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Ellipses of Inertia for Nonlinear Analysis of Structures

Ellipses d'inertie pour l'analyse non-linéaire des structures

Trägheitsellipsen für die nichtlineare Berechnung von Konstruktionen

M. MENEGOTTO
Professor of Structural Engineering
Faculty of Architecture, University of Rome
Rome, Italy

SUMMARY
A general procedure is presented for the analysis of concrete structures composed of linear
members, which is based on a particular definition of the structural stiffness. This is derived from
a linearization of the paths, run by all the points of the materials, on their respective constitutive
law for a given loading step.
Modified Culmann's ellipses of inertia of the corss sections allow exact incorporation of this
idealization into the stiffness matrix of the structure.
The method is well suited for taking into account the interaction of the internal forces correctly.
Examples of applications are shown, including monotonie and cyclic loadings.

RÉSUMÉ
Une procédure générale est présentée pour l'analyse de structures en béton composées
d'éléments monodimensionnels, basée sur une définition particulière de la rigidité de la structure.
Cette rigidité est dérivée d'une linéarisation des chemins, parcourus par tous les points des
matériaux sur leurs propres lois tension-déformation, pour un incrément donné des charges.
Des ellipses de Culmann modifiées des sections droites permettent d'introduire exactement ce
schéma dans la matrice de rigidité de la structure.
La méthode est très apte à prendre en compte correctement l'intéraction des efforts. Des
exemples d'application sont présentés, comprenant charges monotones et cycliques.

ZUSAMMENFASSUNG
Ein allgemeines Verfahren für die Analyse von aus Stabelementen bestehenden Konstruktionen
wird erläutert, das auf einer besonderen Definition der Steifigkeit beruht. Diese wird abgeleitet
aus einer Linearisierung der Wege aller Punkte der Materialen in Bezug auf ihr Spannungs-
Dehnungsverhältnis für eine gewisse Belastungsstufe.
Modifizierte Culmann's Trägheitsellipsen der Querschnitte gestatten, dieses Schema in die
Steifigkeits-Matrix der Konstruktionen einzuführen.
Diese Methode eignet sich besonders, um die Interaktion innerer Kräfte korrekt in Betracht zu
nehmen; Anwendungsbeispiele werden gezeigt, monotone und zyklische Belastungen inbegriffen.
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1. INTRODUCTION

The basic factors generating an overall nonlinear response of the structure are geometric factors,
important for slender compressed members, and mechanical factors.

Due to them, the stiffness (or the deformability) of the structure is altered following the gradual
application of the loadings, and all the internal forces redistribute continuously. An accurate description
of the varying stiffness of the structure is essential for the correct solution of the problem.

The numerical reproduction by matrix analysis of the behavior of structures requires a

linearization of the stiffness corresponding to a given increment of the loadings or of the deformations.
The ways of performing the linearization, i.e. of defining the stiffness coefficients satisfying the

correct relationships of nodal forces and displacements, are infinity; thus the actual selection is

arbitrary. Among all the possible ways, the one is assumed here corresponding to a particular pseudo-
-elastic criterion which is deemed to be the most valuable, and conceptually correct.

In case of beam flexural elements, this criterion leads to a synthetic and easy procedure for
building up the stiffness matrix, taking advantage of Culmann's theory of the ellipse of inertia.

2. IDEALIZATION OF THE STRUCTURAL PROBLEM

A set of idealizations, including a discretization of the structure into elements, is necessary in

order to establish the model for the analysis.
The analysis of concrete beam elements is generally performed by first considering several

representative cross sections, an then working out the characteristics of the whole element.
For the cross section, usually the linear distribution of strains is assumed, including the bond

between concrete and steel. Various models of stress-strain relationships are used for the materials,
either holonomic or including stress reversal paths.

For the element, the distribution of the deformabilities, within the segment connecting the
analyzed sections, may be assumed as varying linearly, or with different laws. A proper selection of the
spacing of sections must be made, in order to realize a suitable equivalent length of plastic rotation
zones, according to empirical formulas.

The effects of cracking and tension stiffening of concrete is often accounted for approximately,
through a conventional constitutive law. Shear deformations are disregarded, in dealing with flexural
structures.

Once a consistent idealization is set down for the structure and for the external actions, the
analytical problem is defined.

The solution may be obtained by various procedures, that will be generally iterative, due to the
nonlinearity. The stiffness or the deformability method may be employed. The forces may be applied
either at once or step by step.

Taking for instance the most general case of astiffness method step by step procedure, the solution
of a set of equations like

Kst • AU AP (1)

is to be performed at each step; where

Kst is a stiffness matrix of the structure
AU is the vector of nodal displacements

AP is the vector of applied nodal forces;

all being referred to the actual step.

Kst is only valid for the particular step and for the particular set of loads, as it represents a
linearization of a nonlinear relationship.

The criterion of linearization is deemed to be of major importance for finding the comprehensive
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correct solution, and for a speedy convergence.
The criterion is arbitrary. In fact, the matrix Kst is n x n (n being the number of components of

AU), so that infinite combinations of its coefficients satisfy eqn. (1), given AU and AP.
The criterion presented in the following has been employed for numerous applications and allows

for a detailed analysis of the behavior of any structure idealized as above.

3. STIFFNESS CRITERION

The stiffness matrix of the structure will be derived from a secant linearization of the paths run
by "every" point of material in the structure on its own constitutive law, during the considered step.

Selected representative cross sections are suitably discretized into a finite number of areolas of the
different materials (Fig. 1

If Aej and Aa; are the strain and the stress variations undergone by the i-th areola during the step
(Fig. 2), a pseudo-elastic modulus is defined as:

Acti
Ei —^ (2)

ACj

Then the areola is assigned a transformed area:

Ajr A, (3)

Aj being its geometric area, and E0 an arbitrary reference modulus, which can be taken as E0 1.

This operation has the most general application: the stress-strain state of the areolas may run on
strain-softening branches (Ej negative) or rest on a cracked part (Ej 0, if the crack remains opened
for the step) or run on strain reversal paths of any shape.

Extending the calculation of A* to all the areolas of the section, a whole transformed section is
obtained. This can be handled asa homogeneous linear elastic section, having a modulus of elasticity E0.

Namely, all the typical characteristics of the homogeneous sections, as Centroid G, Area A, Static
Moments S, Moments of Inertia J, etc, may be easily calculated. Indeed, the well known Culmann's
ellipse of inertia [1 ] may be built up, which summarizes all these characteristics and relates the internal
forces N Mx Mv with the strain state (except for the E modulus).

When putting E„ 1, such a modified ellipse not only relates the load center with the neutral axis,
but it completely represents the secant stiffness or deformability of the cross section for the step.
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Of course, it is meaningful for the original section, only when referring to the particular forces
applied at the particular step, due to eqn (2), and it may be called the "step secant" ellipse of the
section.

But its usefulness is twofold. First, the ellipse is very helpful in finding the stress-strain state on the
section itself, corresponding to a given internal forces variation. Then, it is necessary for the
construction of the structure's stiffness relationships according to the criterion adopted.

4. CROSS SECTION ANALYSIS

During the iterative procedure for solving the structure's problem (eqn. 1), at each cycle all the
cross sections must be analyzed to find their stress strain variation, as well as the corresponding
secant deformability, expressed by the relationship

AS Kcs1 • AS (4)

where:

AS {Aec, A0X, A0y} is the vector of deformation variations: strain of reference point C, and
curvatures about the fixed axes x, y, (Fig. 1 );

AS s {an, AMx AMy| is the vector of force variations; and

Kc's1 is the deformability matrix of the cross section, that is to be found together with AS; it will
be defined as follows:

Kc",1 s

deo \* 3ec \* I 3ec \*
\ 3N / \ 3MX/ \ 3MV)

30x / 36X -y» / 38x Y

\ 3N / '
3M„ / V 3M.. /

30

be

30

3MV

30wI My r °"y \* afly y
I 3N / I 3MX / I 3M„ J

(5)

and directly written down throughout the parameters of the modified ellipse of inertia of the section
(Fig. 3).

1 il vi
A

ic

Jc_

1

COS T +

sin t +

Vc

Vc

-sin t

COST

_( \*
V 3N /

/_30y_V
V 3N /

f"^) -V 3N /

f—)#I 3MX J

\ 3My

^
9MX

I \* _ I 1 1 \ _ / 3öy y'
3My J„ JE

)slnTC0ST
3Mx j

30y \* 1 1

——; =— Sin T H
; COS2 T

v 3MV / Jt J_

(6)

- cos2 r + -sin-4 t
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The expressions of the above coefficients require some observations.
The areas and moments of inertia in eqns. (6) are not only geometric, but contain the moduli of

elasticity too, having put E0 1 in eqn. (3).
The partial derivatives appearing in eqns. (5) and (6) are marked with a star (*), meaning that they

are calculated on the pseudo-elastic secant scheme: for instance, (9ec/9N)* is not calculated as variation
of ec for a variation of N alone, but for a variation of N on the transformed section, which accounts for
the actual interaction of AMX and AMy with AN for that step.

The matrix appears symmetric, due to the pseudo-elastic homogenization.
The way of calculating the coefficients (eqns. 6) corresponds to the particular definition given for

the secant deformability.

During the iterative solution of eqn. (4), the matrix Kës1, i.e., the modified ellipse of inertia
of the cross section, is easily built up at every cycle, as follows.

The section is discretized into a large number of areolas of concrete, of ordinary and of
prestressing steel (initial prestress is accounted for on all the materials). From a first tentative strain
variation, all the transformed areas A* are calculated by means of eqns. (2) and (3), as well as all the
characteristics A, J etc of the transformed section. These, introduced into Kës' through eqns. (6),
allow for a new vector A& being calculated, as function of the given AS (eqn. 4). The cycle is repeated
up to convergence.

This is sped up substantially by the step secant ellipse, which provides immediately good
orientation toward the state of stress produced by the combined internal forces AS.

On the other hand, it must be said that this procedure is comparatively less effective when
considering only the gradual softening of the material for increasing stress. In fact, in cases of single or
independent variables, as for pure compression or pu re uniaxial bending, procedures likeNewton-Raphson
are faster in converging.

But, when concrete sections are subject to combined forces, the ordinary partial derivatives would
be extremely (and uncorrectly) sensitive to the position of the neutral axis and, specially, to its
deviation induced by finite variations of internal forces. Then, the much better orientation of the
derivatives defined as in eqns. (6) becomes the decisive factor.

Furthermore, it was shown that this procedure offers the simultaneous finding of the correct
secant deformability itself of the cross section, Kës1. which represents the best basis for the definition
of the stiffness of the element and of the whole structure.

z

Fig. 3 — Ellipse of inertia of the transformed section. Fig. 4 — Intrinsic coordinates of the element i - j.



376 ELLIPSES OF INERTIA FOR NONLINEAR ANALYSIS

5. ELEMENT AND STRUCTURE STIFFNESS

The problem of selecting a proper linearization of the stiffness is quite the same as for the cross
section; only there are more interacting forces.

To define the mechanic stiffness of an element i-j in its intrinsic coordinate system (Fig. 4), five
components are to be related:

AF Ke, • A$ (7)

where:

AF s {AN,AMxi,AMxj,AMyl, AMyj}

A^= IAA!, A0X j, A0X j, A0y i, A0y j}
Kel is the stiffness matrix of the element, yet to be defined.
As, for the section, the deformability was worked out by considering the areolas of material as

linear elastic consistently with the secant moduli; thus, for the element, the cross section will be
considered linear elastic consistently with the secant ellipses.

Thus, the definition of Ke| consists in expressing the stiffness of an elastic beam with variable cross
section, which can be done by means of well known procedures.

First, the deformability matrix is built up:

The starred derivatives have the same meaning as in cross section analysis, i.e., they are calculated
on the secant pseudo-elastic scheme; therefore, the matrix in eqn. (8) is also symmetric.

The coefficients are calculated by numerical integration of the deformed axis line, through the
coefficients of the matrixes Kê,1 of the selected cross sections in the element, according to the
distribution assumed for the deformabilities between two of them.

9ÀI \* f1/ dec \* z

\ mxj) )0 \ 3MJ I
z
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Finally, by inverting the matrix Kjlf, the stiffness matrix of the element, Ke|, is obtained.
Then, the stiffness matrix Ks1 of the structure is built up, as for a linear elastic structure: i.e. the

intrinsic stiffness matrixes Kei are projected onto the global coordinate system —eventually being added
"geometric matrixes" — and are assembled to form Kst.

This matrix is adjusted iteratively during a step, up to convergence of eqn. (1

it has the property, like the section and the element matrixes seen above, of incorporating exactly
the secant stress-strain paths of all the considered points. Therefore it offers a very accurate relationship
between the set of external forces and the displacements.

Indeed, all its coefficients represent partial derivatives calculated on the secant elasticity resulting
from the combined acting of all the components of AP (eqn. 1); the meaning of the generic coefficient
of Kst is in fact:

kmn bur) (10)

(where the asterisk is to be understood as before).
As a consequence, the internal forces distribution rapidly assumes the correct trim in the iterations.

Whereas the calculation of derivatives from the separate application of the loading components, i.e.,

(11)
oUn

would yield very dispersive iterations, particularly when the degrees of freedom are numerous, and the
mutual orientation of the displacements is much affected by the simultaneous action of various forces.

6. TYPICAL APPLICATIONS

The described ellipse was called "step-secant", being referred to the secant elasticity of the
structure during a step of an incremental analysis.

Incremental analysis is convenient in several cases, as for example in highly hyperstatic structures
showing subsequent formations of "plastic hinges"; while it necessary in cases of loading reversals, or
even of monotonie loadings inducing significant stress reversals. Some applications have been done,
with computer programs using this type of analysis [2,4],

Figures 5, 6, 7 illustrate the results of the analysis of a micro-concrete multistory frame for
reproducing an experimental test. The calculated load-deflection cyclic curve matched the test result
very well. Moreover, the moment-curvature history under variable normal force was recorded in all
the sections as shown in Fig. 6.

In other cases, the use of different types of linearization may be suitable: the "full-secant"
linearization and the "tangent" linearization, which are limit cases of the previous one and require the
same sequence of calculation.

An example is the case of slender bridge piers in biaxial bending [3]. These structures are generally
statically determinate or lowly indeterminate, and do not undergo extended plasticizations. On the
other hand, the variability of the cross section and the presence of distributed normal and lateral forces
produce important relative deviations of the neutral axis along the height of the structure (Fig. 9).

Then, the design loads may be applied in a single step, the pseudo-elastic model resulting full-
-secant. Eqn. (2) becomes

E, (12)

The deformed axis line is numerically integrated along the height, and compatibility conditions are
imposed at the top, if the structure is hyperstatic.

In the latter case, the deformability corresponding to small variations of the stress strain state,
around the calculated state, must be defined. Therefore a "tangent" ellipse is built up at every cross
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Fig. 5 — Multistory microconcrete frame as

described for the analysis [2].

Fig. 6 — Moment-External Load Diagrams
and Moment-Curvature Diagrams.

Fig. 7 — Load-displacement diagram obtained

analytically.
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the pier in fig. 8 at collapse.
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section, using, as pseudo-elastic moduli Ej, the tangent values

Ei Hsr)s,
calculated at the strain states S, of the respective areolas.

These ellipses are used to make up, by integration along the axis of the structure (similar to that of
eqn. 9), the flexibility matrix referred to the displacements at the top.

Fig. 8 shows the problem of a prestressed concrete tall bridge pier under triaxial loadings [3]. In

Fig. 9 the complete state of stress at collapse is illustrated, as furnished by the analysis.

7. CONCLUSION

The nonlinear behavior of concrete structures is strongly affected by the interaction of and the
continuous redistribution of the internal forces.

A general procedure for structural analysis has been presented, based on a particular definition of
the linearized stiffness of a structure.

The stiffness matrix of the structure is worked out on the assumption that the materials in every
point of the structure — instead of describing the actual curved paths on the respective constitutive laws
— describe the corresponding secant segments.

Such a matrix obviously yields, for the whole step of calculation, the same results that would be
obtained following the actual nonlinear paths, thus being a correct linearization, as well as any arbitrary
a posteriori linearization fulfilling the true solution. But it is the only one that would yield exact
solutions for any fraction of the step, if the local secant paths were true.

Therefore it should be acknowledged as the only truesecant linearization for the structural stiffness.
The construction of such a matrix is possible by the use of modified ellipses of inertia of the cross

sections, which are the means of incorporating the spot secant stiffness of the material into the global
stiffness relationship. By that means, the local phenomena contributing to the deformation (cracking,
yielding, degradation) can be exactly related with all the individual displacement components —

provided that they are suitably incorporated in the constitutive laws — theoretically with any degree of
precision, if the geometric discretization and the loading steps are fine enough.

The method proved itself to be very effective in the analysis of nonlinear problems of structures,
subject to monotonie or cyclic loadings.

Several computer programs have been prepared following it, and many applications have been

performed like in the examples sketched in this paper.
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