Zeitschrift: Commentarii Mathematici Helvetici

Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 15 (1942-1943)

Artikel: A proposito d'un teorema di Hartogs.

Autor: Severi, Francesco di

DOI: https://doi.org/10.5169/seals-14897

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 02.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

A proposito d'un teorema di Hartogs

Di Francesco Severi, Roma

Il teorema cui alludo è quello, classico, che afferma la prolungabilità olomorfa d'una funzione analitica di due variabili all'interno d'un dominio a quattro dimensioni contornato da una varietà chiusa irriducibile a tre dimensioni, allorchè la funzione è olomorfa sul contorno.

La Nota di E. Martinelli (pubblicata in questo stesso fascicolo) contenente due diverse dimostrazioni del teorema di Hartogs esteso ad n variabili, mi dà l'occasione di sottolineare una circostanza, che sembra sia sfuggita¹), circa un modo semplicissimo di pervenire al suddetto teorema esteso, quale risulta da una mia Nota del 1932²) ed a cui avevo pure accennato nel 1931, dando la soluzione generale del problema di Dirichlet per le funzioni biarmoniche³). Ecco, in breve, di che cosa si tratta.

1. Nella Nota del 1932 dimostrai, in poche righe, che una funzione analitica della variabile reale x_1 e della variabile complessa $z_2 = x_2 + iy_2$, $f(x_1, z_2)$, la quale sia olomorfa sopra una superficie chiusa irriducibile Γ , contornante un dominio R dello spazio S_3 (x_1, x_2, y_2) , è prolungabile olomorficamente all'interno⁴).

Il teorema si estende con processo ricorrente prima alle funzioni analitiche di n-1 variabili reali e di una variabile complessa e poi alle funzioni analitiche di q variabili reali e di n-q variabili complesse⁵). P. es. per estenderlo ad una $f(x_1, x_2, z_3)$, ove x_1, x_2 sieno variabili reali e z_3 variabile complessa, si profitta dello stesso tipo di ragionamento della mia Nota del 1932, tenuto conto che la traccia di $f(x_1, x_2, z_3)$ sull'iperpiano variabile I, di equazione $x_2 = \bar{x}_2$, attraversante il dominio R dello

¹⁾ Cfr. la recensione di H. Behnke per un lavoro di R. Fueter nello "Jahrbuch", Band 65, 1941, pag. 363.

²) Rendiconti della R. Acc. dei Lincei, vol. XV₆, aprile 1932, p. 487.

⁸⁾ Rendiconti della R. Acc. dei Lincei, vol. XIII₈, giugno 1931, p. 795. A pag. 804 trovasi l'accenno al teorema esteso alle funzioni di più variabili.

⁴) Il ragionamento è valido quando Γ è tagliata secondo una linea chiusa irriducibile (in particolare in un punto) dai piani $x_1 = \cos t$, che la segano; e la conclusione si trasporta senz'altro ad un dominio che possa suddividersi in un numero finito di dominii, i cui contorni sieno del tipo suddetto. Un'avvertenza simile sarà in seguito sottintesa, nei casi analoghi.

⁵⁾ Quest'estensione enunciata, nell'ordine di idee reso qui più esplicito, a pag. 804 della mia Nota del 1931, trovasi dimostrata in A. B. Brown, Duke math. Journal, 2 (1936). È un lavoro di cui ho appreso l'esistenza attraverso la recensione dello "Jahrbuch" e del "Zentralblatt", ma che non ho potuto vedere.

 $S_4(x_1, x_2, x_3, y_3)$, $(z_3 = x_3 + iy_3)$, circondato da Γ , individua in (Γ, I) , sezione di Γ con I, una funzione olomorfa $\varphi(x_1, \overline{x}_2, z_3)$, la quale è dunque olomorficamente prolungabile in (R, I). Per estenderlo poi ad una $f(x_1, z_2, z_3)$, $(z_2 = x_2 + iy_2, z_3 = x_3 + iy_3)$, si considera la traccia di f sullo S_3 di equazione $z_3 = \overline{z}_3$.

2. Nella Nota del 1932 (pag. 488) affermai che il teorema di Hartogs è facile conseguenza del precedente. Se R è un dominio dello S_4 euclideo (x_1, y_1, x_2, y_2) , $(z_1 = x_1 + iy_1, z_2 = x_2 + iy_2)$, contornato da una varietà chiusa irriducibile Γ , a tre dimensioni, ed $f(z_1, z_2)$ è olomorfa in Γ , mi limitai ad avvertire che, per dimostrar la prolungabilità olomorfa di $f(z_1, z_2)$ entro R, bastava applicar il teorema del n. 1 alle sezioni di R cogli iperpiani $y_1 = \cos t$. passanti pei punti interni ad R.

L'argomentazione è chiara a chiunque abbia presente il concetto del metodo di passaggio dal reale al complesso, da me delineato nella Nota del 1931. Precisamente:

Se una serie di potenze delle variabili reali x_1, \ldots, x_q e delle variabili complesse z_{q+1}, \ldots, z_n ($z_j = x_j + iy_j, j = q+1, \ldots, n$, potendo anche essere q = n), converge assolutamente attorno ad $O(x_1 = \cdots = x_q = z_{q+1} = \cdots = z_n = 0)$, nello S_{2n-q} euclideo ($x_1, \ldots, x_q; x_{q+1}, y_{q+1}, \ldots, x_n, y_n$), essa è pure assolutamente convergente attorno ad O nello S_{2n} euclideo ($x_1, y_1, \ldots, x_n, y_n$), ($z_j = x_j + iy_j, j = 1, \ldots, n$). La dimostrazione è ovvia.

Ciò posto, se (ritornando al teorema di Hartogs per n=2) è (z_1^0,z_2^0) , $(z_1^0=x_1^0+iy_1^0,z_2^0=x_2^0+iy_2^0)$, un punto interno ad R nell'iperpiano I, di equazione $y_1=y_1^0$, la traccia $f(x_1+iy_1^0,z_2)$ di $f(z_1,z_2)$ su I, è una funzione $\varphi(x_1,z_2)$, olomorfa sul contorno (Γ,I) del dominio (R,I), epperò olomorficamente prolungabile, come funzione di x_1,z_2 , anche all'interno di (R,I). Passando dal reale al complesso, $\varphi(x_1,z_2)$ è dunque traccia su I d'una funzione di z_1,z_2 olomorfa in tutto l'intorno 4-dimensionale di (R,I); e siccome la funzione coincide con $f(z_1,z_2)$ in (Γ,I) , essa coincide dovunque con $f(z_1,z_2)^6$). In conclusione $f(z_1,z_2)$ è olomorficamente prolungabile all'interno di R.

L'estensione ad n variabili può esser similmente poggiata sul teorema relativo ad una funzione di 1 variabile reale e di n — 1 variabili complesse.

⁶) Qui si applica il noto principio d'identità di due funzioni olomorfe. Se due funzioni di z_1 , z_2 son distinte in un comune dominio d'olomorfismo, la loro differenza s'annulla soltanto sopra una superficie caratteristica. Ora la superficie (Γ , I) non può esser caratteristica, perché è chiusa al finito.

3. A prescinder da quanto precede, si può osservare che il teorema di Hartogs per funzioni di n variabili è facile conseguenza del teorema originario per n=2 e dell'altro fondamentale teorema di Hartogs, secondo cui è olomorfa rispetto all'insieme di n variabili complesse ogni funzione che sia olomorfa rispetto alle singole variabili. Limitiamoci, per rapidità d'esposizione, ad n=3. La $f(z_1,z_2,z_3)$ sia olomorfa sul contorno (irriducibile, chiuso) Γ di un dominio 6-dimensionale R dello spazio S_6 $(x_1,y_1,x_2,y_2,x_3,y_3)$ $(z_j=x_j+iy_j,j=1,2,3)$ ed $O(z_1^0,z_2^0,z_3^0)$ sia un punto qualunque interno ad R.

Sopra un S_4 caratteristico passante per O, diciamolo S, rappresentato da un'equazione lineare fra z_1, z_2, z_3 , la data f subordina una funzione di due variabili complesse olomorfa in (Γ, S) , epperò olomorficamente prolungabile in (R, S). Il valore in O della funzione così definita è indipendente dallo S_4 considerato, perchè due S_4 caratteristici per O si taglian secondo un piano caratteristico passante pel punto stesso e le funzioni olomorfe d'una variabile subordinate su questo piano dalle funzioni inerenti ai due S_4 caratteristici, coincidono, in quanto assumon gli stessi valori sul contorno del dominio intersezione di R con quel piano.

Resta pertanto individuato in ogni punto di R un valor finito e quindi una funzione univoca del punto di R, coincidente in Γ con $f(z_1, z_2, z_3)$. La funzione costruita, essendo olomorfa in ciascun piano caratteristico traversante R (in quanto quel piano può considerarsi come intersezione di due S_4 caratteristici), risulta olomorfa rispetto a ciascuna delle variabili, una volta fissate le altre due; epperò essa è olomorfa rispetto al complesso delle tre variabili.

Si ha così un teorema di Hartogs relativo ad un dominio 2n-dimensionale avente un grado di generalità determinato dal grado di generalità del dominio 4-dimensionale cui riferiscesi l'ordinario teorema di Hartogs.

(Reçu le 5 janvier 1943.)