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The Analysis and Design of Steel Structures Subject of Variable Repeated
Loading

Analyse et dimensionnement des structures en acier soumises à des charges
variables répétées

Analyse und Bemessung von Stahltragwerken unter variabler wiederholter
Belastung

J.M. DAVIES
Reader in Civil Engineering

University of Salford
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1. Introduction

When a framed structure has to resist well-defined repeated loads, the
frequency being such as to eliminate considerations of fatigue, two approaches to
design are possible. The structure may be designed using elastic methods so that
there is a specified factor of safety against yield or, alternatively, the plastic methods
of design may be used whereby the designer chooses an appropriate load factor against
collapse.

When the nature of the repeated loading is such that two or more combinations of
peak loads may occur in approximately cyclic order, plastic design can become
inappropriate due to the danger of either alternating plasticity or incremental collapse
taking place at load levels below the plastic collapse load. In such cases, both steel
and reinforced concrete structures may be rationally and economically designed on the
basis of the shakedown load. This can be seen as a hybrid elastic-plastic approach
whereby the structure has a specified reserve of strength against the onset of either
alternating plasticity or incremental collapse.

The main objections to such an approach are on the grounds of analytical difficulty.
In this paper, a suitable family of computer-orientated techniques for both analysis and
design are described. These are not significantly more expensive to use than the usual
approaches to automatic plastic analysis and design (which they embrace as a special
case). The basis of these techniques is an unusual formulation of the equilibrium
equations for plane, rigid-jointed frames.

2. Equilibrium Equations for Plane Frames

These equations have two forms and it is convenient to consider the general case
first. It is assumed that the shape of the structure has been determined and that the
member sizes are required. The computation is commenced by making an arbitrary
assumption regarding the member cross sections (eg all members identical). Then
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hinges are inserted, one for each degree of statical indeterminacy in such a way that they
do not constitute a mechanism.

The complete stiffness equations for the modified structure can be written down
with the terms corresponding to the inserted hinges partitioned from the terms
corresponding to the original structure.
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Thus, Sjj is stiffness matrix of the original structure, and the other submatrices contain
additional terms associated with the extra hinges. L and D are matrices containing the
vectors of applied load and corresponding displacements and Mg and ©g are noa trices
containing the moments at and rotations of the hinges. We are only concerned with the
terms above the partition line and these can be considered in two alternative ways, as
follows.

(1) For the original structure, loaded by several alternative load combinations
each of which has a corresponding column in the load matrix L, the rotations
©g are zero so that the displacements Dg due to L are given by

-1 „D, 11 (2)

(2) For the unloaded structure, consider a unit rotation at the location of each
inserted hinge in turn. Then ©g becomes a unit matrix and L is null so that
the corresponding displacements Dq are given by

D©=S11
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It is advantageous to combine (2) and (3) so that both can be solved in one operation.

[L KJ (4)

The result on the left hand side of (4) consists of a series of displacement vectors
which can be considered one at a time and the distributions of bending moment calculated
for the 'c' critical sections of the structure. Thus are obtained:-

(1) From vectors Dg, bending moments^^j that are in equilibrium with the
applied loads L. (These are in fact correct elastic bending moments for
an assumed structure).

(2) From vectors Dg, distributions of residual bending moment Kjj that are in
equilibrium with zero applied load and are mutually independent. The number
of these distributions is equal to the degree or redundancy 'r' of the structure.

Combining these results gives generalised equilibrium equations for the structure
in which xj is an arbitrary multiplier for the jth distribution of residual bending moment.

M.l V^i
j=l

Kij xj (1 1, 2, c) (5)

The cost of these equations is a single elastic analysis of the structure with a

possibly large number of right hand sides. The advantage is complete generality
regarding structural shape and loading and a convenient form for the techniques that follow.
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3. Analysis for the Shakedown Load - A Problem Orientated Technique

The most general form of the equilibrium equations has been derived with design
problems in mind. For the analysis of a given structure, equations (1) are the correct
stiffness equations and it is convenient to insert a hinge at each critical section in order
to obtain the particular form of the equilibrium equations.

Mi =Ai +5^Kij ej' (i=1'2 C) (6)

(6), Oj are actual plastic hinge rotations which are initially zero and^fj are
lastic bending moments from which can be extracted the maximum and minim

In
actual elastic bending moments from which can be extracted the maximum and minimum
values at each critical section after considering all possible combinations of loading.

The analysis for the shakedown load involves following the formation of plastic
hinges as the load level increases while maintaining a distribution of residual bending
moment that satisfies the shakedown theorem^). Let first yield take place at critical
section 'I' with load factor Xq and bending moments typified by Mq. Then for further
loading, the bending moment at section must remain at the full plastic moment 'Mp' and
one or other of (7) must apply.

K* 0, -
XVlmin „or fyr\ + ^ ^

At an arbitrary load factor Xj + dX, 6 can be evaluated from (7) and bending
moments typified by Mq' calculated. A linear prediction can then be made for the load
factor X2 at which the next hinge forms.

(- M -M
>2 -\ + (M/- Ml)

<8>

The smallest X2 obtained when the maximum and minimum elastic bending
moments are considered at each critical section in turn locates the next plastic hinge
at (say) section 'm'. Equations (9) now govern further loading.
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The plastic hinge rotations Qg and 9m can be calculated at an arbitrary load factor
greater than X2. a linear prediction made for the load factor at which the next plastic
hinge forms, and the process continued. The formation of successive plastic hinges can
be followed until the shakedown load is reached when an incremental collapse mechanism
exists and the matrix of participating influence coefficients for residual bending moment
becomes singular.

Further consideration, of this technique, including a simple yet accurate allowance
for frame instability, is given elsewhere' '.

4. Analysis for the Shakedown Load - A Linear Programming Technique

Here, the equilibrium equations are also obtained from an analysis of the actual
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structure so that the maximum and minimum elastic bending moments are available but
we use the general form of the equations. The static formulation of the problem then
arises directly from the shakedown theorem, thus: -

Maximise "X

r r
Subject to +> K..X. -> K.. x'. < M' 13 3 W 13 3 pi

(1-1. a 0)
M

Pi
mm -3TK..X. +^>~ K..x'.>.' 1 13 3 i^r 13 3

(10)

This is a linear programming problem which can be readily solved using the dual
simplex algorithm. The alternative kinematic formulation of the problem can be

obtained as the linear programming dual of (10) and given physical meaning^3) but the
above statement has simpler constraints and for that reason is preferred.

Although the linear programming approach leads to a viable method of analysis,
the problem-orientated approach is considerably more efficient. Indeed, the method
described in section 3 is believed to be the most efficient method available for the
calculation of the failure loads of plane frames with frame instability whether or not
repeated loading is involved.

5. Automatic Design for Minimum Weight at the Shakedown Load

Here, the linear programming approach becomes more appropriate but a new
difficulty presents itself. The statement of the problem depends on a knowledge of the
maximum and minimum elastic bending moments which, in turn, depend on the relative
member stiffnesses which are initially unknown. An iterative technique is required
whereby assumed member stiffnesses are successively improved and this is found to
converge rapidly.

The statement of the problem in its static form involves the usual minimisation of
a linear weight function which is the sum of the products of length 'L^' and full plastic
moment 'Mpk' taken over the 'n' groups of members of identical full plastic moment.
Application of the shakedown theorem results in a static yield condition similar to that
obtained in section 4 so that the full statement is: -

n
Minimise "S L, M

k pk

pk

M
pk

r_ / yyigy
Subject to M^ - ^ K.. x. + "^> K„ x'^

1=1 J J (I 1. 2 c)

.r ^ y min
" Ç Kij X

j ^i (11)

This too is a linear programming problem in a form readily solved by the use of
the dual Simplex algorithm. A similar statement to this, and its kinematic dual, have
been discussed in connection with plastic design and it has been shown that a simple
serviceability constraint can be readily incorporated^3).

6. Approximate Minimum Weight Design - A Problem Orientated Approach

This technique results in designs that are almost invariably within 1 or 2% of the

minimum weight but at a greatly reduced cost in computer time. The method is best
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described with reference to an example.

Fig 1 shows a frame which represents a simple
design problem in which two unknown full plastic
moments are to be chosen, Mp^ for the columns and

Mpg for the beam. The vertical load can vary between
zero and 1. 0. Table 1 summarises the design
process. Each of the seven critical sections has two
columns, the numbers corresponding with Fig 1. The
first number refers to the maximum elastic bending
moment, the second to the minimum and these moments
are evaluated in arbitrary units for a frame of arbitrary
stiffness in row 1. Three residual bending moment
distributions corresponding to unit rotations of hinges
at sections 2, 3 and 4 are shown in rows 2, 3 and 4.
The merit of any particular design is judged by the
usual linear weight function, in this case Z 200M +

lOOMp^, which appears in the right hand column.

The design process involves successively reducing the value of the weight function
while satisfying the condition of static yield; equilibrium being ensured by the use of the
generalised equilibrium equations (5).

The numerically largest bending moments present in the columns and the beams
represent a feasible initial design. Thus at the commencement, M 32. 74 units
(section 14) and M 29. 76 units (section 5) and Z 9542 units. The moments
governing the current design at each stage are marked with asterisks.

Plastic Moment MPi Mp2 "pl Mpl Mp2 Mpl z

Section 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 -13.10 -24.41 21.43 0 29.76* -21.43 -28.57 -21.43 -28.57 13.10 -16.67 21.43 29.76 -32.74* 3524

2 m2 952 20950 952 3333 7619 -7619 -12380 -952 20950 952 3333 7619 -7619 -12380

3 m3 -10950 952 10950 -6667 -2381 2381 7619 -10950 952 10950 -6667 -2381 2381 7619

4 m4 6667 3333 -6667 6667 6667 -6667 -3333 6667 3333 -6667 6667 6667 -6667 -3333

5 000568 mg -6. 22 +0.54 +6. 22 -3.79 -1.35 +1.35 +4.33 -6.22 +0.54 +6.22 -3.79 -1.35 +1.35 +4.33

6 -19.32 -23.87 27.65 -3. 79 28.41* -20.07 -24.24 -27.65 -28.03 19.32 -20.46 20. 07 -28.41* -28.41* 3522

7 m2=m2+. 909 -10910 21820 10910 -2728 5454 -5454 -5454 -10910 21820 10910 -2728 5454 -5454 -5454

8 m^^m^-. 636 mg 13640 2727 -13640 10910 8182 -8182 -8182 13640 2727 -13640 10910 8182 -8182 -8182

9 0000344 IÏI4 -0.47 -0. 09 +0.47 -0.38 -0.28 +0.28 +0. 28 -0.47 -0. 09 +0.47 -0.38 -0.28 +0.28 +0.28

10 -19.79 -23.96 28.12 -4.17 28.13* -19.79 -23.96 -28.12* -28.13* 19. 79 -20.83 19.79 -28.13* 28.13* 3438

11 m2 m4 -45000 15000 45000 -30000 -15000 L5000 15000 -45000 15000 45000 -30000 -15000 15000 15000

11 -(0.52x10'^m^' 0.00 0.00 0.00 0. 00 0.00 0. 00 0.00 0. 00 0.00 0.00 0. 00 0. 00 0.00 0.00

13 -19.79 -23.96 28.12* -4.17 28.12* -19.79 -23.96 28.12 28.12* 19.79 -20.83 19.79 -28.12* -28.12* 8437

Table 1. Shakedown Design of Simple Portal Frame

This design can be improved by either adding or subtracting a small proportion of

any of the available residual bending moment distributions in rows 2, 3 and 4. The one

that makes possible the greatest weight reduction is to be chosen. For example, if a

small proportion of row 2 is subtracted from row 1, the moments at sections 5 and 14
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Fig 1. Simple Design Problem
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both reduce and the weight reduces. A limit is reached when the increasing moment at
some other section becomes equal to the falling moment governing the design at that
section. When each of rows 2, 3 and 4 are considered in this way, it is found that the

greatest weight reduction is obtained by adding 0. 000568 x row 3 to row 1 thus equalising
the moments at sections 13 and 14. This step is summarised in rows 5 and 6 in Table 1.

Before proceeding further, it is necessary to ensure that this equality of bending
moments is not violated at a later stage. This can be readily achieved by combining the
distributions of residual bending moment so that they too exhibit the same equality.
This involves reducing by one the number of such distributions, the equations necessary
to achieve this and the resulting distributions being shown in rows 7 and 8.

Rows 6-8 can now be seen to be a starting point for another weight reducing step,
being directly analogous to rows 1-4. This step is summarised by rows 9 and 10.
The process can be continued until each of the available residual bending moment
distributions has been combined with the elastic bending moment distribution at which stage no
further weight reducing steps can be made. This final design is given in row 13 of the
table.

For this example the final design is in fact optimal, being identical to that obtained
by linear programming. In general this will not be so but the final design will be so
close to the optimum that the difference is unsignificant when translated into available
sections. Here also, iteration of member stiffnesses is usuall required though with this
particular example, the final design results in a frame of uniform section which coincides
with the initial assumption so that no iteration is required.

This technique has been described in greater detail, with particular reference to
collapse design, in reference 4, where examples of its use are given and compared with
solutions obtained by linear programming.
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SUMMARY

This paper is concerned with plane steel frameworks for which the limiting
load is the shakedown load. It describes techniques for both analysis and design
which are all based on an unusual derivation of generalised equilibrium equations.
Both linear programming formulations sind problem-orientated techniques are
described, the latter being considerably more efficient.
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RESUME

Ce travail étudie des cadres plans en acier pour lesquels la charge limite est
la charge de rupture. Il décrit des méthodes pour, l'analyse et le dimensionnement
basées sur une dérivation inhabituelle des équations d'équilibre généralisées. Il
présente à la fois les méthodes de programmation linéaire et les techniqùes spécifiques

adaptées au problème, les dernières étant plus efficaces.

ZUSAMMENFASSUNG

Dieser Aufsatz befasst sich mit ebenen Stahlrahmen, für die die Grenzlast
die "Shakedown"-Last ist. Er beschreibt Methoden zur Berechnung und Bemessung,
die sich alle auf einer ungewöhnlichen Ableitung der verallgemeinerten
Gleichgewichtsgleichungen aufbauen. Es werden Formulierungen zum linearen Programmieren

und problemorientierte Techniken beschrieben, wobei letztere bedeutend
leistungsfähiger sind.
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