Objekttyp:	Miscellaneous
Zeitschrift:	Bulletin technique de la Suisse romande
Band (Jahr):	67 (1941)
Heft 13	

16.05.2024

Nutzungsbedingungen

PDF erstellt am:

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern. Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.

Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

Ein Dienst der *ETH-Bibliothek* ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

BULLETIN TECHNIQUE

DE LA SUISSE ROMANDE

ABONNEMENTS:

Suisse: 1 an, 13.50 francs Etranger: 16 francs

Pour sociétaires :

Suisse: 1 an, 11 francs Etranger: 13.50 francs

Prix du numéro : 75 centimes.

Pour les abonnements s'adresser à la librairie F. Rouge & C^{1e}, à Lausanne. Paraissant tous les 15 jours

Organe de la Société suisse des ingénieurs et des architectes, des Sociétés vaudoise et genevoise des ingénieurs et des architectes, de l'Association des anciens élèves de l'Ecole d'ingénieurs de l'Université de Lausanne et des Groupes romands des anciens élèves de l'Ecole polytechnique fédérale. —

COMITÉ DE PATRONAGE. — Président: R. Neeser, ingénieur, à Genève; Vice-président: M. Imer à Genève; secrétaire: J. Calame, ingénieur, à Genève. Membres: Fribourg: MM. L. Hertling, architecte; A. Rossier, ingénieur; Vaud: MM. F. Chenaux, ingénieur; E. Elskes, ingénieur; Epitaux, architecte; E. Jost, architecte; A. Paris, ingénieur; Ch. Thévenaz, architecte; Genève: MM. L. Archinard, ingénieur; E. Odier, architecte; Ch. Weibel, architecte; Neuchâtel: MM. J. Béguin, architecte; R. Guye, ingénieur; A. Méan, ingénieur; Valais: M. J. Dubuis, ingénieur; A. De Kalbermatten, architecte.

RÉDACTION: D. BONNARD, ingénieur, Case postale Chauderon 475, LAUSANNE.

Publicité : TARIF DES ANNONCES

Le millimètre (larg. 47 mm.) 20 cts. Tarif spécial pour fractions de pages.

Rabais pour annonces répétées.

ANNONCES-SUISSES s. A.
5, Rue Centrale,
LAUSANNE
& Succursales.

CONSEIL D'ADMINISTRATION DE LA SOCIÉTÉ ANONYME DU BULLETIN TECHNIQUE A. STUCKY, ingénieur, président; M. Bridel; G. Epitaux, architecte; M. Imer.

SOMMAIRE: Théorie de l'équilibre des corps élasto-plastiques, par M. Gustave Colonnetti, professeur à l'Ecole polytechnique de Turin.

— Société suisse des ingénieurs et des architectes: Extrait des procès-verbaux des séances du Comité central. — L'organisation et l'activité d'une grande entreprise de construction mécanique. — Nécrologie: George Rochat, ingénieur-chimiste. — Bibliographie. — Carnet des concours. — Service de placement.

Théorie de l'équilibre des corps élasto-plastiques ¹

par M. Gustave COLONNETTI.

Membre de l'Académie Pontificale des Sciences,
Professeur à l'Ecole Polytechnique de Turin.

I. Introduction.

La théorie classique de l'élasticité ne suffit plus aux exigences de la technique moderne.

Cette théorie est en effet fondée sur l'hypothèse que les efforts se maintiennent partout et toujours au-dessous de la limite d'élasticité des matériaux.

Or, le dépassement de cette limite se vérifie dans la pratique bien plus fréquemment qu'on ne le suppose, et cela même dans les constructions les plus rigoureusement et les plus prudemment calculées.

Ce dépassement se manifeste par l'apparition de déformations permanentes, c'est-à-dire de déformations qui ne disparaissent plus, même lorsque disparaissent les forces extérieures qui les ont déterminées.

Il entraîne deux conséquences très importantes, dont il faut absolument se préoccuper. Ce sont : en premier lieu, une modification permanente de la valeur de la limite d'élasticité, modification qu'on rattache à l'idée d'écrouissage du matériau ; en second lieu, la création d'un état de contrainte, ou état de coaction, permanent lui aussi, et qui, se superposant aux nouveaux états d'équilibre du système, pourra donner naissance à des distributions de tensions intérieures complète-

1 Première des conférences données à Lausanne par M. le professeur Colonnetti, les 9 et 10 mai 1941, et organisées par l'Ecole d'ingénieurs de l'Université, avec le concours de l'Association des anciens élèves de l'E. I. L., de la Société vaudoise des ingénieurs et des architectes et du groupe des Ponts et Charpentes de la Société suisse des ingénieurs et des architectes.

ment différentes de celles prévues par la théorie classique de l'élasticité.

Pour essayer de placer ces différents phénomènes dans le cadre d'une théorie mathématique, il faut, naturellement, faire quelques hypothèses sur la nature des déformations.

Nous nous proposons ici de choisir ces hypothèses, de préciser leur signification physique, de constater jusqu'à quel point elles se prêtent à l'interprétation des faits tels que l'expérience nous les révèle.

Considérons le déplacement qui se vérifie dans un point matériel d'un solide lorsque celui-ci est soumis à l'action d'un certain système de forces extérieures.

Les composantes de ce déplacement seront, en général, des fonctions continues, uniformes et dérivables des coordonnées.

Nous supposerons de plus que ces fonctions, ainsi que leurs dérivées partielles premières, soient des quantités très petites, dont on négligera les carrés et les produits.

L'introduction de cette hypothèse s'impose si l'on ne veut, en abordant la mécanique des solides au delà du domaine élastique, rencontrer au même temps deux difficultés essentielles, l'une provenant de la considération des déformations finies, l'autre du fait que les relations entre les efforts et les déformations ne sont plus aussi simples que dans la théorie de l'élasticité.

La considération des déformations finies n'entraîne pas des difficultés dans la mécanique des fluides parfaits ou visqueux, car dans les équations qui définissent leur mouvement on ne considère pas la déformation, mais seulement la vitesse de déformation rapportée à chaque instant à la configuration actuelle du fluide.

Pour les solides, au contraire, s'impose la conception d'un état naturel à partir duquel il faut compter les déformations.

La considération des déformations finies conduirait alors à