2u*-1- 2"*"

H\z\.

(5.4)

Hence the lemma foliows for \z\ 2kn~1.

We see from Lemma 4 that when z is large the régions in which |/(z)| < 1

are disjoint, with one in each annulus 2kfi~l < \z\ < 2*n+1. Dénote thèse by
Dn. Clearly Dn contains the zéro at z 2kn.

Lemma 5. // the lcn increase sufficiently rapidly then on the boundary of Dn
when n is large

\z —2kn\ <H2kn~kl
We hâve

n-l
m-1

1 — 2*m

km / I z __ ;

2*»

Now on the boundary of Dn

n-ln 1 —
n-l

1 —
2*»»

(5.6)

When n is large then 2kn"1 < \ z\ < 2*n+1 by Lemma 4 and so, if the kn increase

sufficiently rapidly to ensure that the final product in (5.6) lies between ^and H, we obtain on the boundary of Dn

< 1 —
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Again, from Lemma 4, it follows that on boundary ofDn when n is large,

z00

h< n 1 —
*»

(5.8)

From (5.6), (5.7) and (5.8) we find that on the boundary of Dn when n is large

H • 2*»
-<*,»+... + *n-il>

(*!+...+*«-!)

From thèse inequalities the lemma follows provided the fcn increase sufficiently
rapidly to ensure that

^+••. + #-1 0(4,,) (n~>oo). (5.9)

Lemma 6. For large n we hâve in 2kn~1 < \z\ <, 2*n+1, butoutside Dni provided
that kn increases quickly enough,

We hâve

/'(*)
1W N

/'(g)

If the Jcn increase sufficiently rapidly then, for 2kn~l < \z\ < 2*n+1

n-l
E

n-l

2*» ' (5.10)

Also,
00

S
— 2*»|

00

00 h

^ m

2*» »_B+i ^^t

2*» * (5.11)
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From Lemma 5 it follows that if the kn increase rapidly enough then

K <H -=*

From (5.10), (5.11) and (5.12) the lemma follows.

(5.12)

Lemma 7. If the kn increase sufficiently rapidly then for 2*n+1 < \z\ ^ 2kn+1~1

we hâve

If the kn increase quickly enough then on \z\ 2*"+1 we obtain

l/'l
l/l!

H_< \z\

by Lemmas 4 and 6. The same inequality is also true for \z\ 2*B+l 1. Now
zf'(z) is subharmonic in 2*B+1 < Izl < 2*B+l J and since it is bounded

by H on the boundary it is bounded by H inside the annulus. Therefore in
2*n+l < |2| < 2*" + i-1

omtyï<\rm.-o(l \
Q \J \z)f <^ 1121~\ i — u \ TZT *

Lemma 8. /n 2*""1 < |z| < 2*n+1 we hâve

provided the kn increase quickly enough.
In 2kn~~1 <,\z\ < 2*w+1 but outside Dn it follows, if the kn increase quickly

enough, that

(5.13)

by Lemmas 4 and 6 and the use of subharmonicity as before. Hence the lemma
is true in this région.

On the boundary of Dn we get

(5.14)
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and so, by the maximum modulus principle, this also holds inside Dn. From
(5.13) and (5.14) the lemma follows.

Given q>(r) as in the theorem choose an increasing séquence of integers kn

so that the above results hold and also

Then from Lemmas 7 and 8 we see that

lim sup r?;\ < oo,
r-+ao (p(r)logr

since <p (r) is increasing.
This complètes the proof of the theorem. In should perhaps be pointed out

that given q> (r) where cp (r) -> oo (r -> oo) it is not difficult to find a ip (r) such that
y>(r)-> oo(r-> oo), ç?(r) ;> %p(r) and ip(r) is increasing. Consequently y(r) was
assumed to be increasing in the theorem only for convenience.

5.2. Proof of Theorem 7

A number of lemmas are required.

Lemma 9. If A > l and f(z) n II -\—^j 1 then f(z) is a function of

very regular growth and order —^—

For enA < \z\ ^ e(7l+1M we hâve

/) > 1°

^ (An — I)log2. (5.15)
Also, in this range,

log M(r, /) ^ log M{e{n+1)A, f)
n+l oo

^ Z Am log {1 + e{n+1-m)A} + Z Am log {1 + e(w+1-wM}

«4-1 oo

21 ^w{log 2 + (n + 1 — m)J.} + E
wi—l m—<n-f2

^ 1U^ + A"*1 Z -~- + A»*1 Z A»e-vA
A — 1 v.i Av v»!

<Z(^1)^. (5.16)

From (5.15) and (5.16) it follows that for enA <, \z\ <
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log M (r,f) K(A).A"^ r(logA)fA < £n

and so the resuit foliows.
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emA
then forLemma 10. // <pn(z) (Z + Z) [Am] log

nA i »+l

where rj rj(A)> 0 and rj-* 0(A -> oo); r\ is not necessarily the same ai each

occurrence.
We hâve, in the range of the lemma,

+
n-2
Z Am log 1 +

1

4 + (n— m)A}

Also, in the above range,

Z [Am] log
n + l omA n+l

00

«o8(i+4£

2 27 Ame{n~m)A

(5.17)

(Ae-A)v

(5.18)

From (5.17) and (5.18) the right hand inequality of the lemma follows.
In the range of the lemma we also hâve, if eiA ;> 4,

y[
1 pfnA

enA

2emA

and, if eA>à,
(5.19)
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00

n+1

J. Glunhs and W. K. Hàymàn

Z
+ emA

— ±Z Ame(n~m)A
w+1

(5.20)

From (5.19) and (5.20) the left hand inequality of the lemma follows.

PnA
Lemma 11. For \z\ —— and \z\ 2enA,

- tj) A» ^ log | /(*) | ^ (3 + V)A\
enAIf | z | —~ we hâve

n~l] log

A)

(5.21)

Also for \z\

[A»] log + onA
An log 3/2

(5.22)

From (5.21) and (5.22) and Lemma 10, the right hand inequality ofLemma 11

enA
follows for \z\ — —ç-

enA
We hâve for \z\ —— if eA > 4,

log 1 + e(n-l)A
[A»->] log {— - l)

(4»-1 — 1) (^ — log 4)

(5.23)
and



The spherical derivative of intégral and meromorphic functions

Z
[A"] log 1 + onA > — An log 2
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(5.24)

From (5.23) and (5.24) and Lemma 10, the left hand inequality of the Lemma 11

CnA
foliows for \z\ —^—

The resuit for \z\ 2enA foliows in a similar manner to the above.

andLemma 12. // z satisfies \ z + enA | > —-— ~™4 Ii

An

<, \z\ <. 2enA then

We hâve

For \z\

rj) onA

f'(z) »

pnA
if eA ^ 4,

n-l
T1

1 Z

if e^*

00

2:

_|_ emA

>4,

2 1 ofnA

n—1 Ay^

p TflA
2

A. n-l^ V Am"" e*A \
" (J. —l)en^

00 Aj^

(5.25)

An oo

An
(5.26)

10GMH vol.40
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Finally, if \z + enA\
onA

then

[A*] 4: A»
\z + enA\ ~ enA *

From (5.25), (5.26) and (5.27) the lemma follows.

(5.27)

t>nA

< \z\ <. 2enA,Lemma 13. For

provided A is sufficiently large.
When A is large enough we see from Lemma 11 that the set \f(z)\ < 1

splits into a number of components. Each zéro enA is contained in a component
enA

Dn, say, and Dn lies in —— < \z\ < 2enA.
enA

First of ail we show that when A is large the dise | z + enA \ <^ —j— is con~

tained in Dn. From Lemma 10 it follows that in this dise,

1 + n1 log 1 +

A*-1 log (l + ~ eA\

A»-* (log 1 +

enA

(An — I)log4 + r\An

—(A» — 1) log 4 + vA"

provided A is large enough, independently of n. Hence we arrive at the desired

conclusion.
From Lemma 12 and the above it follows that when A is large then on the

boundary of Dn,
/'(*)I/'<*)!

Therefore in Dn and on its boundary,

(4
An

(5.28)

enA
In the annulus ——- <.\z\ <,2enA outside Dn it follows that when A is large
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An

by Lemma 12.

"
r ^ 2

1 2 enA
Since —- < — for —— < r <, 2 enA the lemma follows from (5.28) and

(5.29).

e(n+l)A
Lemma 14. For large A, if 2enA < r < — then

[*(r,f)< V ;

r

From Lemmas 11 and 12 it follows that

zf'(z)
f(zf <K(A)

e(n+l)A
on the boundary of2enA<|z|< —. Since the function on the left above

is subharmonic in the annulus it follows that the inequality holds throughout

the annulus. Hence the lemma follows because g (/ (z)) <

5.3. Before completing the proof of Theorem 7, we observe that the
constants K(A) appearing in Lemmas 13 and 14 remain bounded as A -> oo.

From Lemmas 11, 13 and 14 it follows that

^ log M(r,f)
where B is an absolute constant for ail / (z) for which A > Ao, AQ being some
fixed value.

We proceed to prove Theorem 7.

If 0 < a < °^ ° in Theorem 7 we take f(z) as above with A given

by a —^— If a > -~—- we proceed as follows. Let Ax > AQ be
A Aq

defined by 2 —^—- -~—- Let n be the smallest positive inte-
A1 Aq

ger such that — ^ log/° Then, since n > 2, —^— > ^r^~ and so
n Ao n — 1 AQ

o n — 1 log Aq log Aq m, r a log A A A A~ ^ e_JL > i —50 xherefore — —~— where A1 ^ A ^ Ao.
n n AQ ~ 2 AQ n A
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We now take, as a function for Theorem l,F(z) f (zn) where / (z) is construeted
as in Lemma 9 with this value of A. Then

rnfj,(rnt f)
loëM(r,F)

<nB
\ogA BA

logA0
a

Thus the theorem is proved for 0 < a < oo.

It can be shown by the same methods as above that if K is large enough then

F(z) =11(1 + ze~KnYn
i

is a function of order 0 satisfying the conclusion of the theorem.
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