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Deformation of Concrete Structures
Theoretical Basis for the Calculation

Deformation des structures en beton
Base theorique pour le calcul

Formänderungen von Stahlbetontragwerken
Theoretische Grundlagen für die Berechnung

R. FAVRE M. KOPRIMA J.-C. PUTALLAZ

Professor Dr. sc. techn. Research Assistant

Institute of Structural Engineering (IBAP), EPFL
Lausanne, Switzerland

SUMMARY
This document presents the theoretical basis for a calculation of deformation consistent with
the 1978 CEB/FIP Model Code. It has been elaborated by the authors within Commission V of
CEB in view of a "Cracking and Deformation" manual and was approved by the General
Assembly of CEB in Budapest in June 1980. It deals with the calculation of the curvatures
and deformations resulting from bending moments with possible axial load. Cracking, creep
and shrinkage are taken into account. A further publication will present practical applications
and a comparison with laboratory test results.

resum£
Ce document presente la base theorique pour un calcul des deformations conforme au
Code-Modele CEB/FIP 1978. II a ete elabore par les auteurs au sein de la Commission V du
CEB en vue de la redaction d'un manuel «Fissuration et Deformation» et a ete approuve par
l'Assemblee generale du CEB ä Budapest en juin 1980. II traite le calcul des courbures et des
deformations par suite de moments de flexion avec un effort normal eventuel, tout en tenant
compte de la fissuration, du fluage et du retrait. Une publication ulterieure presentera
des applications pratiques et une comparaison avec des resultats d'essais en laboratoire.

ZUSAMMENFASSUNG
Im vorliegenden Bericht werden die theoretischen Grundlagen für die Berechnung von
Formänderungen gemäss CEB/FIP-Mustervorschrift dargestellt. Diese Grundlagen wurden
von den Verfassern im Rahmen der Kommission V des CEB im Hinblick auf ein Handbuch
«Rissbildung und Verformung» erarbeitet und von der Generalversammlung des CEB in
Budapest im Juni 1980 bestätigt. Sie behandeln die Berechnung von Krümmungen und
Verformungen, welche aufgrund von Biegemomenten eventuell mit einer Normalkraft
zusammen entstehen. Der Rissebildung sowie dem Kriechen und Schwinden wird dabei
Rechnung getragen. Eine später erscheinende Publikation wird Anwendungsbeispiele und
einen Vergleich mit Resultaten aus Laborversuchen beinhalten.
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INTRODUCTION

The 1978 CEB-FIP Model Code gives in chapter 16 the principles for the calculation

of deformations.

In order to enable the practising engineer to use these principles, it is
important to supply him with as clear and simple tools as the subjeet allows.
The objeet is to introduce a physical model of very general validity by means

of which the entire cracking problem can be reduced to the simple state I and

State II0 cases. The distribution ratio c between these states is given by
formula [15.5] of the Model Code. With the physical model proposed, the
calculation of curvatures remains the same whatever the value of c. Any improvement

to formula [15.5] in future years will not change in any way the principle
of the method.

The considerations apply to linear Systems subjected to bending; indications
with regard to expanding to plane Systems are also given. The influence of
shear and torsion will be dealt with separately.

1. BASIC ASSUMPTIONS

1.1 Mean strain of the reinforcement

Let L\SL be the total elongation of a reinforced concrete tie member of
length SL, subjected to a constant axial tensile force N a • A

The mean strain of the reinforcement is equal to (fig. 1.1):

e =M e Ae (1.1)
sm x, sz s

where Ae representing the contribution of the concrete in tension between
the cracRs, follows a hyperbolic law above a which has been confirmed
experimentally:

Ae Ae • (a /o „) (1.2)
s smax sr sz

By replacing Ae in (1.1) one obtains successively:

e e „ - Ae • (a /a „)
sm sz smax sr sz

e „ - (e - e • (a la „)sz sr er sr sz

e • (1 - (o /(E -e ,))-(a la + e •(a la Xsz sr s sz sr sz sl sr s2

e • (1 - 'a Ja X) + e • (ola)2sz sr sz sl sr sz

wherefrom

e (l-c)-e + ce „sm sl s2 (1.3)
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(1-c)-£s1

ffs2

A£C-£s2
Es2Es1 sm

s2

A

A£ s max

Fig. 1.1 Stress-strain curve for the reinforcing steel

Notation :

c 1

s2

'sl

's2

a o2s2
- distribution ratio; (1.4)

- stress in the reinforcement in the cracked section, under the
combination of actions under consideration;

- stress in the reinforcement calculated on the assumption of a

cracked section, where the maximum tensile stress in the
concrete (uncracked section) is taken equal to (clause 16.2.1 of
the Model Code):

f _ __ : in order to prevent damagectk 0,05 v b

ctm in order to calculate the camber;

- strain in the reinforcement situated in the embedment zone in
State I, i.e. taking into consideration the uncracked section;

- strain in the reinforcement situated in the embedment zone in
nacked State II, i.e. neglecting the contribution of the concrete
in tension between the cracks;

- strain in the reinforcement E „, corresponding to 0 ;s2 sr

- strain in the concrete at the level of the reinforcement,
corresponding to OsrJ

- area of the reinforcement.
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The formulation (1.3) of the mean strain esm in the reinforcement enables us to
calculate the deformations of an element subjected to tension; the same expression

is proposed for the calculation of deformations due to bending.

Note: In order to calculate the crack widths, one only needs the increase of
the mean strain of the steel with respect to that of the adjacent
concrete (c'E r.) r denoted by e in eq. [15.5] of the Model Code.

s2 sm

In order to take into account the bond properties of the bars and the influence
of the duration of the application and the repetition of loads, the Model Code

proposes in clause 15.2.3 to introduce two coefficients ß. and ß„ which correct
the expression giving c:

1 " h ' h ' (77)2
sz

(1.5)

with

coefficient which characterizes the bond properties ofX 2,5-K,1 the bars:

K 0,4 for high bond bars,
K 0,8 for piain bars;

ß„ - coefficient representing the influence of the duration of the
application and repetition of the loads:

ß_ 1,0 at first loading,
ß„ 0,5 for loads applied in a sustained manner or for a large

number of load cycles.

1.2 Calculation modeis

From the expression (1.3):
A5,

e -r- (1-c) • e + c • e „sm £ sl sz

calculation modeis are established, which are equally valid for elements
subjected to pure tension or to bending.

5l£!?::Dts_subje^te^_to_2ur extension (N const- along the length SL)

The real element can be represented by means of a model composed of two parts
(fig. 1.2):

one acting in State I (uncracked sections),

the other in State II0 (nacked State II, cracked sections: only the concrete
in compression and the reinforcement are considered).

The respective lengths IL. and Z„ are to be defined:

As

- M sl 1 s2 2

sm
"

SL SL SL
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the comparison with expression (1.3) gives:

«, (1-c) • SL
SL2 c • l

REAL ELEMENT MODEL
working

J concrete

»0 I "o
VeS2

l2/2
\-Es1

ll l2/2
1

Fig. 1.2 Calculation model - pure tension

Note: It is also possible to consider a model composed of two elements of
length SL, one of which acting in State I, is subjected to (l-c)-times
the load effects and the other, acting in State HQ, subjected to c-times
the load effects (fig. 1.2a):

REAL ELEMENT MODEL

X
N (1-c)-N

T

workingj concrete

i

1-c)-ss1

+

(1-c)-N

c-N

"o
Vc-cs2

1

-* »-

c-N

Fig. 1.2a Calculation model - pure tension

5i£?2EHX£:i-?i..?£.E5:.öl_'2_Eyie_keB^in£ (M const. along a length s)

The real element of length s, along which the bending moment can be assumed
constant,is once more replaced by a model composed of two parts (fig. 1.3):

one acting in State I,
one acting in State II
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From the mean strain in the reinforcement in tension

As e 's. e -s0s sl 1 sz z
e » - + (1-c) • e + c • e

sm s s s sl s2

one obtains lengths s (state I) and s„ (state H0) :

sl (1-c) • s s~ c • s

Therefore, the mean strain in the concrete in the upper fibre is:
As e *s_ e •s.c cl 1 c2 2

e » + (l-c) •e,+c*e«cm s s s cl cz

REAL ELEMENT
- ecm

M

X
MODEL

rc2 i? working
concrete

Hr

T£s2
S2/2

T
ES1

81 S2/2

XJ

Fig. 1.3 Calculation model - pure bending

Note: One can once again consider a model composed of two elements of length SL,

one of which, acting in state I, is subjected to (1-c)-times the load
effects and the other, acting in State II0, is subjected to c-times the
load effects (fig. 1.3a).

REAL ELEMENT

rECm

MODEL

TI:
M (1-c)-M 4

r(1-C)'Ecl working
/ J concrete

\_(1-C)-ES,
(1-c)-M

r^ ' £c2 rworkmg
7 j concrete t2

r-M "o I

\-C-Us2

s

c-M

Fig. 1.3a Calculation model - pure bending
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Elements_subj^cted_to_combined_bending (M and N const. along a length s)

The same calculation modeis can be retained (fig. 1.4). One should however
remark that neutral axis depends on the load effects (x f(M/N));the
calculation, especially in State II is therefore more complicated.

In a further article, we will deal in more detail with the problem of combined

bending as well as the possible simplifications for practical applications.

Srf

REAL ELEMENT

r Ecm

r.
M

FIRST MODEL

rEc2

x f(M/NL

M
II r

T£s2

s2/2

/-£c1 rworkmg/ /concrete

i
Les1

^1
S

s2/2

'Sri

SECOND MODEL

(1-c)-£c1 working
/ / concrete

.(1-O-N/
(1-c)-M -|

T

v (l-c)-N

(1-c)-M

C-N«4
c-M

(1-C)-£S1

C-£c2 working X=f(M/N)f } concrete f
c-N

TC-£s2

c-M

Fig. 1.4 General calculation model
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2. CURVATURES

At every point of the structure, the curvature (see fig. 2.1) is given by:

iL
E I

e -e
s c

V-u.

dx

Fig. 2.1

The calculation of the curvatures in states I and II is made from the basic
o

curvature
M

K ^zzr-c EI (2.1)

where EIC is the bending stiffness corresponding to the section of concrete
alone. The basic curvature Kc is modified by the correction coefficients k
(see § 2.2) in order to take into account the reinforcement and creep; the
effect of shrinkage is considered separately.

The calculation of the mean curvatures is carried out by means of the
appropriate modeis (fig. 1.3, 1.4).

2.1 Curvatures in the different states

Curvature in State I: K
10 l(p ls

The curvature K, in State I represents the lower limit of the mean curvature K
1 r m

Calculated from the basic curvature K by introducing the effect of the
reinforcement (correction coefficient k.), it can be expressed at the time t 0 by:

<10 kAl (2.2a)

At the time t, taking into account only the permanent loads (g), the increase
of curvature due to creep (creep coefficient cp, correction coefficient k can
be expressed by:

k, » (k. • k • <p)
I9 AI <pl T cg

(2.2b)

The curvature due to shrinkage (strain in the concrete due to shrinkage e

correction coefficient k is given by:

"ls sl
CS (2.2c)
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Curvature in State II K2 K20 + K29 + K2s

The curvature K. in State II represents the upper limit of the mean curvature
2 o

Similarly to what was done in State I, one can write:

K20 kA2 ' Kc

X (k,, • k • a>) • K
29 A2 92 T cg

K. k
2s s2

for t 0 (2.3a)

effect of creep (2.3b)

effect of shrinkage (2.3c)

Mean curvature K :
m-

The mean curvature K is given in a general manner (clause 16.2.2 of the Model
^ m

Code) by

M e -e
sm cm

Km ' W ~ d
m

(2.4)

Referring to the model presented previously, one obtains (see fig. 2.2):

(1-c)

£srn

Sd

«Sl

H (1-C)-SS1

Es2

hC-£c2

A C-ES2

Fig.. 2.2 Mean curvature

e (1-c) • e + c • e
sm sl s2

e (1-c) • e + c • e „cm cl c2

and the mean curvature (eq. 2.4) is expressed by:

K (1-c) • Kn + c • K„
m 1 z

(2.5a)

(2.5b)

(2.6)
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Figure 2.3 shows an example of evolution of a curvature through the different
states, at times t 0 and t.

t-0

Ts2

,K1

K1 IC-(K2-K^) X*2
v iL v ») \X'i —

d-c)'^-^)
Os2

tension

stiffening
of concrete

S2

K., /c*(K2-Ki)
*2

«*s2

(1-c)-(k,-kVI w vn.2 >»1

tension
stiffening
of concrete

-K

Km= (l-CV^ + C-K Km (1-C)-K1 + C-K2

Fig. 2.3 Curvatures

2.2 Indications on the establishment of the k coefficients

The establishment of the k coefficients is shown for a section with one axis of
symmetry (fig. 2.4).

9 • -rr-
ES'

X 'A/n

Fig. 2.4 Section
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The following notation is used:

t - centre of gravity of the active section of concrete (in state I:
the entire section of concrete; in State II: the section of
concrete in compression);

t - centre of gravity of the entire reinforcement;
A

d - effective height;
x position of the neutral axis (x in state I and x in state II);
y - oriented distance between the centres of gravity of the active

section of concrete (t and the entire reinforcement (t );

A^ - active section of concrete;

A - entire section of reinforcement;

I - moment of inertia of the section of concrete with respect to its
c

centre of gravity;

I - moment of inertia of the idealized active section (taking into
account the reinforcement) with respect to the neutral axis;

I - moment of inertia of the active section of concrete with respect
to its centre of gravity;

I, - moment of inertia of the entire reinforcement with respect to its
A _centre of gravity;

I„ - moment of inertia of the active section of concrete with respect
to the neutral axis;

I - moment of inertia of the entire reinforcement with respect to the
neutral axis;

O a a, - stresses at the centre of gravity of the entire reinfor-
A AO AcpT cement in general, at times t 0 and t (taking creep into

account) respectively;

a O a - stresses at the centre of gravity of the active section
of concrete;

£.i £.„. £. - strains at the centre of gravity of the entire reinforce-A AO A9 o jT ment;

e_, e„„, e„ - strains at the centre of gravity of the active section of
B BO Bcp ° 'T concrete.
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Coefficient of correction k,:A

Let us express the curvature at the time t 0 (Kq, k-^0 for state I, <2o ^or
State II0) by means of the basic curvature Kc; this relation being linear for
a given section

K k • K
0 A c

one obtains for k.:A

l< M/(EI EI EI I
0

_ x
_

c c c _ c

A "
K M/(EI " EI E I +E I " I„ +nIA

c c x c Bx s Ax Bx Ax

Note: The neutral axis, in State I or II is determined by
o

yB ^A yA

x
d AB d

d nA.
1

A

AB

Coefficient of correction k :
<p

Let us express by means of the curvature at the time t 0 due to the permanent
loads

K k, • K
0 A cg

the increase of curvature due to creep (k K, for State I, K. for State II ):
<p lq> 29 o

K cp • k • K„
9 T 9 0

Coefficient k can be developed as follows:
9

K
1 JEk — • -f-

<P 9 K0

°10
m

x!bc£ -. _J£
I.(e -e r ' 9 +"/ • (1+X'9) " "B

I y B9 kg' I _£ c s

9 r(eBo-w * °-f-a-f3 E E
c s

Note: X " aging coefficient - see Model Code - appendix e.

By introducing the condition of equivalence between the internal forces (M,N,...)
and the stresses (o,t) in the section

°B ' h + °A * AA °



IABSE PERIODICA 1/1981 IABSE SURVEYS S-16/81 13

one finds:

E Aa i X E A,s A 1 Acp s A
+ - • " t ' (1 + -z~ • (1 + X * 9>)Ech l qAQ Ec

k
E AA

1 +
S A

E h
The only unknown is the ratio a^/a^Q which can be determined by means of the
conditions of compatibility (between the concrete and steel) and of equivalence;
one obtains:

s A s A

a4
l ~ TUT ' TT * (1 + x ' &

A9
_

c B c B

ÖA0

and therefore for coefficient k :
9

^a nIAA A
1 - — • — (1 + x • 9)

nA

1+AB

r-A -Ä_Ä__ "a i

with

nA A
D 1 + -A (1 + J. y2) (1 + X • 9) +

AB \
nIA ^A

+ T~ (1 + X ' 9) * (1 + T~ ' (1 + X • 9))
B *B

Coefficient of correction k :
s

Let us express the curvature due to shrinkage K (k for State I, K - for
r .- TT s sl s2

State II ):
o



J4 IABSE SURVEYS S-16/81 iabse periodica 1/1981 ¦#%

1 1 Bs As.
k - • (en - e. - • (-=— « (1 + x * 9> + X„ " ~Z~~^

s y Bs As y E T es E
* c s

By introducing the condition of equivalence one finds:

Ks e-X' (1-F^-' (1+FX' a + x-9)»
S CS C B

The only unknown, the ratio o"as/(Es 'Ecs), can be determined by means of the
conditions of compatibility and of equivalence; one obtains:

E IA
i + yj- - (i + x • q>)

As c B

E • e D
S CS

and therefore for the curvature K

^A
£cs h

K

yd • (1 + x • 9)

With

s d D

e
es

k —— • k
s d s

the coefficient k becomes:
s

^A

k B
— • yd • (1 + x • 9)

s D

Note: The coefficients kA, km, ks are dimensionless and can be tabulated for
different types of sections. We give here, as an example, the graphical
representation of each of the coefficients for a rectangular section.
These curves were established by means of a program developed at the
Institute of Reinforced and Prestressed Concrete (IBAP) of the Swiss
Federal Institute of Technology in Lausanne.
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3. CALCULATION OF THE DEFORMATIONS BY INTEGRATION

The deformations can be obtained by double Integration of the mean curvature K

(eq. 2.6) along the element, respecting the end conditions.
The deformation a (displacement, rotation) of an element can be obtained by the
virtual work theorem:

-/" ¦J m
M dx (3.1)

The development of the calculation is as follows:

From the basic flexural stiffnesses (uncracked sections, effect of the reinforcement

neglected), one calculates the bending moments Mc. The basic curvatures
K M /EI then enable us to calculate the curvatures k, in state I and k_ in

c c c 1 z
State II The mean curvatures are defined by (eq. 2.6):

o

K (1-C) • K. + C • K
m

with (eq. 1.5)

c - 1 - f

1 ' " ~2

s2

For statically determinate structures, the calculation of the mean curvature
ends here. For statically indeterminate structures, however, the calculation
becomes iterative due to the redistribution of moments (cracking, creep). The mean

flexural stiffnesses

M

EI --£
m k

m

make it possible to recalculate the bending moments M. The cycle previously
described is then carried out again. The iteration is completed when the difference
in flexural stiffnesses of two consecutive cycles is judged acceptable.

The mean stiffnesses thus obtained enable us to calculate deformation a (eq. 3.1)
by numerical Integration.

The calculation is tedious and requires in most cases the use of the Computer.
This difficulty is the reason for research for simplified calculation modeis.

4. PRACTICAL CALCULATION OF DEFLECTIONS : BILINEAR METHOD

In order to determine the probable deflection a, the theorem of virtual work is
applied:

/< M
m

dx

The difficulty consists, as we saw in the previous chapter, in the calculation
of the mean curvatures:

k (1-c) Kn + c K„
m Lz
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The bilinear method, which is based on the fact that the deflection-load
relationship, in the serviceability State, can be approached by a bilinear function,
enables us to avoid this difficulty by reducing the essential of the calculation
to that of a single section, the determinant Section. The latter is defined as
the section where the deflection is calculated, in mid-span, or the end restraint
section for a cantilever.

The simplifications made are situated at two levels, one concerning the
coefficient c, the other the deflections a. and a..

4.1 Simplification of coefficient c

For a given load level, coefficient c defined by eq. 1.5
2

der
c 1 - h • ß2 • f-,us2

varies along the length of the element.

The following simplifications, considered acceptable,

- the stress Osr is assumed constant and equal to the stress asr in the
determinant section: asr constant;

- the stress as2 is assumed constant and equal to the geometrical mean of the
stresses 0"sr and as2 ctsd in the determinant section:

V<?s2 't/c'sr * asD

lead to

1 - const. for a given load level
0"sD

Let us replace the ratio a /a by the ratio of the corresponding moments:

sD \
VL being the moment calculated in the determinant section and M the cracking
moment in the same section, as defined in the Model-Code-clause 16.2.1:

M W
ct

(4.1)

with
f f _, for the prevention of damage;
ct ct0,05 v

fctm for the calculation of camber;
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A - idealized section, taking the reinforcement into account (state I);
W - modulus of inertia of the idealized section with respect to the

neutral axis (state I).
The final expression for the simplified coefficent c is:

1 -
»D

(4.2)

4.2 Bilinear method

The probable deflection is given by:

a /k M dx
«/ m

- /((l-iO.Kj + c. K2) M dx

By introducing the simplifications indicated in § 4.1, the coefficient c given
by eq. (4.2) becomes independent of x and can be placed in front of the integral:

a (1-c) A M dx + c ¦fr M dx

As

*1 fil
ß2x

a, » f K, M dx - deflection in State I
dx - deflection in state II

we obtain

a (1-c) a + c (4.3)

It is obvious that this relationship is bilinear (see fig. 4.1). The deflections
ai in state I and a^ i-n State IIQ represent the extremes of the probable deflection

a.

These deflections a-i and a^ can be calculated in an exact manner from the curvatures

K\ and <2 defined by eq. (2.2) and (2.3).
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M

Mr-

a a2

M

a, / /c-(a2-a^

/
< (1-c)-(a2-a,li XX//:•• //

a (1-c)-a-|+ c-a2

Fig. 4.1 Bilinear relationship deflection - moment

Due to the very distribution of the reinforcement and that of the virtual
moment M, the Variation of the correction coefficients k along the element
can be neglected and one obtains successively for the deflections a-^ and 82:

\ "ßl •«•*"¦/ K + K. + K. M dx
10 I9 ls

+ k., k 9 k +k_. '—t— ') M dx
c AI 9I cg sl d

al kAl a + kAi
c AI V 9 ¦ a + k _

1—£2.1 f\lA\. dx
cg sl d J

and s iinilarly

a2 kA2 3 + kAT
c A2 • V • 9

iE I /»

a + k l~} #|M| dx
cg s2 d J ' '

(4.4a)

(4.4b)

Notation:

a - basic deflection (section of concrete only);
c

a - basic deflection due to the permanent loads;
_cg
M - virtual moment in the statically indeterminate system;

coefficient of correction of the determinant section.
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Notes: 1) This method can be improved, but at the cost of simplicity, by intro-
ducing, for example, for coefficient c:

a .M

D

where

a - modifies the point of intersection of the two lines;
M

a - modifies the slope in State IIp o

Coefficients aM and dp could be determined and tabulated as functions
of the end fixity and of the distribution of the reinforcement.

2) A possible redistribution of the moments (Model-Code clause 8.3.2)
that will influence moment M must be taken into account.

D

Summary of the bilinear method for the calculation of deflections:

In order to calculate the probable deflection a, it is necessary to determine
successively:
1. the basic deflection a ;

c

2. the extremes a and a (eq. 4.4);

3. the cracking moment M (eq. 4.1);

4. the maximum moment V
5. the probable deflection a (eq. 4.3).
It is obvious that all these values must be calculated for the same load.

Extension to the calculation_of_the_deflection_of_slabs:

In order to determine the probable deflection a of a reinforced or prestressed
concrete slab, the method described above is applied according to the following
procedure:

1. Calculation of a by means of a classical elastic method. At this point one
could intrc
most cases.
could introduce the effect of the anisotropy, which, however, is negligible in

2. Calculation of max m max m in the considered field. The section in which
the greatest positive moment acts is determinant (this section does not necessarily

coincide with the spot where the basic deflection ac was established):
the coefficients of correction as well as the cracking moment are determined for
this section.

3. Calculation of a., a. and of the probable deflection a.

Notes: 1) m p, p' are introduced per unit of width.

2) Tests are at present being carried out at IBAP, which should allow veri¬
fication of this procedure, especially of the influence of long term
effects.
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5. ESTIMATION OF DEFLECTIONS

In the majority of cases in practice, at the preliminary design stage especially,
the practising engineer is only interested in a simple estimation of the probable
deflection. To this effect, we propose a simplified method, based on the bilinear
method.

In general, the probable deflection due to the permanent loads is given by (see
§ 4)

a • (k + k ¦ 9)
cg o t T (5.1)

with

a - basic deflection due to the permanent loads, calculated with
°8 EI E I ;

c c

k - coefficient of correction taking into account the reinforcement and

cracking for the calculation of the immediate deflection:
k k + c • (k - k41) (5.2)

o AI A2 AI

k - coefficient of correction taking into account the reinforcement,
cracking and creep for the calculation of the part of the deflection

due to creep:
k - kA1 • k + c • (k.. • k - kA1 • k (5.3)t AI 9I A2 92 AI 9I

By fixing the following parameters:

d/h 0,9 d'/h =0,1 x ' 9 2

coefficients k0 and kt that are indispensable to the calculation can be tabulated

as functions of the following parameters:

n • p p'/p c

Knowing the basic deflection aCg, the cracking moment Mr and the working
moment Mn in the determinant section, one calculates the coefficient c and

one estimates the percentages of reinforcement p and p' in the same section.
These parameters c, p and p' enable then to read in a table the coefficients
k0 and kt from which one determines the probable deflection a.

The calculation is thereby greatly simplified, but still provides a reasonable
estimation of the deflection.
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CONCLUSIONS

The definition of calculation modeis composed of two parts, one acting in State
I and the other in State II enabled us to deal with the problem of deformations
due to bending by means of an exact method. The successive introduction of a
number of simplifications led us to a bilinear method for the calculation of
deflections and then to a simplified form of this same method, allowing a rapid
estimation of deflection.

For practical applications, it is indispensable to have aids to ease the calculation

of the coefficients of correction k. One can refer for this to [3] or
to the CEB/FIP "Cracking and Deformation" Manual, at present being prepared.
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