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1. INTRODUCTION

The plastic behaviour of structures under monotonie loading is usually-
predicted with sufficient accuracy by simple theories of plasticity such as
flow rules associated with a single yield surface. For varying loads, however,
these theories do not represent the complex plastic behaviour with sufficient
fidelity. The theory of plasticity must be modified by introducing a suitable
set of internal state parameters that enter into the yield condition and the
constitutive relations. The mathematical structure can become quite complicated,
as has been demonstrated [1], and there is a particular need for simpler material
models that reflect the most essential aspects of plastic behaviour for a
reasonably wide class of problems but have sufficient simplicity and accuracy
for practical design. It is the aim of this paper to discuss a simplified theory
of cyclic plasticity suitable for solving boundary value problems of small
deformation behaviour of structures under cyclic proportional loading. We present
a stress-strain relationship suitable for cyclic proportional stressing employing
the Masing [2] hardening rule and two scalar state parameters (equivalent stress,
or equivalent strain, at the last two reversals) and show that a wide class of
problems of cyclic loading can be solved for this representation. For-line _ox
surface structures the formulation is readily transformed in terms of generalized
stresses and strains.

relating stress a and strain g by a monotonie odd function f with a reverse
loading curve given by the "Masing transformation" of Eq. 1, viz.

2. STRESS STRAIN RELATIONS

Consider a material with the uniaxial hardening curve

a f(e) (1)

(2)

Here, (e a and (e+, cr"1") are the points of strain and stress respectively at
the applicable sign reversal of stress rate (or equivalently, strain rate).
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FIG. 1. Uniaxial s tress-strain curve and steady-state hystersis loops

In cyclic proportional deformation these four parameters are constant after the
first cycle. Point (e~, a") satisfies Eq. 2b, so that two scalars are sufficient
to characterize the stress strain cycle. Although this model is highly idealized
since it gives a steady loop after just one cycle, it does provide a useful basis
for design or for more accurate analysis of cyclic creep or relaxation phenomena.

We generalize this description to three-dimensional stress states, assuming
that the principal stresses are proportional and remain constant in direction.
Define a suitable equivalent strain function

S (Ê^ j 62 ' ®3^ *

symmetric in the indices and specializing to g

(3)

®1 lf e2 0;

if we calculate the strain rate g from this equation, the constitutive relations
for three-dimensional states can be written formally as Eqs 1 and 2, with <j and g

now denoting vectors (o i 1, 2, 3 etc.) and f denoting a vector
function. These constitutive relations are piecewise finite, and for cyclic
loading characterized completely by the functions f., and two "end" points of the

+ - _
1

stress path and (or, equivalently, g^ and e^)- This extends the Masing

relationship (between Eq. 1 and 2) to cyclic proportional triaxial deformation.

3. SELF MAPPING OF BOUNDARY VALUE PROBLEMS

Consider the following class
ally linear elastostatics):

P(l,l) of boundary value problems (of geometric-

Ac

Noms

0,

T

D

BS

3 V '

3V

e, a -

cz 3V ;

3V' ;

F(e) V;

(4)

V is the region,bounded
and e are vector-

where A, B, N and M are linear (differential) operations;
by ÔV, occupied by the body in the unstressed state; ô> e

valued point functions in V (representing displacement, strain and stress
respectively); and X, T, and D are prescribed functions (representing body force,
surface traction and prescribed displacement respectively). Let a progression
P°a) of boundary values in class P(l,l) be defined by

[X,T,D] [A.X0, \T°, 1D°], (5)
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where X0,T°,D° are constant. Assume that a unique solution exists, viz. the
progression

[6,e,a] [6°a),e0a),a°a)]. (6)
Now consider the related class P(%,%) of boundary values obtained by replacing
the constitutive relation q F(e) in Eq. 4 with

a/2 F(e/2), (7)
and let a new progression P(p) of boundary value problems be defined by

[X,T,D] [2^X0,2^0,2^°]. (8)
Then, P(p,) has the solution

[6, e,a] [26°(p),2e°(n),2a°(|i,)], (9)

as is easily verified.

Now, let Eq. 5, with \ increasing from 0 to X+ represent the loading cycle for
a body governed by Eq. 4 with constitutive relation F as in Eq. 1; the ensuing
displacements, strains and stresses are given by Eq. 6. When the load factor
reverses, the corresponding values are given as

[6+,e+,a+] [6°a+),e°a+), °(X+)] (10)

If we make the substitutions
ô - 6+ -* 6,a " o+ "* ,e - e+ e, (11)

the boundary value problem progression for increments of stress, strain and
displacement for the unloading cycle with \ decreasing from X+ to Is generated by
Eq. 8 with p, representing X - X+ Eq. 9 gives the solution. The unloading path
for all points of the body is determined by the corresponding points on the
loading path. We conclude: If a material under cyclic proportional triaxial
deformation follows the Masing relationship, the stresses, strains and deformations
at all points in a body made of this material, subjected to cyclic proportional
loading, will also follow a Masing relationship.

4. SIMPLE MATERIALS

A convenient approximation to the uniaxial hardening curve is the power law

a c (signe) I e|1//n (12)
where c and n are positive material constants. The exponent in parenthesis is
a convenient symbolic notation which reduces to an ordinary exponent if n is an
odd integer.

We may generalize this to complex stress states as follows. Denote the
principal shearing stresses and corresponding strains respectively by

Ti %lCTj " CTkl ; Yi flej " ekl (13)

where i,j,k is any permutation of 1,2,3.

Define the plastic potential as

W Si ^(n+1) + -2n+1) + -3(n+1)l '• <">

Using Eq. 13 this gives the strains

«! ftfai " cr2)(n) - (a3 - aj)^] (15)

and the analogous expressions by cyclic permutation.
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Assume that for a certain value of ~ a2A^ t'le furt^er
stress path corresponds to a change of sign of from positive to negative
while and

takes the form

while and remain positive. Then instead of Eq. 14 the stress potential

it 2nç
r (n+1) (n+1) .(n+1).

W M [T1 + T2 +
3 " T3A ] (16)

yielding readily the stress-strain relations for the new path.

Alternatively we may derive a simplified hardening model already discussed
by Mroz [2], The state of hardening is assumed to be described with sufficient
accuracy in terms of a set of surfaces of constant hardening moduli K da^/de,
where a denotes the component of the stress increment along the normal to the

yield surface and e (de..de..)2 denotes the absolute value of the plastich h
strain increment. Since these surfaces cannot intersect, the active surfaces are
assumed to translate with the stress point and become tangential along the stress
path. For a piecewise linear yield condition this model results in finite stress
strain relations valid in particular sub-domains of stress space similar to the
model described above. Fig. 2 show the translation for two radial stress paths.

FIG. 2. Fields of hardening moduli after plastic loading
(a) along OA (b) along OB

The postulated materials nave piecewise finite stress-strain relations that are
homogeneous functions of order n. The materials may be called simple, incrementally

hyperelastic of order n [4]. For loading increment AA the corresponding
stress increment is everywhere proportional to AA and the corresponding strain
and deformation increments are proportional to AA. If [ô°,£°,a°] solves

[X°,T°,D°], then [ A
(n) S° ,A

(n) e° Aa° ] is the solution field for [AX°,AT°,A(n)D°]
Thus, the entire solution for a cyclic loading (either traction-controlled:
D° - 0 or displacement-controlled: X°,T° 0,0) can be derived from a single
equilibrium solution. This solution can be obtained for many structures of
practical interest, using a variety of numerical methods. We note, in particular
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that the unloaded state is stress free under cyclic proportional loading.

5. EXAMPLE : THICK-WALLED CYLINDER

Consider a long thick-walled tube of internal and external radii a and b,
subjected to internal pressure p varying between the prescribed limits p+ and
p~. A simple, closed form cyclic solution can be obtained when only plastic
strains satisfying Eq. 15 are accounted for. Since the strain normal to the
plane of deformation vanishes, we have

u du

r dr
0 u

A

r (17)

where u denotes the radial displacement and eQ, e are principal strains in the
0 t

ey/
±1 time

FIG. 3. Thick walled cylinder under cyclyclic pressure

plane (r,0) ; A denotes an integration constant. From Eq. 15 we have

e9
C '

(oe CTr)n' sr " C'(cJe ' ar>n'

where C' c(1 + 2 n)/2. The inverse relations take the form

(18)

<?e - - CV
1/n (19)

where C (C ' Using the equilibrium equation

da a - afl—X + s e o
dr r

the stress state within the tube is determined in the form

W > ;/. _

[<!>2/n - n 1 - n "
^a

where the boundary conditions cr

(20)

(21)

p for r a and a 0 for r b
r

have been satisfied. The displacement field is given by

0n n 2
2 p b

Cnnn[(~)2/n - 1]
(22)

Consider now the unloading program. Denote by Ap

Ae„ e_ - e„ > Ae -e0 Instead of Eq. 19 we now have

+ +p-p, Au u-u
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Act0 " A°r 2c("^)1/n D(AeQ)l/n D(^)1/n (23)

where D 2 C. The equilibrium equations now provide expressions for
stresses identical to Eq.21 with p replaced by Ap. The radial displacement for
any p satisfying p~ < p < p+ equals

u2 nb p

u9 „ „ u 9/„ (2n - 2) (24)2
C n [ (~) - 1]

Since the stress state does not depend on constants D or C, upon removal of the
pressure both stresses vanish. Thus, no residual stresses are created for zero
pressure in the steady state. For further repetition of pressure between p+ and
p~, the displacement and stress fields are described by Eqs. 21 and 24.

6. CONCLUSION

Plastic analysis of practica'l structures under variable loading, however
difficult in general, is tractable for cyclic proportional loading when the
plastic behaviour of the material can be adequately described by a Masing-type
relationship with an incremental power-law, and when one solution to the
corresponding static nonlinear elastic boundary value problem can be produced.
An example is given herein; other examples (circular and annular plates, etc.)have
been presented by the authors elsewhere [4]. Experimental verification of the
practical validity of such analysis is currently underway.
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SUMMARY
Piecewise finite representations of material behaviour are proposed for

practical analysis of plastic metal behaviour under cyclic loading.

RESUME
Quelques représentations constitutives finies du matériau sont présentées

pour l'analyse pratique du comportement plastique des structures sous charges
cycliques.

ZUSAMMENFASSUNG
Stückweise endliche Modelle für das Stoffverhalten werden zur praktischen

Berechnung zyklisch beanspruchter plastifizierender Metallkonstruktionen
vorgeschlagen.
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