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On the Mod 2 Cohomology of Certain H-spaces

by EMERY TrHOMAS?), University of California (Berkeley)

1. Introduction. Let X be a topological space and G an abelian group.
We denote by Hi(X; G) the i-th (singular) cohomology group of X with
coefficients in G'. Define an integer-valued function vg¢ by

ve(X) = least positive integer » such that H*(X; @) # 0.

In case X is G-acyclic we set »¢(X) = 0. For simplicity we write the func-
tion as v, if G = Z,, the integers mod r, r > 2.

Suppose now that X is an H-space — that is, X has a continuous multipli-
cation with unit — and suppose (for the remainder of the paper) that X satis-
fies the following conditions.

(1) The integral cohomology groups of X are finitely generated in each

dimension.

(2) H*(X; Z,) is finitely generated as a vector space, and is primitively

generated as a Hopr algebra.
In [9] we showed that for such H-spaces, »,(X)= 2" — 1 for some r > 0.
The purpose of this note is to prove

Theorem 1. Let X be an H-space satisfying the above two conditions. Then
1,(X)=10,1,3,7 or 15.
Moreover if X has no 2-torsion, then
(X)) = v(X)=0,1,3 or 7,
where @ denotes the rational numbers.
Examples of H-spaces having these values of », are the various Lit groups
(for », = 0, 1, 3) and the sphere of dimension seven (for v, = 7). At present

no H-space is known for which », = 15, and it seems unlikely that this value
can occur.

The method of proof for Theorem 1 is based on the work of Apams [1], [2].
For related results in case X is a topological group, see CLARK [7].

I would like to thank W. BROWDER for arousing my interest in this problem
and for his helpful suggestions about its solution.

2. Truncated polynomial algebras. We work in the category of commu-
tative, associative, graded and connected algebras of finite type over Z,. For

1) This research was supported by the JoEN SiMoN GUuaGENHEIM Foundation and by the Air
Force Office of Scientific Research.
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such algebras A we identify 4, with Z, and denote the complement by A.
Following § 1 we define »(A4) to be the least positive integer n such that
A, #0.
Define
D'A=A, DPA=D14-4 (n>2).

We call D24 the ideal of decomposable elements, and if an element a ¢ D24
we call it indecomposable.

We will say that A4 is a truncated polynomial algebra of height n (for n > 2)
if A~A'|D*"A’, where A’ is a polynominal algebra. We call A finite-
dimensional if it is so as a mod 2 vector space.

We now assume that 4 is a finite-dimensional truncated polynomial algebra
of height three, and furthermore that A is an algebra over the mod 2 STEEN-
ROD algebra, 7. Such algebras were studied in [9], and we record here the
results needed from that paper.

Let aeA be an indecomposable element and suppose that deg a =
2rtlk + 2, where r,k > 1. Then (see (2.1) and (3.3) of [9]):

(2.1) There is an tndecomposable element o' of degree 2r+'k such that

o= Sq? (¢') mod D24 .

(2.2)Sq¥ (@) = X 7_, Sq** (d,), where d, e D*A. In particular, if (D*A), =
=0, for | =2k +1)— 20 <i<r), then 8q (a) = 0.
Here Sq¢ denotes the (mod 2) STEENROD operator. It follows from (2.1) that

(2.3) v(4) = 27, for some r > 0.

Let M = 2¢, for some 8 > 2, and let a e Ay 7, where 0 <r <sg — 2.
Since A isan Z-algebra, a® = SqM+¥ (a). By the ADEM relations [3]

SqM+¥" = Sq¥""" SqM+ + 8qM 8q”,

and since r < s — 2, M — 2" = 2r+le + 2" for some e > 1. Therefore by
(4.2) of [9],
Squ-*" = 7, Sq* «,,

where «, ¢ 27, and consequently
(2.4) a* = 8q¥" [Z 1oy 8% w(a)] + Sq¥Sq¥ ().

For the remainder of the section we assume that A, = 0 ¢f ¢ is odd. We use
(2.4) to prove
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(2. 5) Lemma. Suppose that v(A) = 29, where q > 3. Then A, =0, for
20 <8< 204291, Moreoveriqu2q—1 A, ,=0,then A, = 0, for 29 <t < 20+,

Notice that the second assertion follows at once from 2.1 and the first asser-
tion. By 2.1 (and the above hypothesis) it suffices to prove the first assertion
just for the case & = 2?4 2", where 1 <r <gq — 2. By the definition of
v(4) we have (D?A4); =0 for j <29, Let aed be on element of degree
2¢ + 2r. Thus a is indecomposable and hence if a2 = 0, then a = 0, since
A is a truncated polynomial algebra of height three. Set M = 2¢ in 2.4. Then

deg o;(a) =29 — 28 (0<i<r<gq-—2)
and hence each element «,(a) is also indecomposable. Therefore by 2.2,
8q? (@) =0, 8q* a;(@) = 0 (0 <7 <)

and hence by (2.4) a? = 0, showing that 4 a0 4or — 0 88 asserted.
In § 4 we use (2.5) to show that »,(X) <15, if X is an H-space satisfying

the two conditions in § 1.
For the remainder of the section let 4 denote a fixed finite-dimensional

truncated polynomial algebra of height 3, which is an algebra over 27, such
that »(4) = 16. Then by (2.5), Ags; =0 for 1 <7 < 3. We show

(2.6) Lemma. (i) 8q* 4y = 0, for i =1, 3.
(i) Sq* Ay = 0, for j =2,3;
(ili) Sq2f 4 = 0, for k=1,2,3.

Set D = D?A. Notice that (2.2) implies at once that
quAM = Sq4A28 - quAgo == O ,

since D, =0 for j < 32. Thus to complete the proof of (2.6) (i) we must
show that Sq%(a) = 0, for aeAd,. Setting b = Sq%(a), we have b =
= Sq2¢(b). By the ADEM relations [3],

Sq2¢ = 8q* Sq%8Sq* + «, Sq! + «, Sq?,

where «,, a3 € 7. Moreover Sq2Sq? = Sq®8Sq! and Sq'=0 in A4 since the
odd-dimensional elements of A are zero. Therefore

b* = Sq*Sq?Sq?(b) .
Since deg Sq*(b) = 46, it follows from (2.1) that
Sq*(b) = 8q*(c) + d,
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where ced, and deD,. Moreover by 2.5 D, = A, 4y, and by the
CarTAN product formula, Sq2(4,e - Ag) = 0. Hence
b* = Sq*Sq%[Sq2(c) +d] =0,

which shows that b = 0, thus proving (2.6) (i). The remaining cases in (2. 6)
are proved similarly (using (2.1) and (2.5)) and are left to the reader.
We set

0 0
Dt+=2X A,-A4,,D; = X A, -A;,D-= X Dy,
1=1 o<i <) N
t+j=n
which are well-defined subspaces of A4 since A4 is a truncated polynomial
algebra of height three. Moreover, as a mod 2 vector space

D =D+® D,
a splitting we use to show

(2.7) Lemma. A5 ,,, =0, for 1 <14 <3.

Since Dy, = 0 for 1 <j <3, it suffices (by (2.1)) to show that A =
= Agg = 0, and to do this it suffices to show that if a € A3 o (r = 1, 2), then
a* = 0. Now by (2.2), Sq¥ (a) = 0, and therefore by (2.4) (taking M = 32
and r =1 or 2),

a? = 8q¥ " [ 2,7, 8q* o,(a)] .
Now deg «;(a) = 64 — 2¢ and hence by (2.2),

i i
Sq? ;@) = X Sq¥'(d),
j=1
where d;e Dy 5, (1 <7 <i<r <2). But
DM—zJ = Ay5° A4s-2; + Ay Am-z; + Ay - Aso-—z; + Ag A34—21 ’

and hence by the CARTAN product formula and (2.6),

8q¥™" 8q¥ (Dgy_o) < D~

Since a? e D+ and since D+ N D— = 0, this shows that a? = 0, completing
the proof of the lemma.

3. The operations of ApaMs. The proof of Theorem 1 will require the secon-
dary cohomology operations of J.F.Apawms, defined in [1]. These are functions
®@,, defined for each pair of integers, ¢, j suchthat 0 <¢ <j and ¢ #%j — 1.
We will use the following properties of these operations (see [1; §§ 3, 4.2]).

(3.1) Let X be a space. The operation D, is defined on cohomology classes
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ue H*(X) (mod 2 coefficients) such that Sq* () =0 for 0 <r <j. If
u e H"(X) (m > 0), then @D, (u) is an element of the group Hm+*+2'-1(X),
modulo an indeterminancy subgroup Q. (X). Moreover, if 1 <<j, then

Qy(X) = Sq¥ H»*'1(X) + ¥ b, Hne'1(X),

0<I<j
where b, e A and deg b, = 2¢ + 21 — 2L,
Take an integer £ > 3 and suppose that » ¢ H™(X) (m > 0) is a class such
that 8q? (u) = 0, for 0 <7 < k. ADAMS’ main resultis ([1; 4.6.1]):

(3.2) Theorem (Apawms). There is a relation
Zay @y(u) = [8q* " @],

(independent of X) which holds modulo the total indeterminancy of the left-hand

side.

Here the summation is taken over all #,5 such that 0 <¢ <j <k and
t #j — 1. We apply this in the next section to prove Theorem 1, using in
fact the following simple consequence of (3.2).

(3.3) Let X be a space and let m, k be positive integers with k > 3. Suppose
that H¥-1(X)=0 for m<j<m-+ 2 and that Sq* H™X) =0 for
0 < i < k. Then for any element u ¢ H*(X),

quk“(u) = Zzggk a; Dy;(u) ,

with zero indeterminancy, where the elements a; e 4.
This follows at once from 3.1 and 3.2.

4. Proof of Theorem 1. The relation between the work of § 2 and the proof
of Theorem 1 is given by the projective plane, P,X, for an H-space X. This
was defined by STASHEFF [8] and the cohomology of P,X is studied in [6],
where a group homomorphism : is defined with .: H*(P,X)—> H?(X).
(For the remainder of the paper we use mod 2 coefficients.) ¢ is an 2Z-homo-
morphism and the image of ¢ is the subspace of H*(X) spanned by the pri-
mitive classes. Moreover if »,(X) = 2d — 1, then (see [6; 3.1]).

(4.1) ¢ 18 a monomorphism for q < 4d — 2 and 18 an epimorphism for
g <4d — 3.

Denote by P- the subspace of H*(X) spanned by the odd-dimensional
primitive classes. Let {u;} be a basis for P- and choose classes {a;} in
H*(P,X) so that ta; = u;. Define A to be the subalgebra of H*(P,X)
generated by {a;}. The following result is proved in [6].
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(4.2) The algebra A s a truncated polynomial algebra of height three. Moreover
there is an ideal N in H*(P,X) such that

H*(P,X) = A @ N, (group direct sum)

and A4, (N) ¢ N, where 4, denotes the subalgebra of 4 generated by the squares
of even degree. Furthermore if v,(X) = 2d — 1, then

H%(P,X) = A4,,, for 1 <i<2d.
Thus if we set
A' = H*(P,X)/N ,

we obtain a finite-dimensional truncated polynomial algebra of height three,
which is an 7 -algebra. Moreover

(4.3) Ay, ~ HY (P, X)), for 1 <i<2d,

and the isomorphism is an “Z,-map. Let £ denote the ideal of “7 generated
by Sq!. Then 7 = B P 4, as a Z,-module. Since the elements of 4’ all
have even degree we can make A’ into an Z-algebra by setting <Z(4’) = 0.
Furthermore, »(4’) = 2d.

We use these facts to show

(4. 4) Lemma. Suppose that v,(X) = 2d — 1, where d is an even integer
> 4. Then
Haw(P,X) =0, for 0<s<d.

Furthermore if SQ2H%*3(P,X) = 0, then
H¥+(P,X) =0, for 0<t<2d.

The proof uses the following result of W. BRowDER [5].

(4. 5) Theorem (BrROWDER). Let X be an H-space as wn § 1 and let
v e H2(X) (@ > 1) be a primitive class. Then there is a class u ¢ H**1(X)
such that v = Sq*(u).

Clearly if ¢ <#,(X), then the class u is itself primitive.

Proof of (4. 4). It follows from (4.1) and (4.5) that
H2a(P,X) = SqtH%(P,X) .
Let u e H*(P,X) and set v = Sq'(x). Then,
12 = Sq2+(v) = Sq*+ Sq'(u) .
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By the ApEmMm relations [3], since d is even,

Sq2d+1 —_ qu qud—l o qud Sql
and therefore,
2 = Sq? 8q%-1(v) = Sq? Sq* Sq-2(v) ,

using the fact that Sq!Sq! = 0 and that Sq!Sq2?¢-2 = Sq2¢-1., Let w =
= S8q%¥-2(v). Then ((w) is a primitive class of degree 4d — 2. Hence by
(4.5) there is a primitive class y ¢ H%-3(X) such that Sq!(y) = «(w), and
therefore by (4.1) there is a class z ¢ H*-2(P,X) such that Sql(z) = w.
Hence v? = 8q28q! Sql(z) = 0.
But by Theorem 1.1 of [6], v® = 0 implies that » = 0, and hence
H2+1(P,X) = 0.

As remarked above we have already proved that »,(X) = 2? — 1 for some
g > 0 [9]. Thus in the present situation we can assume that d = 291 with
g > 3. Therefore by 4.3 and 2.5 applied to the algebra A’,

Hza+% (sz) - A;d+2i =0,

for 0 <4< d/2, and also for d/2 <17 <d if Sq¢ H?*¢(P,X) = 0. Therefore
by 4.5 and 4.1,
H*%+#(P,X) = 0

for 0 <t<d, and also for d <t< 2d if Sq?¢ H*(P,X) = 0, which com-
pletes the proof of the lemma.

We now can prove the first part of Theorem 1. Suppose that X is an
H-space such that »,(X) = 2? — 1, where ¢ > 5. We show that this leads
to a contradiction.

Let k& denote the least positive integer such that qukH H¥(P,X) # 0.
By (4.4), k >q — 2 and hence kt > 3. Let ue H2?(P,X) be a class such

that quk“(u) # 0. Since
Sq¥(u) = w? #£ 0,

we see that k =¢ — 1 or ¢ — 2. From (4.4) and (3.3) (taking 2m = 2¢
in (3.3)) it follows that

Sq** ! () = Zp_jy ay Py (u) .

But deg Dy, (u) = 2?4 27, where 2 <j <k, and therefore by (4.4) and

the definition of the integer k, @y (u) = 0. Hence quk+1 () = 0, which is
a contradiction. Therefore ¢ < 4, which proves the first assertion in Theorem 1.
Suppose now that X is an H-space with no 2-torsion. We complete the proof
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of Theorem 1 by showing that ¢ <3 (i.e., that »(X)=0,1,3 or 7).
Since X has no 2-torsion it is immediate that »,(X) = vo(X).

By BoreL [4; Prop. 7.2] H*(X) is generated by odd-dimensional primitive
generators, since X is without 2-torsion. From this it follows (see [9]) that the
ideal N given in 4.2 is an “#“submodule of H*(P,X); and moreover, that
if »,(X)=2d — 1, then

(4.6) H¥1(P,X) =0,1<j<3d —1; H(P,X)=Ad,, 0<k<6d — 2,
where A is the algebra given in 4.2.

Suppose now that X is an H-space without 2-torsion such that »,(X) = 15.
We show that this leads to a contradiction. For this X, (4.6) implies

(4.7) H¥Y(P,X)=0, 1 <j<23; A, ~H¥P,X), 0 <k <46,
where, as before, A’ = H*(P,X)/N. Since N is an “Z-submodule, the above
isomorphism is an Zmap. Applying (2.6) and (2.7) to A’ we obtain the
following facts.

(4.8) Sq?' H#(P,X) =0 for i =0,1,3.

Sq? H®(P,X) =0 for j=0,2,3.
Sq?* H®(P,X) =0 for k=0,1,2, 3.
(4.9) H2+21(P,X) =0 for 1 <j<3.
We now obtain the contradiction, caused by assuming that »,(X) = 15.

First of all it follows from (3.3), (4.7), (4.8) and (4.9), that Sq® H®(P,X) = 0.
But by the ApEm relations and (4.8) this shows that Sq32® H*(P,X) = 0.

Thus if u ¢ H®(P,X), w? = Sq®(u) = 0,
and therefore v = 0, showing that H3*(P,X) = 0. Now

H»(P,X) = Sq? H*(P,X)
(see (2.1) and (4.7)) and hence by (4.8), Sq2iH28(P2X) =0 for 0 <j <3.
Let v e H®¥(P,X). By the ApEM relations

Sq* = Sq'* 8q'¢ + z 8. Sq*,

where B; ¢ 4, and therefore =

v® = 85q%(v) = Sq'2 Sq¢(v) .

Hence by 3.3,
¥? = 89" @, (D2 (v)) ,

since H3¢(P,X)= 0. Now deg a, = 12 and therefore by the ADEM relations

2
Sq%a, = 2 o quj (g€ A).
j=0
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Since @D, (v) e H2(P,X), this shows by (4.9) that v> = 0. Thus » = 0 and
hence H*®(P,X) = 0.

Since H2(P,X) = Sq*H*(P,X) we obtain by (4.8) that Sq* H*(P,X) =0
for 0 <17 < 3. The fact that H%#(P,X) = 0 now follows by a similar ar-
gument to that used above. One must use (4.33) of [1], setting £ = 3 in that
lemma. We leave the details to the reader.

Finally, since H#(P,X) = 0 we see by (2.5) (taking ¢ = 4) and (4.7)
that H$+(P,X) = 0 for 0 <j< 16. Hence by (3.3), Sq®H*¢(P,X) =0,
which implies that H$(P,X) = 0. But this is a contradiction, since
v,(X) = 15. Hence, assuming that ¢ = 4 has led to a contradiction, and
therefore ¢ < 3 — thatis, »,(X) = 0,1, 3, or 7, completing the proof of the
theorem.
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