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SUMMARY

A method is presented for calculating the rotation of the end
plastic hinge in a reinforced concrete column subject to axial
load, bending moment and shear. The method is based on the assura
ption that, in the regions adjacent to that to which ultimate
bending moment is applied, the bond between tension metal
reinforcement and concrete is completely inoperative. Besides, the
plastic deformation of the tension steel is assumed to be linear
ly variable in the portion where slipping occurs from zero up to
maximum value in the ultimate bending moment section.
The length of the plastic zone is then obtained on the basis of
equilibrium considerations, while the overall rotation of the
plasticization zone is calculated by taking the internal work to
be equal to the external work.
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1. INTRODUCTION

In a framed building structure subject to strong earthquakes, over
stresses are generally produced in the members and particularly in
the columns. The mode of failure of the structure under seismic
loads and dead loads plus a fraction of vertical service loads
depends on the capacity of deflection of the columns in the inelastic
range. Hence, calculating the ultimate deflection of each single co
lumn, as permitted by the rotation of plastic hinges, is a fundamen
tal step in the analysis and design of buildings exposed to seismic
risk. A typical pattern for the ultimate behaviour of a simple
oscillator subject to lateral load is shown in fig. 1.

The evaluation of the ultimate deflection
1^u at the top of a column and more

generally of any structural member subject to
constant axial load and bending moment va
rying along the axis, requires the
knowledge of the moment curvature diagram of
the member and turns out to be rather com
plicated for R.C. columns M- diagrams
as available in the literature [l^| may be
usefully employed; in this case, however,
the effects of confining of concrete due
to transversal reinforcement are neglec- fig. n. 1
ted, thus obtaining values of the deflec
tion significantly lower than the
experimental ones [2] [3] «A different procedure consists of obtaining

the ultimate curvature or the ratio of the ultimate to the per
fectly elastic curvature at the clamped-end cross-section, of the co
lumn [4]
The structural member is assumed in this case to be divided into
two sharply distinguished zones, in one of which the material behaves

elastically, while in the other, close to the clamped end, plastic

behaviour is widely predominant.
The length of the equivalent plastic zone is usually taken to be
proportional to the depth and span of the column according to binomial

relations [5]
According to [2] we have, for example:

Ap 0.50h + 0.2 tyhjgj (1)

From the knowledge of curvatures and the extension of the plastic
hinge, values of the capacity of rotation U> may be easily calculated

and hence the ultimate deflection is obtained. This method,
however, applies only to a restricted range of dimensions of the
rectangular cross-section and no extrapolation of the semiempiri-
cal relation (1) seems to be reliable to cover different shapes of
cross-sections (such as cave or lamellar section and so on).
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In the present work a theoretical approach is put forward allowing
the designer to calculate the amount of rotation at the plastic
hinge irrespectively of the hypothesis of plane cross-sections which
has been commonly adopted so far in all U.C. calculations. In the
regions adjacent to the clamped end, the bond between concrete and
tension steel is assumed to have failed because of local overstress
phenomena and cracking, so that slippling of longitudinal bars is
permitted and consequently, over some fraction of the column length,
the tensile stress in the reinforcement is, at a good estimate, con
stantly equal to the yield stress of steel.
The proposed method is more advantageous than the others described
above insofar as it does not rely solely on experimental data and
consequently it could lead to a further extension of its range of
applicability.

2. BASIC ASSUMPTION

Let us consider a R.C. rectangular column with symmetrical single-
layer reinforcement.
This column will be subjected to bending and axial force II lower
than the balanced value N5, with non-vani
shing shear force T (.fig. 2).
The problem is examined while the rotation
of the plastic hinge is taking place.
At the clamped-end cross-section M=Muit
is assumed and the strains &t>r, £.au
are calculated according to the hypothesis
of plane cross-sections. In the vicinity
of the clamped end the tension steel will
undergo yielding with ®a ffas const
and will be strained plastically from zero

plastic strain (at the top of the plastic

region) to &au, at a rate that,
grossly estimated, may be assumed to be
constant. Throughout the region affected
by the plastic hinge no assumptions concerning compatibility of
strain for compression concrete and tensile reinforcement are made.

The plastic region may be considered to extend up to the cross-
section where, the tensile stress in steel altogether equalling 6"as>
the amount of plastic strain <5a approaches zero.
In this cross-section the position of the neutral axis, on account
of the hypothesis of free slipping of tensile steel in the plastic
zone, may be assume! to coincide with the centroid of tensile rein
forcement.
Chi s would indeed b ; a drastic assumption, as some residual bonding
effect is expected. :o work even in a widely cracked zone. More
conservatively, the plastic region may be considered as ending below

J
ffi

10.axa

+-M,

ta dir
fig- n» 2
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the cross-section where onset of yielding in the tensile steel
takes place, the concrete still behaving elastically and in full
bond with the tension bars; here the law of plane cross-sections
is again held to apply.
Under all these assumptions the amount of rotation of the plastic
hinge may be calculated and an estimate of its effective extension
may be provided.

3. EVALUATION OF THE EXTENSION OF THE PLASTIC ZONE

Consider a column with rectangular cross-section as illustrated
in fig. 3. Let:
h => be the full depth of cross-section;
h*=h-c the reduced depth, with c the

distance of the reinforcement from the
edge;

b the width of the cross-section;
x the position of the neutral axis with

respect to the compression edge; §=x/h'
F =F' the area of both tension and com-â âpression reinforcement;

fig, n. 3

-*a-Ai
A.

the first yiel^

F /bh' the percentage of reinforcement;
/*•* i the mechanical percentage of reinforcement;a a 6b

CT being the yield stress of steel; £.
S

ding strain in steel ;
ae E<*"

« the crushing stress of concrete; the ultimate strain of
concrete;

n the ratio of elastic moduli;
•n. « 31 ^ » the non dimensional axial load;<• ÊÛ.S '"A
T — the shear force
The assumptions discussed in the foregoing section lead to stress
and strain distributions as illustrated in fig. 4.
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fig, n. 4
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In the claraped-cnd cross-section, labelled (°) strain and strès;
distributions are assumed according to the usual assumptions of
ultimate design. The compression region is supposed to be rectan
gular with effective depth 0.8 x^^
Between cross-section (2) and (1) the compression stress of
concrete is assigned a curvilinear distribution over the depth x,
but the compression resultant is always taken at a distance of
approximately O.'+x from the compressed edge. The total amount of
compression may be expressed as

P, 6"', cv x b
d b

oC being a shape factor ranging between 0,5 (triangular elastic
distribution) and 0,8 (ultimate distribution).
In cross-section (l) a triangular compression stress distribution
is assumed with maximum value amounting to <3",° D

For cross-section (0) two alternative conditions are examined:
both conditions (case a) stipulate that the steel is strained
iust at the yielding ooint x-?ith £=£ (£. cz & E and

a ^ ae as
<&a= <£>as; in the first case (case a) compatibility of strain

between steel and concrete is introduced; in the other (case b)

x. h*
(o)

is assumed, disregarding compatibility of deformations on
account of bond slip being allowed to take place below the cross-
section 0).
From the equilibrium of the forces acting at cross-section (0)
expressed by the equation

0.5 x, ,b - N + 6"' F* g- F U)b (o) a a as a

and from compatibility of deformations, written as:

h») -h' (2>

it is possible to obtain the position of the neutral axis ^
for case a, namely by solving the equation:

S? + 2n So " 2/»an<1+ni) " 0 U)

where £,* — 0.S <5\ has been introduced for the sake of simplicity
In the case 0, we immediately have:

5o 1 ('+)

In the region between the cross-sections (0) and (l) let us take
into consideration the variations, with respect to a parameter
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progressing along the column axis, of the equilibrium equations of
both forces and moments. The quantities which may vary are, of
course, and the position of the neutral axis, x. The operator
performing such variations is denoted by S Then we obtain:

0.5bxS<srJ, + 0.5 <s'kc£x -0.8nF* S«s\ (5)
b b a °

&M 0.5 <3\_b(h'-^-x) Sx + 0.5bx(h*-:jrx)c> G*,+0.8nF' (h'-c) .cTs-! (6)
b 3 3 D a d

By eliminating between (5) and (6), the moment variation
turns out to be:

M ^bx Sx (7)

hence, dividing by S :

&M dM 0.5 ' dxfl "s "T r l8)

This relation may be integrated between the cross-sections (0)
(x \ and (1) (x X/.x )» after removal of through the
equilibrium of forces at a current coordinate z

Azl gasFa \ (9)

where

k ^1+nd) ft ~ 2ß (1+n )+l,6n/ (1-lu ^a)
1 —— Ljo s a d ' ~a £l * nX

In the region between the cross-sections (1) to (2) with the
assumption that the compression reinforcement remains elastic
over the whole length Az,, and <b £ o(/0.8.« 1.25 ^4 â 3. S 3 Sthe variations of the equilibrium equations are expressed as:

bx + <ô'b b<X S x =-1,if<£as <5°^ (11)

Sm <j5'b bh'2 (0.4 Jjt|+1.25 /*-' S« (12)

By eliminating ^ between (12) and the equation of equilibrium of
forces at a current coor.z, â> M as expressed by (12) may be
integrated over the region between the cross-sections (1) Of =0.5)
and (2) <* 0. 8 thus giving :

Az. 6" F
2 as a \ (13)
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where

!S ^ °<3 LV^)2-].^ ~7T (0*' ^a" "h^-l
/*" a

Equation (1 '/) nay undergo further simplification by recalling
that A- •' a ' a
The total length of the plastic region is therefore:

As, : As.
'k -ik'

1 2
13)

4. EVALUATION OF THE PLASTIC-HINGE ROTATION

üth the usual idealisation of attributing the whole plastic rota
tion to a single point of the column axis, namely the idealized
plastic hinge, the capacity of rotation c£> may be obtained from
an energy balance between the inner plastic work made in the whole
plastic region of length Az by both concrete and steel while
strained beyond the elastic limits, and the external work

In this manner, the problem is reduced to calculating the inner
plastic work made both tension steel in the length A z and by
concrete in the inelastic range over the length Az^.
'•/ith the assumptions made in the foregoing the former is promptly
calculated as:

<£l g- F it - <£ À z (16)
pi>.a) 2 as a au ae

the stress in steel being constantly equal to d
cl S

The work of concrete in the region where this material is supposed

to have abandoned the elastic range, may be espressed as:

é> L 1 / J s"! $&, dA1 (17)pl(D) J dz *A' D b
O

A' being the compression area as a function of z, namely A'
bx(z) and dA'= bdx .It is reasonable to assume a mean value for
>( over the compression area of each single cross-section, name
ly by putting

<5"k c: mean <S^=o^(z)ef (18)

in definition (17). Moreover, the strain £^(x') at any position
in the compression area, may be expressed on account of com

patibility of the deformation in the compression-concrete area,
£>"> a,.
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By introducing both (18) and (19) into the expression of plastic
work, we have:

,Lpi(b> -ir^dz I *
2The inner integral may be calculated at once to yield x /2 ; so

that (20) is reduced to an integral over 'coordinate z:

^Lpl(b) " 2 (21)

where o<, x, are all functions of z. On the basis of the
equations of equilibrium both in finite and in varying form, and
as the result of lengthy but plain calculations, we have succeded
in eliminating xr and_[ for <5 £ b(z) we may accept a linear expression:

O £,b z/Az« (£'br ~£be)] anc* *-n transforming (21)
into an integral of a known function of over cv itself. This can
be solved through direct integration, yielding the final result:

2 2

<SLpl(b) " g "F° H

Sbr" 6be> "k3 (22)

being

k3 0.25 k2 [l+n^-0.389 ] (23)
/*" a

The plastic work of the compression concrete is however small
(amounting to no more than a certain percentage of steel work)
and sometimes it is not totally wrong to think of neglecting it
in comparison with the work of steel. It may be useful to notice
that, in any case, the amount of plastic work of concrete is not
affected by the situation at cross-section(1), wether compatibility

is assumed according to case a or free slipping of steel
reinforcement is supposed (case b). In the latter case, the only mod:!

fication to be brought into the foregoing results, involves, as
previously pointed out, the length Az which in turn, enters
into the expression of A>L As a consequence of this
modification, 2>L j, x is expected, and has been actually calculated,
to increase significantly (up to several times), probably overem
phazizing the ductility of the column (*). Finally, the total

(*) A more general approach would be that of finding from a
condition of partial compatibility imposed on the deformations

at cross-section (0). The concrete strain £^ would be
compatible, in this case, not with the total steel strain

£ but with a fraction of it obtained by subtracting
from6 £ the amount of slip rate (du/dz) ä (f / AA due
to cracêËng, where f is the crack width and A c the spacingi /• • / • •
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ultimate rotation of the plastic hinge is calculated as:

cP B
Lpl(a) + Lpl(b) ,9

M being the ultimate moment of the column to be obtained from
tne equilibrium of cross-section (2). The deflection at the top
of the column permitted by the rotation of the plastic hinge may
be estimated as approximately

V" i23)

1 being the span of the column and supposing the plastic hinge
reduced to a point located at the centre of the plastic zone.

In the diagrams of fig. 6 the ratios

-érV-%^ ^d fh' ' T I u / T

are plotted versus the non-dimensional axial force n^ for three
different reinforcement percentages. The capacity of rotation of '

the column decrease rapidly with increasing axial force, in spite
of a not negligible spreading out of the plastic region.
In fig. 7 the effect of increasing the column depth can be folio
wed, leading to decrements both of Àz/h' and of c^> although
with a clear tendency tcq asymptotes for very deep cross-sections.
The effects of varying and have also been considered with
the conclusions that c£> increases nearly proportionally with '^rand even more decisively with the strength of concrete.

I..
of cracks, both calculated at
cross section (0). The details
of a procedure of this type at
present are still to be worked
out.

fig, n. 3
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