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Non-Linear Finite Element Strategies for Bridge Slabs
Stratégies pour I'analyse non-linéaire des dalles de pont a I'aide d’éléments finis

Nichtlineare Finite-Elemente-Strategien fur Brickenplatien

R. J. COPE P. V. RAO
Senior Lecturer Research Fellow
Department of Civil Engineering, Liverpool University,

Liverpool, England.

SUMMARY

Bridge slabs have to carry repeated applications of heavy concentrated loading. Simple
modelling strategies for realistic post-cracking analysis are presented with results from
two element formulations. Acceleration techniques and criteria for establishing
convergence are discussed.

RESUME

Les dalies de pont doivent subir des applications réitérées de charges lourdes et
concentrées. Ce rapport présente des stratégies simples qui mettent en modéle avec
réalisme le comportement aprés fissuration et donne des résultats de deux
configurations d’éléments. On discute les techniques d'accélération et les critéres pour
établir la convergence.

ZUSAMMENFASSUNG

Briickenplatten miissen wiederholte schwere und konzentrierte Lasten tragen. Uber
einfache Strategien, die das Verhalten im gerissenen Zustand reaiistisch modellieren,
wird, zusammen mit Ergebnissen von zwei Elementenformulierungen, berichtet.
Beschleunigungsmethoden und Konvergenzkriterien werden besprochen.
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1. INTRODUCTION

The recent introduction of a limit state based design code in the U.K. [1] gives
bridge engineers a choice in selection of analytical procedures. Use of non-
linear methods would allow advantage to be taken of moment redistribution and
'membrane' action, but for such methods to become acceptable, they would have to
be reliable and efficient. Non-linear finite element procedures show promise
for a wide range of complex structural forms, not only as a primary analytical
tool, but also for arriving at empirical design formulae.

High computing costs, specialised and sometimes subjective analytical
techniques, at present associated with some finite element methods, are not
appealing features. The expense of computing can be, to some extent, eased by
selection of simple material models. However, modelling of the composite
material has not advanced sufficiently for general section/element level force-
displacement characteristics to be specified. The behaviour of the composite
has to be built up from those of its constituents.

Non-linear analysis is performed by incremental, iterative procedures. By using
acceleration schemes to expedite convergence, considerable savings can be made
in computing costs. However, for objectivity of analysis, well behaved
formulations have to be used and indices established to monitor convergence and
degradation of stiffnesses. It is essential that analytical response is not
distorted by the numerical procedure employed.

In this paper, finite element methods for bridge slab design are considered.
Material models are described for predicting detailed load history and for use
in design. Suitable indices for monitoring behaviour are established and a
study of the BFGS acceleration procedure to reduce the number of iterations is
reported. Unless stated otherwise, the analytical results presented were
obtained using the Irons-Razzaque [2] general quadrilateral element. This is a
non-conforming displacement model using numerical integration at 4 Gauss
stations in plan and 5 integration stations through the depth [3]. Transverse
shear strains are set to zero at the Gauss stations.

2. MATERIAL BEHAVIOUR MODELLING

Perfect bond is assumed between concrete and steel so a continuous strain field
results over each element. Individual cracks are not represented, but 'smeared'
over an area governed by the finite element mesh size. Flexural and in-plane
stiffness components are obtained by superimposing concrete and steel effects.
Concrete moduli are determined at the three-dimensional grid of integration
stations. Steel reinforcement is represented by its axial stiffness in the
correct direction and at the correct depth at the nearest Gauss station.

2.1 Concrete

Unstressed concrete is assumed to be isotropic. Although several multi-axial
stress-strain relationships have been proposed for plain concrete, uniaxial
values have been used. This is primarily because variations induced by
fabrication and the limited accuracy of testing procedures, especially when
prototype structures are concerned, make it difficult to justify a higher level
of sophistication. A wide range of studies of slabs has shown that behaviour
is relatively insensitive to the compressive .stress-strain relationship used.

In the authors' approach, effective direct strains in the current principal
strain directions are determined from:
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1 1
ei* =y -5z (€1 +ve) and e =757y (Ve +e) (1)

where g1 » are the current principal strains and v is Poisson's Ratio, which is
assumed constant until cracking or crushing occurs, when it is set to zero.
Compressive stresses are determined using a relationship proposed by Popovics,
together with a plateau of constant strain between peak stress and a strain of
0.0035 [4]. Beyond that strain level, the stress drops to zero.

2.2 Composite Action

Most of the difficulties in simulating slab behaviour stem from the way
reinforced concrete loses its tensile strength after cracking. In tension, a
linear stress-strain relationship with a descending branch to simulate tension
stiffening has been used with some success [4]. Much of the data on tension
stiffening is based on studies of one-way bending, and the authors' tensile
'stress’'-strain curve was designed to give good predictions of behaviour for a
range of steel percentages [3]. The effectiveness of the model with cracks
inclined to reinforcement cannot be gauged with confidence, because of the
limited amount of experimental data available. Gilbert and Warner [5] have
developed a tension stiffening model based on modifications to the stiffness of
reinforcement. At the present time, there is a lack of generality in this
approach and more work needs to be done to provide a basis for selection.

To follow repeated load application, an unloading curve parallel to the initial
tangent has been found to give reasonable results [6]. However, for slabs that
have been subjected to an unknown load history prior to analysis, best results
are given when tension stiffening is ignored {6].

Two types of material model have been used. In the first, effective strains
are determined in the current principal strain directions as described above.
The effective stresses in these directions are obtained from the uniaxial
relationship [4], and then resolved into Cartesian components for evaluation of
mobilised internal resisting forces. With this approach, shear stress-strain

is not modelled explicitly. Crack directions are only notional and they 'swing'
in step with the current strain field.

In the second approach, material property axes are fixed in the prevailing
principal strain directions at the end of iterations for the load increment in
which cracking first occurs. The above uniaxial relationships are used in these
directions, together with a constant in-plane shear modulus. Under subsequent
loading, the principal strain directions can be significantly different to the
directions of the material property axes. As a result, use of stress
determination in fixed material property directions can result in poor predic-
tions of behaviour, and the authors have used a strategy to rotate material
property axes when intersecting crack patterns are present [4}.

The changes in direction of principal values can be caused by a different load
arrangement or can be due to internal redistribution of resisting forces. An :
indication of the magnitudes of swing in principal directions for a model skew
slab bridge subjected to highway type loading can be seen in Table 1. Details
of experimental and analytical studies of the slab, which was numbered 1A, are
given in [6, 8]. The slab had a realistic steel arrangement with bars placed
parallel and normal to the simply supported edges. The results presented are
for a uniformly distributed loading equivalent to 1.2 times the self weight, and
for monotonically increasing increments of 20kN. applied to a bogie of the
design vehicle positioned as indicated in Fig. 1.
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It can be seen that the principal strains are predicted to rotate considerably
by the varying 'crack' direction method, whereas fixing the material property
axes limits the rotation. The principal moments were obtained by integrating
stresses through the depth at the Gauss stations and linearly interpolating to
nodal points. Rotations of principal moments are less than those for strains,
due to the influence of the reinforcement, and prior to yielding of steel there
is a greater degree of agreement in their prediction. The large differences in
principal angles for moments at C' and strains at C is due to the rapidly varying
strain field in the obtuse corner.

. Varying Crack Direction Fixed Crack Direction
Linear
Load FraaLy Strain Moment Strain Moment

A |B jC | A B iC | A']B! C'iA |B |C A |B C!
1.2xSelf Weight |38 (20 172137 19{73]140 |27 (1121371973140 271112
+ 20kN. 35 (15 | 791 33 1188 |44} 36 |115 (34 |16}89 14432111
+ 40kN, 34 113 1811 29 7189146 |34 1114 | 34| 15|90 ;46 | 28 | 109
+ 60kN. 33 |12 | 82| 28 2190144 [ 331107 {34 ]14(90142] 24| 104
+ 80kN. 32 11218228 1192144132112 {33|14{91142]20] 107
+ 100KkN. 32 |11 183122} -1193143}29{108 1321491 ]39]}20]) 109
+ 120kN. 31 {11 | 83121 |-4194143 128108 (32|14 |91]|39(15] 103
+ 140kN 31 {11 | 83]120|-5196 |43 |25 }101 (321591137191} 103
+ 150kN. 31 |11 {83]22]-9)96|42|301}10332115(91}36 )17} 100
+ 160kN, 31 ]11 | 83116 |- 9195142351103 |32}|15|91 3516} 97
+ 170kN. 31 |11 | 83} 17|~ 7195 |41 |33 (112 |33}15]91 134 14| 100

Table 1 Inclination of Principal Strain and Moment

Bazant [7] has commented on the inadmissibility of using orthotropic models
because of their lack of directional invariance. He suggests that such models
are reasonable when principal stresses do not rotate. The authors have found



. ‘ R.J. COPE- PV. RAO 277

that the 'varying crack direction' model gives the better overall comparison
with experimental results [6, 8], and is satisfactory for design or assessment
purposes,

3. MONITORING INDICES

Ideally, measurements of both equilibrium and displacement convergence are
needed to terminate the iterative procedure at a given level of loading.
Measures in common use depend on the differences between applied and mobilised
resisting forces and iterative displacement vectors. Some of the norms
presented in recent literature [3, 9, 10, 11] are examined to assess their
suitability for use in analyses of concrete slabs.

For illustration, results from analyses of a reinforced concrete skewed slab
(slab 2B of [6]) are discussed., The slab used is a one-fifth scale model and
contains a realistic distribution of reinforcement. It is the most flexible of
the slabs studied and thus presents the severest test for non-linear procedures.
The analyses were performed using a 6x6 mesh [6], with a constant stiffness
matrix, and no tension stiffening allowance for the concrete. Response values
at four load levels with the design vehicle positioned as shown in Fig. 1, are
presented for discussion. These cover response of the slab prior to yielding of
the reinforcement.

3.1 Force and Displacement Norms

The authors have used two norms with consistent results [3]. A norm of out-of-
balance loads in any direction (j) as defined by:

100 x /Y L(P. - F.)?
R, = = = (2)
J ZZ PiZ

where P; is an applied nodal load, F; is the corresponding internally mobilised
force and the summations are taken over the global degrees of freedom in
direction j. When there is no applied loading in a particular direction the
denominator in (2) is set arbitrarily to 100, thus reducing Rj to a Euclidean
norm. In this case it is not used to automatically control the number of
jiterations.

A norm of iterative displacements is defined as:

(d. - d.)
D; = 100 —%i'—“-a—x—-—)-—l (3

j,max

where d; is the Euclidean norm of the total displacement in direction j in the
current iteration, and dj, pax is the maximum d; from previous iterations at the
current load level. Experience has shown that satisfactory results are obtained
when both norms are small in the transverse direction, but after yielding of
reinforcement the number of iterations has to be limited when one of them is
small.

Values of maximum displacement are compared in Fig. 2. The iterations at each
load level were stopped when equilibrium and displacement norms of Rz = 2% and
D3 = 0.02% were satisfied. There was some cracking on application of self
weight, and although there was relatively little change in displacement, 31
iterations were needed to satisfy the equilibrium norm. This was due partly to
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the unsymmetrical distribution of reinforcement about the slab's median plane.
The addition of 20kN, via the idealised design vehicle, caused considerable
cracking of concrete as evidenced by the big rise in deflection. 109 iterations
were needed to satisfy the equilibrium norm. 72 iterations were needed for the
next load increment of 20kN. With 60kN applied to the vehicle,a few bars
behaved non-linearly and a maximum of 500 iterations were performed. At this
stage, there was a 10% out-of-balance of equilibrium as measured by the norm Rj
and some of the implications of this are discussed below.

& Maximum

Deflection
(mm)
241 + 60KN
+ 40KkN
16 }

4 20KkN

12 x self weight

/ Iterations

o 1 ] | | i i [ 1 ]
20 40 60 80 100 200 300 400 500

Fig. 2 Variation of Maximum Deflection

These results are typical for skew slabs, although the most flexible of the
steel arrangements studied was selected to give the severest test of the
procedure. At these load intensities, the biggest release of energy is in the
first iteration. The rate of displacement convergence is very small after
about 30 iterations and slabs reach an approximately steady state without
equilibrium norms being satisfied.

1:2 x self weight
_____ + 20kN live load
——— +—— 4+ 40KkN live {oad
ee—— + 60 KN live load
e — °* ~. oo,
> —--T-__,.':"_—l' iterations -
80 100 200 300 400 500

Fig. 3 Variation of Rj
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o N — o, lterutions’
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Fig. 4 Variation of Dj

The variations of the norms in the transverse direction (j = 3) are shown in
Figs. 3 and 4. The high levels of Ras, at the start of iterations, indicates
that most of the ‘'cracking' occurs on load application with substantial release
of energy. At vehicle loads of 20kN and 40kN, although R3 fluctuates, it
ultimately reaches a small value. However, at 60kN, and for higher load
increments, the norm Rs; tends to stabilise at a certain level, about 10% in this
instance.

Examination of the force norms in other directions shows that they are still
large, even when the transverse force norm R3; has become small. Bergan and
Holland [12] have noted that unbalanced loads can form self-equilibrating groups,
with little influence on overall response, and a study of beams [8] has shown
that the relative magnitudes of axial and couple norms are governed by the
chosen shape functions. It thus seemsunlikely that force norms will always
converge to zero, even when a large number of iterations are performed. Bathe
and Cimento [10] have observed that the modified Newton-Raphson procedure can
diverge when out-of-balance forces increase during iterations.

As engineers are accustomed to relying on equilibrium checks, non-convergence of
Rz to zero is disquieting. However, engineers use linear harmonic analysis with
confidence, and when a finite number of harmonics are used, there are sets of
spurious self-equilibrating forces present and non-satisfaction of equilibrium
norms. The analogy is a loose one, but as analytical results give satisfactory
agreement with experimental values [6, 8] there is perhaps no cause for undue
concern. Analyses of a wide range of slabs, in which out-of-balance forces
fluctuated, gave acceptable results, and to the authors' knowledge, no divergent
solution has been reported in the literature.

The transverse displacement norm D3, which measures the rate of convergence,
rather than absolute convergence,is shown in Fig. 4. Behaviour is less
fluctuating with values approaching zero asymptotically.



280 FINITE ELEMENT STRATEGIES FOR BRIDGE SLABS

3.2 Scaled Force and Displacement Norms

Chrisfield has recommended use of scaled norms [9] for terminating iterations.
His norms are:

_ /T (., - T
R, = — | (4)

? Max[-/EF.z,/E _17.2]
i i

and

. (5)

o
0

where P = Pi/f Kii is the component of the nodal load in the j-direction,
scaled by thé reciprocal of the square root of the corresponding diagonal
tangential stiffness coefficient at the beginning of the increment. The
corresponding internally mobilised force F; is scaled to give Fj, and the T; are
51m11ar1y scaled reaction components at supported nodes. The displacement norm
is obtained from U; = v Kj;1.U; and &; Kjj.6i, where u, is the total
accumulated dlsplacement and &3 is the dlsplacement compoiient obtained from the
iteration. Analyses using limits of 10-* on RJ and DJ to terminate iterations
are referenced in [9].

Values of R; and D; for the analyses described in 3.1 are shown in Figs. 5, 6.
On the whole, their behaviour is similar to that of the norms proposed by the
authors. Similar fluctuations exist and there seems to be no advantage to
compensate for the additional computing costs necessary to determine these norms.
It should be stated that the tangential stiffness coefficients were determined
using an arbitrary, small, positive value for concrete moduius at cracked
integration stations. For the comparisons shown, a value of 0,05 times the
uncracked concrete modulus was used.

R; A 1.2 x self weight
o6  ___e- + 20kN live load
\\\ — - — 4+ 40KkN live i{oad
' 3 — ++— 4+ 60KkN live load

-\
»/’Q\\ A )
"Q /<¥ / et e lterations

o Tt ) ] ) | 1
20 40 60 80 100 200 300 400 500

Fig. 5 Variation of Rj
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12 x self weight
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) & N Iterations
004 \ N — : >
0-004 \.. \\ 0 20

u§ \\
. e .
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Fig. 6 Variation of Dj

3.3 Energy Norms

Since both force and displacement monitoring is important, Bathe and Cimento
{101 have recommended use of energy norms. The energy released during an
iteration equals the work done, W, by the out-of-balance loads moving through
the corresponding iterative displacements, thus:

W= z_; (Pi . Fi).§i (6)
] 1

Values of W with iterations, for the analyses described in 3.1, are given in
Table 2. It is clear from these results that most of the energy release, prior
to yielding of reinforcement, occurs during the first few iterations. This is
consistent with other reported observations [3, 13].

Iteration 1 5 10 20 {30 {40 {50 70 { 100 { 500
1.2 x Self Weight 2250 60 20 1 - - - - - -
+ 20kN. 24000 } 15000 | 7500 | 2050 | 730 | 310 | 125 15 2 -
+ 40kN. 107000 225011200 | 3001}210| 60} 20 2 - -
+ 60kN. 8250 ] 22501100 | 660 1400|170 § 22511401120 125

Table 2 Values of W with Iterations

The feasibility of using the ratio of energy released during an iteration to the
maximum energy released in a previous iteration of that particular load increment
has been studied [8]. A value varying between 0.01 and 0.025 gives

acceptable results for the mesh size examined. The smaller value is used for the
initial stages of intense cracking. Using such a norm results in solutions
similar to those obtained using a limit of about 30 iterations, which is
consistent with the results of 3.1,
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3.4 Structural Integrity

To check structural integrity, strains can be monitored to assess crack widths,
possible loss of ductility and extent of yielding. By studying the material
damage predictions for a particular class of structure, experience can be gained
and used as guides for designers. Since a numerical technique is being employed
for analysis, a numerical measure is needed for any automated decision making.

Bergan (14] has advocated use of a current stiffness parameter, which attempts

to express the stiffness at the current load level in terms of the initial linear
stiffness. This parameter depends on the incremental load and displacement
values. For the slab analysed above, it has the values 0,72, 0.09, 0.25 and 0.21
at 1.2 x self weight, and with live loads of 20kN, 40kN and 60kN, respectively,
and the value 0.01 close to failure. Because the rate of stiffness degradation
in concrete slabs is not uniform and decreases after first cracking, the
parameter does not decrease monotonically. Also, before a single parameter could
be used with confidence, experience is needed to see how it is affected by local
as opposed to global failure.

An alternative indicator that could be used is the amount of energy being
released due to structural damage, W. If the work done by the out-of-balance
forces due to iterative displacements does not diminish or grows, there is a
clear indication that the structure, or part of it, cannot sustain the applied
loading.

4. ACCELERATION OF CONVERGENCE

From a study of numerical acceleration schemes [3,8], the recently implemented
BFGS procedure [15] has been selected as the most efficient one available. Bathe
and Cimento [10] have published results from studies of reinforced concrete beam
behaviour and here, some of the effects of using the procedure to analyse slabs
are presented. All of the numerical work reported was performed on a CDC 7600
computer using a constant stiffness matrix based on unstressed material
properties. .

4.1 Parameters STOL and CONDMAX

The two parameters of prime concern to users of the BFGS procedure are STOL and
CONDMAX. STOL governs the number of line searches and iterations, and is set to
a value between O and 1. It has been reported that as the value increases
towards unity, although the number of line searches decreases, the number of
iterations needed increases [15]. Analyses using STOL = 0.1 and 0.5 are
presented. The decision to select a new search direction is taken by comparing
the quadratic form of :the stiffness matrix, with respect to the iterative
displacement vector, with its previous value. This number is estimated and
compared with the value of CONDMAX. It has been recommended that CONDMAX = 105,
[15], leads to stable solutions. Here, results are presented for CONDMAX equal
to 10° and 10%°.

4.2 Comparison of Solutions

Analysis of skew slab 2B of [8], with no tension stiffening, should provide a
severe test of the method as it is the most flexible of the designs studied.
Table 3 shows values of central deflection predicted and the numbers of
iterations necessary to satisfy the prescribed norms. These were Rz = 2% and

D3 = 0,02% for all analyses, with a maximum of 80 iterations performed in a load
increment for an accelerated solution and 300 iterations for the solution without
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acceleration.

It can be seen that the use of the BEGS acceleration scheme

reduced the number of iterations necessary to reach an equilibrium state, but for
the two cases marked with an asterisk the procedure has converged to the wrong

position,

procedure 'corrects' itself at higher load levels.
because internal forces are equilibrated to the total applied load.

However, even in these two instances of unacceptable predictions, the
This desirable feature occurs

" Without STOL = 0.1 STOL = 0.5
Acceleration | ~yunuax-10° | CONDMAX=10° | CONDMAX=10° | CONDMAX=101°

1.%Self Wt 1.3/ 31 1.3/13 6.3%/36 5.3%/34 1.3/ 9

+ 20kN 8.8/109 9.0/51 8.7 /29 8.5 /32 9.0/29

+40KN 11.4/ 72 11.5/27 11.5 /20 11.5 /30 11.5/25

+60KN 14.1/300 13.8/80 14.0 /80 13.9 /80 13.9/80

Table 3 Central Deflection/Number of Iterations

Further analyses to
" in Table 4. In the

examine predicted response up to 20kN of live load are given
analysis with no acceleration, the maximum energy release
occurred during the sixth iteration of the 5kN load increment. From these
results it is clear that considerable cracking occurs almost immediately and that
the state of the slab at 1.2 times self weight is almost unstable. These results
show that caution should be used if prediction of response during the initial
phase of extensive cracking is required, but for most purposes there does not
appear to be a serious problem.

10
Wi thout CONDMAX = 10
Load Acceleration

STOL = 0.5 STOL = 0.1
1.2 x Self Weight 1.33/ 31 1.31/ 9 6.26/36
+ 5kN 6.66/129 6.87/57 6.64/23
+ 10kN 7.14/ 53 7.30/19 7.30/16
+ 15kN 7.98/118 8.03/30 7.96/14
+ 20kN 8.70/ 64 8.68/14 8.69/20

Table 4 Central Deflection/Number of Iterations

A more detailed comparison of the predictions is given by examining the principal
strains at the Gauss stations closest to the centre line. These are given in
Table 5. 1In addition to the strains at 5kN increments values are presented for a
single increment of 20kN. It can be seen that the results are in line with those
for displacements. All of the predictions for the live load of 20kN lie within
the accuracy that can be obtained from experiment [6] and there is no evidence to
support preference for any particular set of values.

For further assessment of the overall influence of solutions following different
load paths, the reactions under 1.2 times the self weight, plus a live load of
60kN, are given in Table 6,

It is clear from these results that convergence is not to a unique solution, but
that there is an acceptable degree of agreement for design purposes. To examine
the effects of limiting the number of iterations and of changing the size of the
load increment to reduce costs of computation, further analyses were performed.
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Load Without Acceleration
1.2 x Self Weight 173 181 186 184 167 154
+ GkN 1315 1340 1387 1344 1291 1272
+ 10kN 1333 1409 1438 1397 1303 1308
+ 15kN 1498 1579 1568 1502 1383 1352
+ 20kN 1646 1736 1703 1615 1446 1427
+ 20kN direct 1798 1807 1756 1680 1560 1511
Load STOL = 0.5 CONDMAX = 10'°
1.2 x Self Weight 173 180 186 183 167 154
+ G5kN 1305 1351 1381 1349 1296 1285
+ 10kN 1328 1412 1454 1406 1292 1278
+ 15kN 1496 1566 1583 1509 1365 1335
+ 20kN 1617 1712 1719 1620 1460 1430
+ 20kN direct 1800 1789 1825 1650 1568 1521
L Load STOL = 0.1 CONDMAX = 10%'°
1.2 x Self Weight 1247 1227 1246 1248 1212 1159
+ 5kN 1201 1269 1318 1301 1203 1199
+ 10kN 1337 1415 1450 1409 1287 1284
+ 15kN 1478 1561 1592 1509 1372 1367
+ 20kN 1628 1717 1715 1623 1442 1426
+ 20kN direct 1626 1721 1711 1621 1435 1414
Table 5 Midspan Principal Strains
= 0. STOL = 0.5
Without el Bl
Acceleration | covpuax=10% | coNDMAX=10'° | CONDMAX=10° | CONDMAX=10'°
38.0 39.5 40.5 39,2 39.8
7.1 4.2 3.5 6.5 5.1
7.6 9.1 8.3 8.0 7.9
4.9 4.5 5.7 4.3 4.7
7.1 7.3 6.1 7.4 7.5
-0.2 -0,2 0.5 -0.4 -0.2

Table 6 Reactions at 1.2 x Self Weight + 60kN

In Table 7, values of central deflection are compared for 20kN load increments.
The analysis using constant stiffness was conducted with norms of R3 = 2% and Dj
= 0.05%, but with a limit of 300 iterations in any load increment. This latter
criterion governed for the 60kN and subse?uent increments. The accelerated
analyses used STOL = 0.5 and CONDMAX = 10!%. Norms of R3 = 2% and D; = 0.05%
were set for these analyses, but with the maximum number of iterations in an
increment as specified in the Table. Two further analyses were performed without
acceleration and these were controlled by the energy norm. Iterations were
stopped when the ratio of the energy norms W, (see Eqn. 6) reach 0.0l and 0.02Z,
respectively.
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BFGS with Without
2 : P Acceleration
Without Maximum Iterations
Load ; Energy Catrol
Acceleration
10 40 150 0.02 0.01
1.2 x Self Wt 1.3 1.3 1.3 1.3 L3 1.3
+ 20kN 8.8 8.8 9.0 9.0 8.2 8.5
+ 40kN 11.4 11.5 11.5 11.5 10.1 10.6
+ 60kN 14.1 13.9 13.9 13.9 13,7 13.9
+ 80kN 17.2 16.8 17.1 17.1 16.5 17.0
+ 100kN 21.4 21.3 21.5 21.5 20,9 21.0
+ 120kN 30.9 30.6 31.0 31.1 26.6 28.7
+ 140kN 48.2 45.9 49.3 49.2 45.0 47.0
+ 150kN 59.4 60.3 60.4
+ 160kN 82.4 71.4

Table 7 Central Displacement

Prior to extensive yielding of reinforcement, the BFGS solution using only 10
iterations per increment is acceptable. Results obtained using 40 and 150
iterations are virtually identical. After about 30 iterations the scaling

factors from the line search procedure become very small and it appears that for

most problems, with a constant stiffness approach, a maximum of 10 to 15
iterations per load increment should be adequate. No value is given for the
BFGS solution with 150 iteration control at 160kN, as the allowable computer
time had expired. At the stages of initial cracking, the analysis using the
smaller energy ratio to control iterations is acceptable, and for high load
levels both analyses gave similar results.

4.3 Cost of Solutions

Costs of solutions are compared in Table 8. The values given are based on
computer mill time used, At 40kN, which corresponds approximately with the
serviceability load level, the BFGS solution, with a limit of 10 iterations,
costs only a quarter of the effort necessary for an analysis without accelera-
tion. However, neither it, nor the solution using the energy norm, satisfied
the limits set on the force and displacement norms. From the results given in
Table 3, it can be seen that the BFGS solution, with a limit of 40 iterations,
satisfied those norms, and that analysis halved the time of solution.

BFGS Without
Without Max Iterations Acceleration
Load .
Acceleration
\ 10 40 0.01
1.2 x Self Weight 11.7 5.4 5.4 3.7
+ 20kN 53.8 12.4 24.0 21.5
+ 40kN 81.9 i8.8 39.7 28.2
+ 60kN 196.9 25.1 74.9 53.4
+ 80kN 311.8 31.6 104.0 82.0
+ 100kN 426.7 37.9 135.8 115.6
+ 120kN 541.9 45.0 164.0 191.7
+ 140kN 657.1 51.3 189.6 268.0

Table 8 Cost Comparison
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At higher load levels, none of the solutions satisfied the limits set on the
norms, but the results from the analysis without acceleration and the solution
using acceleration with the 40 iteration limit are similar. When the live load
is at 80kN the cost of the accelerated solution is a third of that for the
analysis without acceleration. This factor rediuces slowly with increasing load
level to approximately 0.3 at 140kN. But as even these analyses are expensive
and results obtained with 10-15 iterations are reasonable those limits can be
used for most purposes.

4.4 Size of Load Increment

A further way of reducing the costs of computation is to reduce the number of
intermediate load increments. From the results given in Tables 4 and 5, it
appears that deflections and strains in concrete slabs are relatively
insensitive to the size of load increment. To assess the effect of load
increment size, results of a number of analyses are compared in Table S.

Without BEGS BEGS BFGS
Acceleration
Load

(20kN) (40kN) {5kN) (20kN) (40kN)
1.2 x Self Wt 1.3 L.3 1.3 1.3 1.3

+ 20kN 8.8 - 8.7 8.8 -
+ 40kN 11.4 11.7 11.4 11.5 11.9

+ 60kN 14.1 - 13.9 13.9 -
+ 80kN 17.2 17.3 17.0 16.8 17.1

+ 100kN 21. - 21.5 21.3 -
+ 120kN 30.9 29.2 30.9 30.6 29.9
+ 140kN 48.2 47.5 46.0 46.5

Table 9 Central Displacement with Load Increment
To form a basis for comparison, the central displacements predicted by the
analysis without acceleration, and with up to 300 iterations, are recorded.
Results of three analyses from the BFGS solution with STOL = 0.5, CONDMAX = 101°,
and with a limit of 10 iterations per increment are presented. It can be seen
that very similar predictions are obtained from all of the analyses. A
comparison of strains and principal directions at mid-span has been made [8]
which confirms that use of large load steps does not distort the response. This
suggests that an engineer interested in effects at a particular leoad level could
obtain those results with quite coarse load increments.

5. SHEAR

All of the skew slabs tested in an accompanying programme of experimental tests
[6,8] showed severe inclined cracking in the obtuse corner region at high load
levels. The plate element formulations used for the analyses reported above

sets transverse shear strain to zero and hence cannot model this behaviour.

5.1 Heterosis Formulation

A study has been initiated to investigate the use of the Mindlin plate bending
theory which accounts for shear strains. The 'heterosis' element [16] appears
to be the best formulation and it has been implemented in its hierarchical form.
3x3 Gauss integration in plan has been used for both flexure and in-plane
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effects. Material moduli are thus set on a 3x3x5 grid of sampling stations, in
contrast to the more economical 2x2x5 grid used for the previous solutions. 2x2
integration stations are used for transverse shear, but for the preliminary

results presented here, the rigidity modulus of concrete has been kept constant.

Analysis Loag

1.2xSelf Wtl| +20kN +40kN | +60kN | +80kN {+100kN | +I120kN +140kN
Previous 1.9 12.7 16.2 21.1 28.6 40.0 62.7 96.6
Heterosis 7.9 11.6 16.8 21.6 29.3 39.9 59.3 99.1
ER = 0.01 7.6/51 10.0/11 (16.4/36121.3/41|28.8/51138.5/51]57.4/131198.8/241
ER = 0.02 7.5/46 9.5/ 6116.2/26121.2/36(28.6/46|37.6/36|54.8/76 |97.4/211

Table 10 Maximum Displacement Comparison

In Table 10 values of maximum displacement for skew slab 2B are compared with
results from the previous analysis. Because of the sensitivity of this
particular slab to perturbations under self weight, the change in shape functions
has triggered off additional cracking. However, at later load levels, the
response is similar to that obtained from the previous analysis.

The work done by the out-of-balance lcads is computed using only in-plane and
rotational displacements, since with a constant shear modulus this formulation
does not produce any transverse out-of-balance forces. The nerm R3; cannot,
therefore, be used to monitor convergence. To assess the possibility of using
the energy norm W to control the number of iterations, values are also presented
for energy ratios, ER, of 0.01 and 0.02 (ER = energy released in current
iteration divided by maximum released energy in an iteration of the load
increment). The number of iterations is also presented as a guide to the
relative costs of these analyses.

6. CONCLUSIONS

Application of non-linear numerical techniques to concrete structures is
complicated by the lack of uniformity in stiffness degradation and by the
different load-unload paths. These features make it particularly difficult to
specify norms to automatically control the number of iterations to be performed.
It is clear from the results of this study that no single, unambiguous and
precise measure exists, and that judgement is needed to assess the results of
non-linear analyses of concrete slabs.

For design of slabs, a uniaxial stress-strain relationship can be used for
concrete and tension stiffening effects need not be simulated. Analyses in
which orthotropic material property axes are not fixed in directions dictated by
initial cracking give better comparisons with experimental results than those in
which 'crack' directions are fixed. Acceptable results can be obtained using
the BFGS acceleration procedure and relatively coarse load increments to reduce
the cost of analysis.

In skew slabs there is a need to implement formulations which do not employ
Kirchhoff's restraints. The heterosis finite element formulation of the Mindlin
plate theory promises to be a suitable approach and further studies are being
undertaken to examine the possibility of incorporating the effects of inclined
cracking.
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