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Abstract

The behaviour of cantilever beams under the constraint of symmetrical
and unsymmetrical cyclic deflections is investigated theoretically as well as

experimentally. An analytical technique is developed to predict the behaviour
of cantilever beams from cyclic moment-curvature relations derived from
cyclic strain control tests. Twenty tests were conducted on rectangular structural

steel sections under pure bending to establish these relations which
couple the moment ränge and mean moment to curvature ränge. A linear
nonlinear model is proposed which fits the moment ränge data; a tripartite model
is suggested to fit the mean moment data. The modeis are capable of accom-
modating, in discrete form, the phenomena of hardening and softening of
aggregation of fibers constituting a structural section as well as relaxation of
the mean moment.

Nine tests were conducted on cantilever beams under completely and
partially reversed tip deflections. The load ränge changed little with changes
in mean deflection. The mean load, in general, relaxed with increasing cycling.
The theory presented modelled the experimental behaviour fairly accurately.
It also suggested that the behaviour may be comprised of
1. an elastic case, where mean load is proportional to load ränge,
2. an intermediate ränge where the effects of mean deflection cannot be

ignored, and
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3. the case of large inelastic cyclic deformation where the effects of mean
deflection can be completely ignored except for associated changes in structural

geometry and its secondary membrane effects.

Introduction

Cyclic loads have long been recognized as a cause of failure in structural
elements such as aircraft components, pressure vessels, turbines, etc. These
loads usually produce nominal (global) elastic stresses and highly localized
plastic flow leading to conventional fatigue failure. Despite the fact that this
topic has been the subject of extensive study, the phenomenon of fatigue is
not yet fully understood from the engineering point of view. Low-cycle fatigue,
on the other hand, deals with failure of components where the stress is in
excess of the yield stress and the number of cycles necessary to promote failure
ranges from one quarter of a cycle (monotonic failure) to IO5. Failure at IO6

cycles or more is considered to be the domain of conventional or high-cycle
fatigue.

Most of the early work involving repeated loads on structures above the
elastic limit concerned the shakedown problem. Neal [1] proved that a structure

can accumulate increasing deflections under a particular load cycle such
that the structure becomes unserviceable. This kind of failure was designated
"incremental collapse". Various experiments [2, 3] were conducted to establish
the shakedown load leading to the proposition that theoretical predictions of
shakedown loads are, in general, conservative. The main reason for such

divergence between theory and experiment is that section behaviour is assumed

to be invariant (elastic-plastic or static strain-hardening) regardless of cyclic
history.

An altogether different approach to the same problem includes provision
for the change in material response to cyclic loads and consideration of the
highly non-linear nature of the problem.

The nature of the cyclic loading on structures is random, and consequently
it is very difficult to study such a complex problem directly. The loading
conditions can be divided simplistically into load and deformation control. At
the structural, sectional and fiber level this corresponds respectively to load,
moment and stress on the one hand, and deflection, curvature and elongation
on the other.

Royles [4] suggested a moment-curvature relation derived from stable
sectional behaviour under deformation control conditions. He predicted the
behaviour of single and three-span continuous beams under completely reversed
deflections, each subjected to a single concentrated load at the central section.
Experiments were conducted on similar structures and the results were
compared with theoretical predictions.
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Sherbourne and Krishnasamy [5] suggested two modeis for the cyclic
moment-curvature relation under deformation control: one model takes into
account initial linear elastic behaviour and the other ignores it. They predicted
the cyclic response of a cantilever beam under a single concentrated load at
its tip. The tip deflection was cycled between two fixed Symmetrie values.
Tests were carried out on the same beam configuration and experimental
results were found to be in reasonable agreement with theoretical predictions.

A major shortcoming of the method after Royles was its inability to predict
the behaviour of the structure at each cycle of loading. The theory developed
by Sherbourne and Krishnasamy, however, can predict the response of a
structure at every stage of loading.

Topper [6] suggested a derivation of the cyclic moment-curvature relation
(for deformation control problem) from cyclic stress-strain data and section
geometry. This idea was developed by other researchers (Royles [4],
Sherbourne and Krishnasamy [5]) and proved acceptable.

A moment-curvature model under load control was suggested by Krishnasamy

et al. [7]. It incorporates cyclic strain aecumulation effects (creep) by
introducing a cyclic (or time) dependent function into the moment-curvature
relation. Using this expression one can predict the behaviour of a cantilever
beam under completely reversed load applied at its tip. Experiments were
performed on similar structures to verify theoretical predictions.

In the load and deformation control problems discussed above, only fully
reversed (or alternating) conditions were considered. But it is seldom that a
structural element will be subjected to alternating loading only and, here, it is

necessary to investigate situations where mean loading is present.
The present work concerns mild steel beams under deflection control where

the limits of cyclic deflection need not be symmetrical about the initial rest
position. Obviously, unsymmetrical deflection limits will, in general, give rise
to mean load, present at all times in the system; the relaxation of this mean
load is also investigated. The theory postulated herein proposes that cyclic
structural behaviour can be predicted from sectional behaviour where the
latter is a function of cyclic material properties and sectional geometry. Hence,
relevant moment-curvature modeis can also be developed under these ambient
conditions.

Experimental

The experimental program is divided into two parts. The first consists of
experiments on pure bending specimens to establish cyclic moment-curvature
relations. The second part is concerned with the testing of a set of cantilever
beams subjected to cyclic unsymmetric deflections. Both the pure bending
and the cantilever beam specimens were made from the same material, reeeived
the same heat treatment and were tested under similar ambient conditions.
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The specimens were machined from 3/8Xl1/2,/ hot-rolled, semi-killed, 1020

mild steel bars, the chemical composition of which is shown below.

Si s P Mn C Ni Cr Mo V Cu Fe

0.210 0.025 0.010 0.710 0.203 0.063 0.050 0.010 0.003 0.16 remainder

Fig. 1 shows a monotonic stress-strain curve obtained from a typical axially
loaded coupon. The experiment was conducted in an Instron Universal Testing
Machine and strains were measured by a clip-on extensometer mounted on
the test section of the specimen.
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All specimens were rough machined and then stress-relieved by retreating
at 1600° F for a half hour and air cooling to room temperature. The final finish
was carried out with care to minimize any residual stresses that might be
induced.

The frequency of cycling for both kinds of tests (pure bending and cantilever)

ranged between 6 and 15 cpm. Sufficient evidence is available to show
that material response in this ränge can be considered as practically independent
of frequency [8]. Moreover, the experiments were conducted under deformation

control. Keshavan [8] showed that frequency plays a more significant
role in load control than in deformation control. The wave shape used was
sinusoidal throughout the experiments; the effects of wave shape are discussed
elsewhere [8].

The test frame used employed a closed-loop servo-hydraulic (self-cor-
recting) system, Fig. 2. A hydraulic actuator applied the load to the specimen
and a load cell measured the load or reaction, depending upon the set-up of
the testing fixture. The actuator ram displacement is measured electrically
by means of a Linear Variable Differential Transformer (LVDT). Either the
load or the ram displacement signal can be used as a control mechanism; thus
one can obtain load or stroke control.

The pure bending device shown in Fig. 3 and used by previous researchers
[9] is used in the present study. It makes use of the principle of four-point
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loading which produces a region of uniform moment in which the bending
specimen of Fig. 4 is placed. The device basically "converts the axial movement
of the (test frame) ram into two equal and opposite rotations" at the ends of
the bending specimen [9]. From the dimensions of the device, the uniform
bending moment can be related to the load as measured by the load cell. The
relation between ram displacement (stroke) and test section curvature was
established experimentally as indicated in Fig. 5. The advantages of using
stroke control (the case in the present work) over curvature control (measuring
the extreme fiber strain by an extensometer) are indicated elsewhere [10].
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Fig. 5. Stroke Versus Strain Calibra-
tion Chart.
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The cantilever beam specimen is shown in Fig. 6. The depth of its haunched
section is a function of the location and the two radii of fillet curvature
(Appendix I). Each radius was measured accurately by means of an optical
device. Simple measurements yielded the depth at consecutive sections along
the beam length. The depth and width of these consecutive sections provide
the input for a Computer program, that will be presented later, to determine
beam response.

The cantilever beam fixture shown in Fig. 7 was used previously [11] and
is subject to minor modifications. The beam (1) is held at the "fixed end" by
fixture (2) which, in turn, is fastened to the test frame hydraulic ram (3). The
cyclic concentrated load, on the other hand, is applied to the beam at its "tip"
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Fig. 7. Cantilever Beam Fixture.
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by two rollers contained in a box (4). This box swings about an axis that con-
nects it to a supporting element (5) attached to the load cell (6).

The load is measured by the load cell and the deflection of the beam"s
fixed end with respect to the free end is considered equal to the ram displacement.

This implies that the test frame deformation is negligible as was verified
experimentally.

Control Conditions

The trace of cyclic generalized force with respect to the corresponding
generalized deformation yields a hysteresis loop that degenerates to a straight
line when no plastic deformation is involved. At the sectional level this is a
moment-strain loop. If the strain limits are fixed, any increase in the moment
ränge is interpreted as hardening and any decrease as softening. Similarly, for
fixed moment limits. an increase in strain ränge is softening; a decrease is

hardening.
Other phenomena exhibited by the hysteresis loop are those of cyclic creep

and relaxation. The first is an accumulation of strain (curvature) under load
(moment) control: the second is a decrease in mean load (moment) under
deformation (curvature) control. The pure bending tests discussed in the
following section were conducted under exclusively constant strain control;
hence, cyclic creep was not present.
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Pure Bending

Moment Strain Relations

Fig. 8 shows the moment ränge versus cyclic state for a constant curvature

ränge (or extreme fibre strain ränge). The moment ränge decreases with life,
Fig. 8 a. For larger strain ranges, however, the moment ränge remained practi-

Fig. 8a-g. Cyclic Variation of Moment Range and Mean Moment.
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cally constant or even increased, Figs. 8e, f, g. Hence the section as an aggrega-
tion of fibres, may be softening, stable or hardening depending upon the cyclic
strain ranges involved in the individual elements.

The experimental results demonstrated that the moment ränge, for a
certain strain ränge, varies little with the change in the mean strain value.
Fig. 8d, for example, shows the moment ränge versus number of cycles for
an extreme fiber strain ränge of 0.0113 and mean strain ratios of 0, 0.25 and
0.5. The maximum discrepency from the average value is less than 2%. For
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this strain ränge the section softens during the initial 300 cycles or so then
almost stabilizes for the remainder of its life.

The case where the mean strain has the greatest effect on moment ränge is

depicted in Fig. 8b. This is due to the fact that the loop corresponding to zero

mean strain and the given strain ränge has a small plastic strain component
whereas that incorporating mean strain has a larger plastic component. This
is illustrated in Figs. 9 a and 9b. Nonetheless, for higher cycles, larger plastic
strain would have developed within the total strain ränge of Fig. 9 a, and the
moment ränge approaches the value exhibited by the other specimens. The
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greatest discrepancy, however, is of the order of 15%. Such discrepancy will
be ignored in the modelling suggested below, i.e., only an average moment
range-strain ränge relation will be adopted for any cyclic stage regardless of
the mean strain ratio. This may cause some predictive error only in the early
stages of life of the structure. The significance of the error introduced will be
discussed later.

The diagrams of Fig. 8, in addition to showing the moment ränge Variation
versus the number of cycles, show the relaxation of mean moment. It is clear
that, for all strain ranges, the mean moment, in general, is a function of the
mean strain.

Life span, on the other hand, did not seem to be significantly affected by
mean strain. The tests, as a whole, did not show any definite trends in this
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Fig. lOa-g. Discrete Cyclic Moment-Strain Relations.
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direction and the lack of correlation can probably be accounted for by the
scatter inherent in fatigue behaviour.

For a certain cyclic state, the compilation of moment ränge versus strain
ränge data yields cyclic moment range-strain ränge relation as shown in Fig. 10.

Similarly, the compilation of mean moment versus strain ränge yields
corresponding cyclic mean moment-strain ränge relation. As an example, Fig. 10 d
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is obtained by cross-plotting the data in Fig. 8 at N= 100. The other diagrams
of Fig. 10 are derived in a similar way.

A two phase model of the type

AM d
Ae EI 2

AMd {AM \ß

A€==-El2 + cc\JWe-lJ

for elastic behaviour,

for inelastic behaviour

(i)

(ii)
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4x10

is proposed as a fit to the moment range-strain ränge data where

Ae strain ränge,
AM moment ränge,
A Me — proportional moment ränge,
EI flexural stiffness,
d depth of section,
a,j8 section and material constants.
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This model is continuous and, as shown in Fig. 10 fits the data reasonably well.
Dividing both sides of Eqs. (I) and (II) by d/2, leads to a cyclic moment-
curvature relationship of the form:

Ak AM
EI'

ai AM 2 (AM \fi

d«XAM-e-

(III)

(IV)

Since strain can be considered as dimensionless, the diagrams of Fig. 10 are
semi-dimensional (only the moment axis has units) and can be easily employed
for any rectangular structural section provided that the applied moment is
adjusted by the appropriate ratio of the two section moduli, that of the section
in Fig. 10 to that of the particular section under consideration.

The flexural stiffness, EI, for the test section was calculated theoretically
from the section geometry and a value of 29.6 X IO6 psi for E. The constants
a, ß and AMe were established from a least Squares curve fitting analysis.
Thus, for each cyclic stage, a set of values for these constants was established
(Appendix II).

The effect of mean strain on the moment range-strain ränge relation is
shown in Fig. 11 for N equal 5 for which the discrepancy is largest. Four fitted
curves are shown: three corresponding to the three mean strain ratios and the
fourth to an average. The largest discrepancy corresponds to mean strain
ratios of 0 and \ and a strain ränge of 0.00415. It is less than 15%. The deviation

from the average curve, however, is about 8%. For larger strain ränge
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value, the Variation is not more than 5%. These variations become insignificant
when N reaches large values, as discussed previously.

The cyclic softening and hardening characteristics of flexural sections can
be visualized by examining the moment range-strain ränge relation at different
cyclic stages. Such relations can be seen in Fig. 12 for ^=10 and ^=1000.
The figure shows three different regions with respect to the extreme Aber
strain ränge: from zero to 0,0032 where the all curves coincide; from 0.0032
to 0.018, where the curve for ^=1000 lies below that for ^ 10, leading to
cyclic softening within that ränge; and the region for strain ränge greater
than about 0.018, where the section hardens with cycling. It is worth noting
that, for the particular strain ränge value of 0.018, the section neither hardens
nor softens but remains practically stable (or neutral) throughout its life. The
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curves for N between 10 and 1000 cycles lie within the two limiting states of
response. One such curve (iV 100) is shown in dashed lines on the same
figure.

Conversely, the mean moment versus strain ränge relationship poses a
more difficult problem. A glance at Fig. 10 reveals that the curve required
to fit the data for any mean strain ratio should have three regions: an
initial straight line, an intermediate convex curve and finally a concave region
where the curve asymptotically approaches zero for large values of curvature
ränge. The slope of the initial straight part is simply equal to that of the
initial portion of the A M — A e relation times the mean strain ratio (ratio of
mean strain over strain ränge). The latter region of the experimental data is
modelled by an equation of the form:

where Mm is the mean moment and 81 and #2 are constants to be established
by least square analysis. The intermediate ränge is assumed to have the form:

Mm C1 + C2Ae + C3Ae^ + C^AeK (VI)

This is a third degree polynomial with four arbitrary constants. From the
continuity of the function and its slopes at the first transition point, i.e.,
between initial and intermediate regions, and the second transition point
(between the intermediate and last regions) four equations will be obtained.
Solving these equations simultaneously will establish the constants Cx to C4.
Some approximation was used to locate these two transition points and Appen-
dices III and IV deal with this concept in more detail. Fig. 10 shows the
experimental data and the fitted curves.

Behaviour and Models

A total of twenty pure bending tests were conducted. The extreme fiber
strain ränge assumed seven values: the smallest was 0.00428 or 1.36 times the
monotonic yield strain ränge value; the largest was 0.0479 which is very close

to the monotonic strain-hardening ränge value. At each level three tests,
comprising a single set, were conducted except for the largest strain ränge
where the set included only two tests. In each set, the first test involved no
mean strain; the second included a mean strain equal to one-fourth the strain
ränge; the third test had a mean strain equal to one-half the strain ränge.

The results of each set of tests were consistent within themselves. The
moment ränge varied little with the introduction of mean strain. Thus, any
inconsistency could have been readily identified. A maximum discrepancy of
15% of moment ränge in one set with a particular strain ränge is explained
in terms of the proportion of plastic strain within the given total strain of the
hysteresis loop. The mean moment, on the other hand, increased with the
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increase in mean strain for small strain ranges. For large strain ränge values,
however, the increase in mean moment was not that pronounced. In both
cases, the experimental findings could be easily explained using the well-
known rheological model [12]. The life observed for the tested specimens
ranged from 300 cycles to above 100,000 cycles. Thus, most of the low cyclic
fatigue ränge, pertinent to structural design, was covered.

The moment ränge versus the strain ränge obtained experimentally has

been described by the two phase model of Eqs. (I) and (II). Fig. 10 shows that
the suggested model fits the data reasonably well. The model could even be

simplified to elastic strain hardening (bi-linear) without much loss of accuracy.
However, this simplification was unnecessary since the structural calculations
are computerized. The parameter AMe decreased with cycles as did a; in
contrast ß did not show an amenable trend, hence the moment range-strain
ränge was presented as a discrete function of cyclic life. Also, the mean moment-
strain ränge relation was considered as such. Due to the tri-partite nature of
the latter relation there were eight parameters to be established for each mean
strain ratio: four in constant C, two in 6 and two transition point strain values
[Eqs. (V) and (VI)]. If the last two terms of Eq. (VI) were neglected, two
parameters would be eliminated. However, the replacement of the third degree
curve by a straight line would induce some unwarranted inaccuracy and two
discontinuities in the model.

The experimental data revealed that the mean moment decreased rapidly
as the strain ränge increased. Thus for A e equal to three times the maximum
elastic strain ränge, the mean moment could be neglected, its value being less

than 2% of the moment ränge. Therefore, the value of the mean moment-
strain ränge model is confined to the intermediate domain of strain ränge, i. e.,
where the strain ränge is larger than the limit elastic strain ränge, for which
linear classical theory applies, and smaller than the values associated with
negligible mean moment.

Cantilever Beams

Bending Under Unequal Tip Deflection

The behaviour of the cantilever beam shown in Fig. 6 will be predicted
theoretically and investigated experimentally in the present study. A single
cyclic load is applied at its "tip" to cause cyclic deflections confined to two
predetermined values, i. e., the beam is under deflection control. The deflection
limits need not be symmetrical; the symmetrical case, however, is studied
first in order to develop the method of calculation. The unsymmetrical case
will be examined later.

The cantilever is under deflection control. If the associated load is well
below the elastic limit of the material, there will be negligible softening or
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hardening and section of the beam can be presumed as being under either
moment or curvature control. If the load exceeds the linear limit, the sections
are under neither moment control nor curvature control but under some
mixed control condition. Nonetheless, it seems reasonable to predict cyclic
structural behaviour, in this case, from a moment-curvature relationship based
on controlled, fixed curvature limits [11]. The basic assumptions made in this
investigations are as follows:

1. Inertia forces and weight of specimen are negligible.
2. The effects of shearing stresses can be ignored, arising from the geometry

of the specimen as related to load position.
3. Variable cross sections can be idealized as a series of short, discrete segments

each having a constant cross-section.
4. Plane sections before bending remain plane after bending.
5. Small deflection theory is applicable.
6. The normalized cyclic moment-curvature relation describes the behaviour

of all geometrically similar cross-sections made of the same material.
8. Local and other kinds of buckling are prevented.

Analysis

As presented previously, the cyclic moment range-strain ränge relation
can be regarded as independent of the mean strain. Hence, the cyclic load
range-deflection ränge relationships can be expected to be independent of the
mean deflection. The case of symmetrical deflection limits will first be
presented and will be followed by consideration of the non-zero mean deflection
case.

The method of predicting response is an iterative one; for a given deflection,
a load ränge is assumed and the resulting deflection ränge is calculated. If
this deflection ränge is equal to that specified, the assumed value of load ränge
is the one sought; if not, the load ränge is adjusted and the entire process is
repeated until convergence is obtained to within the desired error.

To obtain the deflection of the tip of the cantilever under an assumed
concentrated load at the same point, the beam is divided into a number of
segments. For each segment end and for the depth and width at that segment
end, the curvature corresponding to the moment at that location is calculated
from the cyclic moment-strain equation and section depth given as input data.
Having established the curvatures at successive locations along the length of
the beam, the "elastic curve" can be constructed. Elementary mathematics
yield the deflection at any segment end of the beam. Appendix V presents the
mathematical Operations involved. Table I describes the main steps of a
Computer program based on the method presented herein.

For the cantilever beam under unequal deflection limits the method is a
little more involved. The input data should include the mean deflection ränge.
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Table I. Flow Chart

Read: span of beam, number of segments,
V number of mean moment strain ränge

curves, applied load ränge

Read details of beam
geometry

Calculate: depth of
beam segments in
fillet region

Read: moment range-strain ränge relation
V constants\ Depth and width of relavent sectioni

™Read: mean moment-strain ränge
relation constants 7

Calculate: moment ränge at segments ends
and corresponding curvatures

Establish: ränge of "elastic curve" including
ränge of tip deflection

Print: load ränge and
v ränge of tip\ deflection

o
Assume a minimum

mean load

Calculate: mean moment,
mean curvature

Establish: mean "elastic curve"
including tip mean
defection

Print: mean load, tip
mean deflection

Increment mean load

^smaller tnan an upper^"^-^ limit ^^
No

Stop
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The desired values, on the other hand, are the corresponding load ränge and
mean load. A trial mean load is first assumed and the corresponding mean
deflection is calculated. If this mean deflection is equal to the specified mean
deflection to within the tolerable error, the assumed value of load is accepted;
otherwise, the assumed mean load is adjusted until the corresponding mean
deflection converges to the specified value. The method presented for the
calculation of deflection ränge is used again to calculate the mean deflection
with one difference; the curvature ränge (or extreme Aber strain ränge) at the
end of each beam segment is replaced by the mean curvature or mean strain
at the same location.

Fig. 13. Schematic Interpolation for Mean Strain.
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For the calculation of this mean strain at a certain section, designated
A—A, it is necessary to have at hand the strain ränge established from load

ränge calculations and the mean moment calculated from the assumed mean
load at the same section. These values are designated by A eA_A and MmA_A

respectively. Fig. 13 shows the moment ränge and mean moment-strain ränge
relations with the X axis distorted for the sake of clarity. Now, the mean
moment value corresponding to a strain ränge of A eA_A and a mean strain
ratio equal to R (I) is established, / being 2 for the first attempt. If the resulting
mean moment is larger than MmA__A, the actual mean strain ratio is inter-
polated linearly between R(I) and R(I — 1); if smaller, / is increased until
the desired condition is met. Thus, the product of the interpolated mean strain
ratio and strain ränge is an approximation to the desired mean strain. The
mean curvature is simply the mean strain over half the beam depth.

Results and Discussion

Nine tests were conducted on cantilever beam, four pairs and a single. Each
pair of beams had a single deflection ränge; one beam had no mean deflection
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and the other had a mean deflection equal to about one eighth of the deflection

ränge, i.e., completely and partially reversed deflections.
The deflection ränge for the first pair was 0.17". The strain ränge at the

critical section at the fifth cycle was, as obtained from the Computer program,
equal to 0.0034. This was less than the limiting linear strain ränge at the same
cyclic state which was equal to 0.00415, Fig. 10a. Therefore, and since the
material did not harden from the first to the fifth cycle for that strain ränge,
the completely reversed deflection beam remained elastic up to at least the
fifth cycle. Assuming the same conclusion was applicable to the partially
reversed deflection case, the mean strain ratio would be equal to the mean
deflection ratio, i.e., about one eighth. The maximum strain amplitude
calculated on this basis, however, was found to be slightly higher than the maximum

linear strain amplitude. Hence, the second beam has undergone some
plastic deformation. This was readily observed from the hysteresis loop which
was a straight line for the first beam and had some width for the second beam
at the cyclic state under consideration.

As cycling progressed, the material softened. At N 5000, for example, the
limit linear strain ränge dropped to 0.00261 whereas the strain ränge at the
critical section increased to about 0.0044. Naturally, both beams had undergone

some plastic deformation although this was limited to small lengths
along the beam. This conclusion was again supported by observations on the
relevant hysteresis loops. The failure of the beam under zero mean deflection
took place after 105,000 cycles; the test on the second beam was halted at

Fig. 14a-e. Experimental Versus Theoretical Results.
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117,000 cycles and failure was not attained. Hence, this deflection ränge may
be considered to promote conventional fatigue.

For this deflection ränge Fig. 14 a shows the theoretical load ränge and
mean load versus cyclic life. The two solid lines were obtained by connecting
discrete theoretical points corresponding to cycles 5, 10, 50, 100, 500, 1000
and 5000. The experimental results are also shown as discrete point at the
above-mentioned cyclic states.
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In a similar manner, Figs. 14b, 14c, 14d and 14e show the theoretical and
experimental results as well as life span for four larger deflection ranges equal
to 0.207", 0.242", 0.393" and 0.750". It can be seen that the experimental load
ränge associated with the smallest deflection ränge, Fig. 14 a was not signi-
ficantly influenced by mean deflection - the maximum relative discrepancy
was about 3% at iV 5000. Among all the deflection ranges, the maximum
discrepancy occurred in the case of deflection ränge equal to 0.242" and N 5.

This discrepancy was 9% or a Variation of less than 5% from the average
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value. For the deflection ranges equal to 0.207" and 0.242", the Variation was
not more than 4% measures about the average. It is worth noting here that
the experimental load ränge for zero mean deflection was, in general, larger
than that for non-zero mean deflection. The discrepancy of 9% is less than
the value of 15% presented previously in the discussion of the effect of mean
strain on the moment-strain relation. This is due to the fact that the structural
behaviour is an aggregate of sectional behaviour and that only at the critical
section the mean strain ratio approaches the value of \ for the large deflection
ranges.

For the largest deflection ränge of 0.75", the maximum strain at the critical
section was 0.034 at the fifth cycle and dropped to 0.023 at ^=1000. Both
strain values are lower than the maximum value investigated under pure
bending. Larger deflections, that will cause larger strain ranges, were not
investigated as the effects of geometry change leading to membrane action
cease to be insignificant for such deflections; the consideration of the effects
of geometry change falls outside the domain of the current work.

The difference between the theoretical load ränge and the averaged experimental

one, on the other hand, compared fairly well, the maximum difference
being not more than 4% for any deflection ränge. It can be seen that the
theoretical predictions are closer, in general, to the experimental results for
non-zero mean deflection case than to the zero mean deflection one. This can
be explained with reference to Fig. 11 which shows that the average moment
range-strain ränge fits the partially reversed or repeated strain cases better
than the completely reversed case. But since the error involved is fairly small,
neglecting the effect of mean strain on moment ränge under pure moment
and on load ränge under deflection control can be easily justified.

The theoretical and experimental mean load values, on the other hand,
compare fairly well as shown in Fig. 14, especially when they are most
significant, i.e., over the three lowest deflection ranges. When the mean load is
added to and subtracted from half the load ränge, the maximum and minimum
load limits are obtained, respectively. Simple calculations show that the relative

error between theoretical prediction and experimental value for these
limits is less than 5 %.

Conclusions

Cyclic moment-strain relations, based upon deformation control tests
conducted on rectangular structural steel sections were established. A model
describing the moment ränge versus extreme fibre strain ränge, independent
of the mean strain value, is presented. A second suggested model describes
the mean moment versus the extreme fiber strain ränge for different ratios
of mean strain over strain ränge at the same fiber. These modeis reduce cyclic
flexural behaviour of sections to a pseudo-static representation amenable for
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use in cyclic structural analysis. These modeis are capable of accommodating,
in discrete form, the phenomena of hardening and softening of aggregations
of fibres constituting a structural section as well as relaxation of mean moment.

A number of tests were conducted on cantilever beam specimens under tip
deflection control. The behaviour under completely and partially reversed
deflections was investigated. The load ränge was found to be little influenced

by the mean deflection. Also, the mean load relaxed to an insignificant value
in the first cycle when the deflection ränge was large enough to cause appreciable
cyclic plastic deformation. For such cases, then, the beam could be considered
as cycled under completely reversed deflection with a rest condition
corresponding to the mean deflection position.

A theory was developed and presented for the prediction of the behaviour
of such beams. It employs a discrete curvature-area method coupled with the
cyclic moment-strain relations described above. The theoretical results agree
fairly closely with experimental values. The theory also confirmed that the
behaviour of simple structures under cyclic deformation can be divided into
three cases, comprising: (1) an elastic case where the mean load is proportional
to the load ränge; (2) an intermediate ränge where proportionality does not
apply and the effect of mean deflection (mean load) cannot be ignored, and
(3) the case of large, inelastic cyclic deformation where the effects of mean
deflection can be completely ignored except for associated changes in structural
geometry and its secondary membrane effects.

Notation

A e strain ränge.
A M moment ränge.
A Me proportional moment ränge.
EI flexural stiffness.
d depth of section.
<x,ß section and material constants.
A k curvature ränge.
Mm mean moment.

C1, C4 constants of mean moment-strain ränge relation.
R ratio of mean strain over strain ränge or, ratio

of mean curvature over curvature ränge.
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Appendix I. Depth of Cantilever Beam

Consider the cantilever beam specimen shown in Fig. 1.1. Assuming that
the upper fillet has a constant radius of curvature equal to Rx it is required
to determine the distance y in terms of x1, x2, R1 and R2.

Fig. 1.1. Cantilever Beam "Fillet Depth.

From the Fig. 1.1, obtain
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(1.1)

(1.2)

Hence, the depth of the section can be given as a function of the section location

and the fillet radii.
The point where the fillet begins is usually difficult to establish by measure-

ment accurately. Eq. (1.1) is used for this purpose as follows: for point A, ylmax
can be easily measured. Assume a value for xlmax and calculate the corresponding

yx\ if equal to the measured value of ylmax, the answer is obtained; if not,
change the assumed value of xlmax until convergence is obtained. x2max can be
established similarly. A very short Computer program facilitates such
calculations.
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For all specimen tested, Rx and R2 on the one hand and xlmax and x2max

on the other were close to each other. Also A was very small. In consequence,
the assumption that the neutral axis of the untested specimen is a straight
line is quite acceptable.

Appendix II. Determination of Coefficients (a, ß, A Me)

Assume a relationship of the form:

A € ~=~z - for the linear ränge where A M <; A Me (H.l)Eil
A A AMd [AM \ß

_ v /TToNand A e ^-—^ - + a T — 1 for the non-lmear ränge (H-2)Ei 2 \AMe I where M>AMem

The experiments provide a set of values A e and A M for each cycle, N. The
coefficients will be evaluated so as to minimize the sum of the Squares of the
deviations of test points from an average curve. The curve fitting will be

applied to the non-linear ränge only since the initial slope is considered fixed;
but the limit of the linear ränge will be considered as a variable. The data
point or points within the linear ränge will not be considered in the following
step.

Eq. (II.2) can be rewritten in the logarithmic form as

T [A AMd\ _ nT [AM \
Log(zU-~-j=Loga +£Log(^-lj

or y =K1 + K2x, (II.3)

T [A AMd\where y Log IA e -^y -I,

t lAM i\x =Log[JWe-T
K1 Loga,
K2 ß.

First A Me is assumed constant. Thus, the problem is reduced to establishing
two coefficients rather than three.

The least square analysis implies minimization of
n

i=X

Differentiating with respect to K2 and Kx for minima

dE n

dE n
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or Ki2xi + KtX*1-'Lzty< 0, (H.4)
i=l i l i=l

n n

K1-l+KtZ»i-I,yt 0, (H.5)
1=1 1=1

n
where

and

i-1
#!»».

i£2 are obtained by solving Eqs.
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^«
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Vi-ZxiZ xiVi
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^ 2>! - 2>i 2>*
i=i i=i i=i

Having established Kx and if2, and, therefore a and ß, the sum of the square
of deviations can be given as

AL JJf,d /JJf, A^V /TTK,s-UA'--wf2-\ÄWe-l)\' (IL5)
1=1

In this summation, all experimental data points should be included, be they
below the elastic limit or above it, with due attention being paid to including
or excluding the third term in Eq. (II.5).

Repeating the whole process but for a different value of A Me, a new value
for S is obtained, The best value of A Me and the associated a and ß are those
which give the smallest value of S. The process, therefore, is complete when
the minimum of S f(AMe) is obtained. This was programmed quite simply
on a Computer.

Appendix III. Location of First Transition Point

Assume the monotonic moment-curvature relation as given in Fig. III. 1

where —x—- is the limit linear moment and kQ is the corresponding curvature.

When cycling with zero mean curvature, the loop will generally have a plastic
component (and width) only if the curvature ränge exceeds 2 k0. On the other
hand, for a loop with constant mean curvature ratio, the mean moment will
increase linearly with increase in curvature ränge as long as the absolute
maximum curvature is less than k0. Fig. III.2 illustrates such a case for mean
curvature ratio of 1/2. Whenever the maximum curvature exceeds k0, the
mean moment ceases to increase linearly with curvature ränge. Therefore,
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the limit state is given by

But

kfnax ^0 •

Ak 7

^max 2 m'

where A k is curvature ränge and km is mean curvature

h _ ^ T? Ab^max ~ ~2~ + &/!&,

where R is a ratio of proportionality

or k

Ak

when kmax assume its limit linear value, k0, we obtain

AK fCn

h + R' (ULI)

In other words, the maximum curvature ränge, for which the mean moment
remains proportional to the mean curvature, is inversely proportional to
(J-f-jß). The mean moment at this limit is designated the Maximum Linear
Mean Moment (MLMM). Since it is at the limit of the linear ränge, it is given by:

MLMM (slope) • (limit curvature).

Since the slope is equal to (EIR)

MLMM (EI B),
tCn AM, R

l+R 2 \+R
By solving Eq. (III. 1) for R and substituting in Eq. (II.2), we obtain

(III.2)
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R vo

AK

and

or

where

MMLMM =5

"max
1

A rCmax l
k0

1

2

AM,
2 1 fco 1

2 Zl fcmax l
MLMM A(l-Bx),

I
_

Ak \
(in3)

.4 AM. B
2k0'

x Ak„

Eq. (III.3) describes a straight line passing through the points 10,—~\ and

(2k0,0) as shown in Fig. III.3.

AM

AM

AMe

JSj AkFig. III.3. Limiting Linear Curvature.

The above discussion is applicable only to the case where A Me is constant.
However, as the specimen is cycled, the maximum linear moment ränge
decreases due to the initiation of localized plastic strain. This will, in turn,
cause the mean moment to decrease with cycling; therefore, the maximum
linear mean moment will also decrease with cycling.

It does not seem unreasonable, then, to assume that the maximum linear
mean moment locus will continue to be a straight line intersecting the
curvature ränge axis at 2k0n and the moment axis at A Men[2 where k0n and A Men

are similar to kQ and A Me but corresponding to cycle N. Therefore, this straight
line locus will move parallel to itself with cycling.

Finally, what has been presented above can also be applied to the moment-
strain relation with appropriate Substitution of the curvature axis by the
strain axis.

Appendix IV. Curve Fitting

The experimental data of the mean moment-extreme fiber relation will be
fitted by a curve composed of three regions:

1. A straight line passing through the point of origin and having a slope equal
to the product of the initial slope of the M — A e diagram and the mean
strain ratio. The upper limit of this region is a point which has, as locus, a
straight line as shown in Fig. IV. 1 and explained in Appendix III.
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Fig. IV. 1. Limiting Linear Mean Moment.

2. A third region where the value of the mean moment approaches zero
asymptotically as the extreme fiber strain ränge reaches high values.

3. An intermediate region bridging the gap between the first and the last
regions.

The first region has the form:

Mm AeslopeR,
ff Iwhere the slope is that of the initial A M — A e curve -^, and R is the mean

strain ratio. Alternatively,

where

Hence

y x slope R,

x Ae.

y' slope R.

(IV.l)

(IV.2)

The third region is fitted by a curve of the form:

or

Mm

y dxx-e*. (IV.3)

which is a hyperbola with two orthogonal asymptotes, the x and y axes. The
two parameters, 0X and 62 are established using a library subroutine which
performs a least Squares curve fitting analysis on the input data. The data
should include only those points that belong to the region under consideration.
The input point with the minimum strain ränge value is considered common
to both second and third regions. Since the fitted curve will not ordinarily
pass through the data points, the transition point is considered a point on
the fitted curve corresponding to the minimum input strain ränge value.

Having established the curve parameters and the transition point between
the intermediate and third regions, the slope at this point can be calculated
by differentiating Eq. (IV.3) with respect to x, i.e.,

y' -020i*-*a-1- (IV.4J



STEEL STRUCTURES UNDER CYCLIC UNEQUAL DEFLECTIONS 67

Similarly, there is another transition point between the first and
intermediate regions. For the continuity of the entire curve, the intermediate
ränge function is to satisfy four conditions, two from the function value at
the two transition points and two from the slope at the same points. The
third degree function given below has four parameters and can satisfy all four
conditions :

y a0 + ax x + a2 x2 + a3 x3 (IV. 5)

and y' a1-\-2a2x + 3a3x2. (IV.6)

A lower order function will not provide the desired continuity. Conversely,
a higher order function will not be justified unless there are enough additional
conditions (experimental data points in the intermediate region) and provided
that the resulting curve is smooth and has single curvature.

To establish the first transition point, the intersection of lines Lx and L2
in Fig. IV. 1 should be located as follows.

For Lx y x slope R. (IV. 1)

t^ -r AMP x slope /TTT _.For L2 y -^ ^-. (IV.7)

The point of intersection will be given by

^ AMP x slope
x slope R ——— -~—^22AM, 1

or x-,
slope 2(U + £)

and * sC: 2 {E + iflo^R-AM^2TE%TY (IV-8)

At xx and using Eqs. (IV.8) and (IV.5) obtain

a0 + a1x1 + a2xl + a3xl =AMe^<R+i\ (IV.9)

and from Eqs. (IV.2) and (IV.6) obtain

a1 + 2a2x1 + 3asxl slope R. (IV. 10)

Similarly, at x2, using Eqs. (IV.3) and (IV.5) obtain

a0 + a1x1 + a2 x\ + a3xf Öx x^2 (IV. 11)

and from Eqs. (IV.4) and (IV.6) obtain

a1 + 2a2z1 + 3a2z1 -d1dzx2d*~i. (IV. 12)

Hence, the four unknowns, a0, ax, a2, a3 can be established by solving
Eqs. (IV.9), (IV.10), (IV.ll), and (IV.12) simultaneously.
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Appendix V. Deflection Calculations

Moment Range

For a load ränge applied at the tip of the cantilever, the moment ränge
value at any section is equal to the load ränge times the (perpendicular)
distance of the section from the load.

Curvature

The input moment range-extreme fibre strain ränge relation as shown in
Eqs. (I) and (II) is for a rectangular section (b0d0) whereas the beam, in
general, has a section (bxdx) at any given location. The units of the left side
of the Eqs. are moment units and those for the right side are strain units,
i.e., in/in or dimensionless.

A moment ränge A Mx acting on a section (bxdx) is equivalent to a moment
ränge AMx(b0d%)/(bxd2) acting on a section (&0^o)- The extreme fibre strain
will be the same for both sections under the appropriate moments. The
curvature ränge, A k, is simply (A €x)l(dj2).

Deflections

The curvature-area method will be used. The beam is divided into a suitable
number of short segments for which the curvature diagram is assumed linear
for each segment, Fig. V.la, and is divided into two triangles as shown in
Fig. V.lb. At the built end, the deflection and slope are zero. The deflection
at the right end of each segment has, in general, three components as shown
in Fig. V.2: the first is the deflection at the left end, the second is equal to the
slope at that end times the segment length and the third is the tangential
deviation of the right end with respect to a tangent at the left end. Thus,

2s/3

AM diagram

Ak(I)

Ak diagram
s/3I 1 + 1

k^

AMI+1)

1+1 Fig. V.l. Curvature Distribution
Diagram.

Fig. V.2. Slope and Deflection Calcula¬
tions.

y (I)
s. slope | y(I+i)

slope (iT^v r—Tonqentiol deviation

"\ j„
s segment length
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with the help of Figs. V.lb and V.2, the segment right end deflection and
slope can be written as:

,r n /r. i / rx A k (I) S 2 A k {I + 1) 8 1

y(I + l) y(I) + s slope (/) + ^3* + ^ 3*'

slope (/+ 1) slope (I)-\ ——-— -s.

Starting at the extreme left end and moving to the right, discrete points
on the "elastic curve" are established up to and including the cantilever tip.
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Summary

The response of simple mild steel cantilever beams to cyclic unequal deflections

is investigated theoretically and experimentally following the derivation
of appropriate moment-curvature modeis from strain control data involving
the testing of specimens in pure bending. Different modeis are proposed
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relating the curvature to moment ränge and mean moment; the modeis can
accommodate hardening and softening of aggregations of fibres in the structural

cross-section as well as mean moment relaxation with time. It is shown
that behaviour is comprised of three stages involving elasticity, where mean
load is proportional to load ränge, an intermediate state where the effects of
mean deflection cannot be ignored and a terminal state of significant plastic
deformation which is affected by geometry changes and secondary membrane
action.

Resume

On etudie theoriquement et experimentalement le comportement de poutres-
consoles simples en acier doux soumises ä des deflexions cycliques inegales en
suivant la courbe moment-courbure de modeles appropries, determines ä partir
de contröles des deformations effectues sur des specimens soumis a la flexion

pure. Differents modeles sont proposes mettant en relation la courbure avec
les limites des moments ainsi qu'avec le moment principal; les modeles

s'adaptent aux phenomenes de durcissement et d'adoucissement d'un ensemble
de fibres dans la section ainsi qu'ä la relaxation du moment principal dans le

temps. On montre que le comportement peut se diviser en trois etapes; une
etape elastique oü la charge principale est proportionnelle aux limites entre
lesquelles varient les charges, une etape intermediaire oü les effets de la
deflexion principale ne peuvent etre ignores et une etape finale de deformations
plastiques importantes qui est perturbee par des changements dans la geo-
metrie et des effets secondaires de membrane.

Zusammenfassung

Die Reaktion von Kragarmen aus normalem Baustahl auf zyklische nicht
konstante Verformung wird theoretisch und experimentell untersucht, unter
Ableitung von Angaben über dehnungskontrollierte Versuche an entsprechenden

Momenten-Krümmungsmodellen bei reiner Biegung. Verschiedene Modelle
werden vorgeschlagen, bei denen die Krümmung zum Momentenbereich und
zum Mittelmoment in Zusammenhang gebracht wird. Die Modelle können
Verfestigung und Abnahme der Festigkeit der Fasern der Querschnitte wie
auch Relaxation infolge des Mittelmomentes beinhalten. Es wird gezeigt, dass

das Verhalten drei Stadien umfasst: Elastizität, wobei das Mittelmoment
proportional zum Lastbereich ist, ein Zwischenstadium, wobei die Effekte der

Verformung nicht mehr vernachlässigt werden dürfen, und ein Endstadium
mit signifikanten plastischen Deformationen, welche Änderungen der Geometrie

und sekundäre MembranWirkung nach sich ziehen.
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