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Influence of Shear and Bond on Rotational Capacity of Reinforced
Concrete Beams

L'influence de la sollicitation de cisaillement et de Vadherence des armatures sur
la capacite de rotation des poutres en beton arme

Der Einfluß von Schubbeanspruchung und Verbund auf die Rotationsfähigkeit
plastischer Stahlbeton-Gelenke

HUGO BACHMANN
Dr. sc. techn., Assistant Professor of Civil Engineering, Swiss Federal Institute of

Technology, Zürich, Switzerland

Introduction

A considerable amount of experimental and theoretical research into the
plastic behaviour of statically indeterminate structures has been carried out
during the last 20 years. The application of the simple plastic analysis to steel
structures has been shown to be valid. In statically indeterminate reinforced
concrete structures, however, the rotational capacity of plastic hinges may be

very small and as a result theoretical ultimate load can not be reached.
Since 1963 a research programme to study the influence of shear and bond

on the general development and the rotational capacity of reinforced concrete
plastic hinges has been carried out at the Institute of Structural Engineering
of the Swiss Federal Institute of Technology (ETH), Zürich, Switzerland.

Test Specimens

The test series consisted of two groups of 5 symmetrical two-span beams,
Series A of a reetangular cross section and Series B of an I-shaped cross section.
The load arrangement and dimensions are shown in Fig. 1. The two end reactions

were measured with dynamometers at every load step. Thus the value
of the moment and shear at every cross section of the beams could be
calculated from the equilibrium conditions.
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Fig. 1. Loading arrangement and dimensions of test specimens, mechamsms arrived at by
plastic analysis.

The test beams were designed on a simple plastic analysis theory as given
for instance in [1]. The ratio of the calculated ultimate moments in the spans
and over the central support is denoted by A. The value of A determines where
the first hinge is formed. The corresponding mechanisms are shown in Fig. 1.

If A<0.5, Mechanisms I occurs, and if A>0.5, Mechanism II. Xe 0.456
corresponds to the elastic moment distribution. The plastic rotation necessary
to allow the calculated ultimate load to be reached increases with the difference
between A and Xe.

The values of A for the 10 beams varied from 0.17 to 2.32. The longitudinal
tensile reinforcement p varied from 0.34 to 2.04 percent in span and from
0.78 to 2.04 percent over the central support.

For the design of the shear reinforcement it was assumed that

Vc vc b' d with vc= 4 + 0.025 f'c (kg/cm2)

(*c 57 + 0.025/;; [psi])

(1)

is carried by the concrete compression zone. The stirrup reinforcement was
calculated according to the truss analogy with a shear force of Vu — Vc and a
steel stress of fy. The ultimate shear force Vu was calculated by the simple
plastic analysis method.

An example of the stress-strain curve for the longitudinal and stirrup
reinforcement (Torstahl) is shown in Fig. 2. The elastic limit stress fe varied from
3200 to 3800 kg/cm2 (nom. 46 to 54 ksi), the yield strength fy (0.2 percent
proof stress) from 3600 to 4800 kg/cm2 (nom. 63 to 87 ksi). Good bond conditions

were provided by a combination of spiral and non-continuous ribs. The
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Fig. 2. Example of stress-strain curve of reinforcement.

average compressive strength of the concrete f'c was 356 kg/cm2 (nom. 5000
psi).

Tests to study rotational capacity are often carried out on simply supported
one-span beams. However, with this test arrangement the following
conditions could be investigated:

— At hinges in the spans: A small shear stress (but no pure bending!).
— At hinges over the central support: A high shear stress and a small moment-

shear ratio (M/Vd =1.0 + 2.8 due to contraflexure).
— At hinges in the spans and over the central support: A Variation of the

shear stress during rotation.

Test Results

In particular curvatures, rotations and the extensions of the stirrups were
measured with dials and mechanical extensometers placed along the length
of the beams.

General Behavior and Failure

In all the beams the mechanisms developed as predicted by the simple
plastic analysis. In the beams A 1 and A 2 the first plastic hinge was formed
in span, corresponding to Mechanism I, and in the other beams the first
plastic hinge occured over the central support, corresponding to Mechanism II.

In 8 beams the collapse load reached or exceeded the ultimate load computed
by the plastic analysis using a bilinear moment-curvature relationship. In
2 beams, however, the rotational capacity of the support hinge was not sufficient

to enable the theoretical ultimate load to be reached.
3 beams (Al, A2, A3) failed in span due to bendmg. The tensile

reinforcement was elongated until the steel was ruptured. In the other 7 beams
a shear failure occurred at the support hinge during plastic rotation. As the
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Fig. 3. Typical "flexural oraok hinge", beam A 2.

stirrups deformed plastically. that is as their stress exceeded the elastic limit
stress /,,. greater shear deformations in the web could be observed. These
deformations caused high local stresses in the concrete of the web and the
compression zone. Mainly as a result of these stirrup deformations the concrete
in the web and the compression zone finally was crushed.

Plastic Hinges

Two entirely different types of plastic hinges were observed. They are
described as „ ,,,.,,¦,"flexural crack hinges and

"shear crack hinges".

A typical flexural crack hinge is shown in Fig. 3. This type of hinge develops
in a beam zone in which the bending moment is predominant. The shear stress
is small and therefore only vertical flexural cracks occur. As seen in Fig. 3

plastic deformations were concentrated mainly to one crack. For this reason.
the rotational capacity of such a flexural crack hinge may be very small.

A typical shear crack hinge behaves in another way (see Fig. 3). Diagonal
flexural-shear cracks are produced through the influence of a relatively large
shear stress in addition to the bending moment. This improves the behaviour
of the hinge. The tests have shown that the plastic deformations in a shear
crack hinge occur over a much wider zone than with flexural crack hinges.
and this allows a much greater rotational capacity.

Rolational Behaviour

Plots of the moment ratio against the total rotation of the two types of
plastic hinges as shown in Fig. 3 and 4 are given as examples in Fig. 5. The
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Fig. 4. Typical "shear crack hinge", beam A 5.
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Fig. 5. JMoment-rotatiim and shear stress-rotation relationship of a flexural crack hinge and
of a shear crack hinge.

deformation of the hinges was considered to occur in the zone of plastic
extension of the tensile reinforcement. This "plastic length Lp" was observed

to be 25 cm (nom. 10 in.) at the flexural crack hinge of beam A2 and 80 cm

(nom. 31 in.) at the shear crack hinge of beam A 5. Also the nominal shear

stress v Vjb' d in the hinge is plotted against the total rotation in Fig. 5.

The rotational capacity can be characterized by the rotation 8lt which is

reached at the ultimate moment M„. Fig. 5 shows that the rotational capacity
9„ of the shear crack hinge is considerably greater than that of the flexural
crack hinge. This result and the rupture of the tension steel in the span hinges

of the beams AI. A 2 and A3 are incompatible with the usual view and

theories as stated in [2] and [3] for instance.
Table 1 lists the values of the amount of the tensile reinforcement as a

percentage p. the nominal shear stress vu at M„. and the corresponding moment-
shear ratio MJVud at the flexural crack hinge of the beams AI. A2. and A3.
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Table 1. Details, Measured and Calculated Values of Test Beams

Beam
No.

P vu
percent kg/cm2 (psi)

Mu
Vud

Bu

radians
Que

radians
Bu

Que

Bus
radians

Bu

Bus

But
radians

Bu

But

A 1

A2
A3

0.34
0.34
0.51

2.86 (41)
1.51 (21)
0.27 4)

4.4
9.6

83

0.0100
0.0173
0.0188

0.0506
0.0474
0.0316

0.20
0.36
0.59

0.0477
0.0509
0.0525

0.21
0.34
0.36

0.0074
0.0094
0.0131

1.35
1.84
1.43

In addition, the rotations 6U measured over a gauge length of 25 cm (nom.
10 in.) which included the zone of the steel rupture, are listed in Table 1. In
beam A2 plastic deformations of the steel were only produced within this
gauge length. Plastic deformations could also be observed outside this gauge
length in beam A 1 to a small extent and in beam A 3 to a greater extent.
For this reason, the values of 9U for A 1 and A 3 are only representative of the
rotational capacity of the gauge length.

The values of 6UC listed in Table 1 were calculated by the method given in
[2] and [3]. 6UC is computed by multiplying a ''curvature of rupture" by the
plastic length:

0„c ^V (2)

Taking into account the effect of the binding of the concrete compression
zone by stirrups and compression steel as given in [3] the maximum concrete
compressive strain ecu was found to be 0.0038. The depth of the neutral axis c0

was computed neglecting the compression steel as given in ACI 318-63. The
plastic length Lp was taken as the gauge length of 6U, i.e. Lp 25em (nom.
10 in.). Comparing du and 6UC in Table 1 it is found that the measured values
reach to only 20 to 59 percent of the calculated values.

In analogy to Eq. (2) the total rotation 6US for failure due to rupture of
the tension steel is usually calculated by the following formula:

0„„
d- ^o

in which ¦max means the maximum steel strain at rupture, viz:

€su '

Ea

(3)

(4)

esu denotes the permanent steel strain measured on a gauge length not including
the rupture zone (see Fig. 2). Es is the modulus of elasticity of the steel.

For the calculation of 6US, Lp was taken again as 25 cm (nom. 10 in.). The
results listed in Table 1 show that dus, as well as duc, considerably overrates
the measured rotation du. If 9U, 8UC, and 6US were to be calculated with respect
to the observed plastic length and the theoretical plastic length as given in
[2] and [3], still greater differences would be obtained.
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The Situation is quite different with shear crack hinges. As an example the
calculated rotation duc of the beam A 5 is given in Fig. 5. It demonstrates that
for shear crack hinges, 6UC considerably underrates the measured rotation 9U.

Shear Behaviour

In the cracked sections of flexural crack hinges the shear is almost exclu-
sively carried by the concrete compression zone. If the stress in the tensile
reinforcement exceeds the yield strength, any possible shear carrying capacity
by interlocking of the aggregates is lost; nor is the dowel action of the tensile
reinforcement usually significant.

It was of great interest to realize that in shear crack hinges the stirrup
stress is not influenced by the hinge rotation. As an example the shear force
Vc in the beam B 4 is plotted against the rotation 6 in Fig. 6. Vc denotes here
that part of the total shear force V which was not carried by the stirrup rein-

00 * 10000
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< CL

[B4]p 0.8%
üj y2 Vc FROM EQU.O)
ce n 5000

PLASTIC
ROTATION

PLASTIC ELONG.

OF STIRRUPS
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(10000)

0 .005 .010 .015 .020 .025

S 8 TOTAL ROTATION 8 IN RADIANS

(0)

Fig. 6. Shear force Vc carried by compression zone versus total rotation 0 at shear crack hinge
beam B 4.

forcement according to the truss analogy; hence it was mainly carried by the
concrete compression zone. In all the shear crack hinges of the described
investigation a significant reduction of Vc could only be observed after some
of the stirrups sustained plastic deformations. For this reason, the stress in
stirrups of a shear crack hinge is essentially a function of the acting shear
force. The stirrup stress does not depend primarily on the deformations
produced by progressive rotation.

Further details of the test results are given in a earlier report [4].

Theoretical Investigation

The following approaches try to describe the behaviour of reinforced
concrete plastic hinges by means of modeis which are chosen as close to reality
as possible.

Flexural Crack Hinges

The model of a flexural crack hinge is shown in Fig. 7. The spacing of
cracks measured along the tension reinforcement is denoted by z. All the
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Fig. 7. Model of the flexural crack hinge.

cracks belong to the hinge in which plastic deformations of the steel occured.

Neglecting the unimportant elongation of the concrete between the cracks
the total rotation 6 is given by Eq. (5):

n n

'-Z^-ähJ?*- (5)
i=i « ui=i

w is the width of the crack at the level of the tensile reinforcement.
A "flexural crack element" is shown in Fig. 8. First we assume that this

element is affected only by a bending moment M. For this assumption the
Variation of the following quantities is plotted along the tensile reinforcement:

— The steel strain es.

— The steel stress fs.

— The nominal bond stress u between the surface of reinforcement and the
concrete.

— The slip s between the reinforcement surface and the concrete.

To calculate the values of these variables the following fundamental
relationships are needed:

*v*
z/2 W z/2z/2 z/2

1
2-tsmin

JM
UJ LÜ
lü er r*Ss»- i- max
WW"Mxrs dt

u(x
a lü2 CC
O I-
QQ V)jsl€s min

€,x

max
QQ (Ofs(x)

Fig. 8. "Flexural crack element" with Variation of several variables.
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— The bond-slip curve u (s).

— The stress-strain curve es (fs) of the steel.

The bond-slip curve of the bar element dx can be found experimentally as
shown in [5]. Typical curves for vertically embedded bars are given in Fig. 9.

The bond stresses u of horizontally embedded bars are much smaller in most
cases.

(.05)(.02) .04H* 0) .01 (.03)

MORTAR SHEARING

_ BETWEEN RIBS

RIBBED STEEL
SPLITTING
OF CONCRETE8 ß

TORSTAHL

UNRBBED STEEL

__
.02 .04 .06 .08 .10

g LOCAL BOND SLIP s IN CM (IN)

Fig. 9. Typical bond-slip curves of finite elements of vertically embedded bars.

The following relationships between the variables listed above are applic
able:

dfa u(s)D-n-dx;

es (x) dx ;

l!x DU{s)

ds

dx «.(/,)•

(6X

(7)

D is the diameter of the tension steel bars. A general Solution of the problem
for any funetions u (s) and es (fs) is given in [6]. This approach only investigates
the case of steel rupture. The bond-slip curve of ''Torstahl" used in the test
beams is assumed to be a straight line parallel to the abscissa, hence u (s)
constant u* (compare with Fig. 9). For that reason, the function es(x) is a

part of the stress-strain curve of the steel. The Eqs. (6) and (7), respectively,
lead to the following expressions for the length z/2 from the centre of a crack:

^ 's Jsmax fsmin

0/2

¦
4

-~D2'

Jsmax

\es(x)dx ^i\es{fs)dfs

(8)

(9)

fsmin
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^ fsmax and €smax are given and A fs is calculated from (8), the integral expression

of (9) can be evaluated from the stress-strain curve of the steel.
The width of the crack is given by

W 2*max(l+€8tnax)- (10)

The relationship of the average steel strain esa within the flexural crack element
to the maximum steel strain esmax in the crack is characterized by the bond
factor k:

z/2

2(l + esmax)$€s(x)dx
K=-^- °- (11)

€s max * €s max

The value of k varies from 0.10 to 1.0. k depends on €smax, the shape of the
stress-strain curve of the steel (especially the strain-hardening characteristic)
and on the quality of the bond.

If the rupture of the steel occurs in a certain flexural crack element, No 1

say, esmax is given by Eq. (4). Then the steel stress in the crack of the neigh-
bour element No 2 is computed by

AM1'2
i2 i1 (^2)Ismax Ismax (d-a/2)^/ l '

where A M1*2 is the moment difference between the crack cross sections No 1

and No 2 of the beam at failure, a the depth of the equivalent reetangular
stress block in the compression zone, and As is the area of the tensile steel.

If M varies linearly, Eq. (12) becomes:

Vz
42 _ /l v

(1Q\Ismax Jsmax (d_aj2)A8'
K '

Computing the total ultimate rotation of the hinge 8U from Eq. (5), each
flexural crack element in which plastic steel deformations are present must
be taken in account.

This method neglects that the points of zero slip, s 0, is not exactly mid-
way between two adjacent cracks. This point is located slightly closer to the
crack with the smaller strain esmax. However, as shown in [6], the resulting
error is not significant and can be neglected.

The theoretical ultimate rotations 6ut of the gauge length of 25 cm (nom.
10 in.) of the test beams A 1, A 2 and A 3 were computed with this method of
calculation using the material properties and the observed crack spacing of
the test beams and listed in Table 1. The constant bond stress u* was assumed
to be 50 kg/cm2 (nom. 700 psi). To determine A M, the theoretical ultimate
moment distribution according to the simple plastic analysis was used, and
not the measured values.

The comparison of 9U and 9ui in Table 1 shows that the measured values
are 35 to 84 percent greater than the theoretical values. The value of 9ut is
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always on the safe side, because several effects not introduced in the theory
increase the ultimate rotation. For instance the bond between the steel bars
and the concrete at the border of the cracks may become loose over a certain
length producing a steel strain eemax on both sides of the cracks. For this
reason, it can be concluded that the developed method alwasy gives safe

values of the ultimate rotation.
Considering the influence of the important variables, the ultimate rotations

9U and 6ut as determined by the rupture of the steel are found to decrease with:

— Better bond properties.
— Smaller bar diameters.
— Less strain-hardening.
— Smaller permanent steel strain.
— Greater crack spacing.
— Greater shear force.

Comparing the values of 9ut listed in Table 1 with respect to the shear force

it is found that the method of calculation correctly takes into account the
influence of the shear force.

Shear Crack Hinges

It was found that in shear crack hinges the rotational capacity is mostly
much greater than calculated by the usual methods. It will be shown here

why plastic deformations can occur over a wide zone.

Z/2 jm
1 I

\<

50° n

Hz

wMe
".""iL

Ci/2 JCq/2

*) b)

Fig. 10. Model and internal forces of a shear crack hinge.

The model of a shear crack hinge is shown in Fig. 10a. This model
corresponds to the often observed crack pattern shown in Fig. 4. The maximum
inclination of the flexural-shear cracks of the hinge is characterised by tan
8n= 1.3. It is assumed that the tensile reinforcement has good bond properties
(ribbed steel bars). Furthermore it is supposed that the shear reinforcement
only consists of closely spaced vertical stirrups.

The part of the beam on the left of the flexural-shear crack i of Fig. 10 a is
shown in Fig. 10b. All the free body forces are shown. It is assumed that no
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external loads exist between the cross sections I and II. Cross section II is
affected by the bending moment Mu and the shear force V. The force in the
tensile steel is denoted by Zi. Bi is the resultant of the stirrup forces crossing
the flexural-shear crack i on the left of the support. Ci and Ki denote the
forces acting in the flexural compression zone parallel and perpendicular
respectively to the beam axis. Any possible fixed end moment between two
neighbouring cracks and dowel action of the tensile reinforcement are neglected.
Furthermore, due to the large cracks widths, the shear transfer across cracks

by the interlocking of aggregate particles must not be considered. The positions
of the lines of action of the forces are shown in Fig. 10 also. As a simplification
the distance of Ci from the extreme compression fiber is taken as cj2. c is the
distance from the extreme compression fibre to the end of a flexural-shear
crack (elliptical form), and ba the support width.

With Mj Mjj -\-Vh the force Zi in the tensile reinforcement is given by
equilibrium conditions:

Z^^-BA -Ki—• (14)
Yi Vi Vi

With some transformations Eq. (14) becomes more appropriate for plotting
and discussion in the following form:

z>-Ak-%(yfyf\
BJV can be expressed for tan 8^ ^ bj2 as follows:

Bi ^45
V V

ts)nSi-bJ2d']
l-bn

i?45 is the resultant of the stirrup forces crossing a 45° crack. Furthermore,
if c0/d and bjd are given, the distances ei,mi, and yi are a function of the angle
8^ alone. When using Eq. (16) care must be taken that the condition BJV^ 1.0

is always satisfied.
For flexural cracks perpendicular to the beam axis instead of inclined

flexural-shear cracks, the tensile force Zi would be given by

Z4 V ^--tan8,l. (17)
Vy0 y<> M

In this formula tan 8^ characterises the distance from the considered flexural
crack to the point of maximum moment (cross section I). Eq. (17) also gives
the tensile force corresponding to the usual bending theory of reinforced
concrete beams with y0 as the lever arm of the internal bending forces: Zi Mi/y0.

When discussing the derived formulas the following values are usually
assumed:

^ 0.2; ^ 0.3.
d d
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Fig. 11. Distribution of the tensile force in a shear crack hinge.

A dimensionless diagram of the distribution of the tensile force for several

assumptions is given in Fig. 11. On the abscissa the distance from the cross

section under consideration to cross section I is characterised by tan 8^. On

the ordinate the values of (Mj\Vy-Zt\V), which are calculated by Eqs. (15)
and (17) are plotted. Therefore, the ordinate values correspond to the reduction

of the maximum amount of the tensile force over the support.
For several values of the ratio B45/V the actual force distribution in a zone

of flexural-shear cracks is given in the upper part of Fig. 11. B^/V charac-
terises the stress and efficiency of the shear reinforcement. The portion if45
of the shear force V which is not transferred by the shear reinforcement is

carried by the compression zone. Since the values of M±b are always greater
than or equal to Vc vcbrd, the value of B^jV essentially depends on the
shear force V vb'd. As a result, B^jV is often very low. But if a very high
shear stress v exists, B^jV increases to a maximum value of about 0.75.

Furthermore, the distribution of the tensile force, assuming flexural cracks or
calculated by the usual bending theory, is shown in Fig. 11. The tensile force
is proportional to the bending moment.

In Fig. 11 it can be seen that in a zone of flexural-shear cracks the reduction
of the maximum tensile force is relatively low. This explains the wide spread
of plastic deformations in shear crack hinges. Since the small force reduction
can be compensated by strain hardening of the steel the plastic length of'the
hinge on both sides of the support often is equal to or greater than the effective
depth of the beam.
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Dependence of Rotational Capacity on Shear Stress

The dependence of the ultimate rotation 9U on the shear stress v is shown
only generally and qualitatively in Fig. 12. If v <vk flexural cracks only occur.
If v>vk flexural-shear cracks are developed. Corresponding to these crack

FLEXURAL

CRACK HINGE SHEAR CRACK HINGE

zo
•2

o
OC

<
2

CONCRETE
FAILURE

WEB

Vk vm

NOMINAL SHEAR STRESS v

Fig. 12. General dependence of ultimate rotation Bu on the nominal shear stress v.

patterns a flexural crack hinge or a shear crack hinge develops. In a flexural
crack hinge the plastic deformations are concentrated into a smaller zone the
greater v is. The value of the ultimate rotation 9U accordingly decreases.

Assuming that a rupture of the steel oecurs, the reduction of 9U is very high.
In the case of a concrete fracture a reduction is also confirmed. If the shear
stress is enough to produce flexural-shear cracks, the rotation 9U considerably
increases since plastic deformations occur on a much wider zone. With increas-
ing shear stress v the ultimate rotation 9U decreases again. But if sufficient
shear reinforcement exists, a drastic reduction of 9U only occurs as v -> vm

through crushing of the concrete in the web due to shearing deformations and
inclined compression forces. Depending on several conditions the values of
vk and vm can vary considerably. From tests it can be concluded that vk and
vm reach approximately the value of vc and (4 — 5)vc, respectively.

Conclusions

As a result of this experimental and theoretical investigation the following
conclusions can be made:



SHEAR AND BOND ON ROTATIONAL CAPACITY OF REINFORCED CONCRETE 25

1. According to the amount of shear stress two quite different types of
plastic hinges are produced:

— ''Flexural crack hinges" which occur in the beam zone mainly affected by
a bending moment, and only producing flexural cracks perpendicular to
the beam axis (Fig. 3), and

— "Shear crack hinges" which occur in the beam zones which are, in addition
to a bending moment, affected by a considerable shear force, and exhibit
inclined flexure-shear cracks (Fig. 4).

2. In a flexural crack hinge plastic deformations may be concentrated to a

single or only a few flexural cracks. For this reason the rotational capacity
may be very small.

3. The danger of a steel rupture can follow from good bond properties of
the tensile reinforcement in a flexural crack hinge, since the steel strain only
increases in the cracks, while between the cracks the steel strain is still in the
elastic ränge.

4. The usual method of calculating the rotational capacity by integrating
a "curvature of rupture" over a "plastic length" may lead to severe errors.
The values of ultimate rotation in the case of a steel rupture measured in the
described tests reach only 20 to 59 percent of the values calculated by the
usual method mentioned above.

5. Therefore, the rotational capacity of flexural crack hinges, particularly
in case of a steel rupture, should be investigated with the corresponding crack
model (Fig. 7). This method correctly takes into account the influence of bond,
bar diameter, strain and strain-hardening properties of tensile reinforcement,
as well as the influence of shear force. Thus, this theory gives safe lower limit
values of the ultimate rotation.

6. On the other hand plastic deformations in shear crack hinges usually
extend over a relatively wide zone. For this reason, the rotational capacity is

correspondingly high.

7. This Observation can be explained with the aid of the crack model for
the shear crack hinge (Fig. 10). The tensile force in the steel is considerably
greater than in the case of flexural cracks only or calculated by the usual
bending theory.

8. In shear crack hinges the stress of vertical stirrups is mainly a function
of the value of the shear force. The stirrup forces do not depend on the
deformations in the hinge caused by progressive rotation.

9. In a zone of flexural cracks the shear stress may considerably decrease
the rotational capacity. However, if the shear stress is high enough to produce
inclined flexural-shear cracks, the rotational capacity is significantly increased.
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Notation

As area of tensile reinforcement
a depth of the equivalent reetangular stress block in compression zone
B resultant of stirrup forces crossing a flexure-shear crack
b width of compression face
b' width of web
ba support width
C compression force in bending compression zone
c distance from extreme compression fibre to the end of a flexure-shear crack

c0 distance from extreme compression fibre to neutral axis and to the end of
flexural crack

D bar diameter
d distance from extreme compression fibre to centroid of tensile reinforcement
Es modulus of elasticity of steel
e distance of the line of action of B from the support in a shear crack hinge

compressive strength of concrete
elastic limit stress of reinforcement (0.005 percent proof stress)
tensile stress in steel
tensile strength of reinforcement
yield strength of reinforcement (0.2 percent proof stress)

h distance of the line of action of V from the support in a shear crack hinge
K shear force in bending compression zone of a shear crack hinge
Lp plastic length of hinge
M bending moment
Mu ultimate bending moment
m distance fixing the acting line of K in a shear crack hinge
p tensile steel ratio A\bd
s slip between reinforcement surface and concrete
u nominal bond stress between reinforcement surface and concrete
V shearing force
Vc shear force carried by the concrete compression zone
Vu shear force at ultimate moment
v nominal shear stress v — V\b' d

vu nominal shear stress at (ultimate moment) Mu
vk nominal shear stress at which flexure-shear cracks are developed
vm nominal shear stress at failure due to crushing of the concrete
vc nominal shear stress in concrete compression zone
w width of a crack at tensile reinforcement
y distance determining the line of action of Z in a shear crack hinge
Z force in tensile reinforcement
z spacing of cracks measured along tensile reinforcement

ty
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8 angle between a flexure-shear crack and a line perpendicular to the beam
axis

ecu maximum concrete compressive strain at Mu
es tensile strain in steel

€sa average steel strain
esu permanent steel elongation as a percentage measured on test bars outside

of rupture
9 total rotation occurring within the plastic length Lp
9U total rotation at ultimate moment Mu
9UC total rotation calculated by the method as given in [2] and [3] (failure

due to failure of concrete)
9US total rotation calculated by Eq. (3) (failure due to rupture of steel)
A ratio of calculated ultimate moment in span and over the central support
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Summary

10 two-span reinforced concrete beams were tested to study the influence
of shear and bond on the rotational capacity of reinforced concrete plastic
hinges.

The shear stress determines whether a "flexural crack hinge" or a "shear
crack hinge" occurs. In flexural crack hinges the rotational capacity can be
considered smaller than the values calculated by usual methods. Therefore
a new method of calculation giving safe values has been developed. On the
other hand in shear crack hinges plastic deformations occur within a wide
zone allowing a larger rotational capacity.

Resume

On a fait des essais avec dix poutres en beton arme a deux travees pour
etudier 1'influence de la sollicitation de cisaillement et de l'adherence des

armatures sur la capacite de rotation des rotules plastiques en beton arme.
Suivant la valeur de la sollicitation de cisaillement, il resulte une ,,rotule

due ä une fissure de flexion" ou une ,,rotule due ä une fissure de cisaillement''.
Dans des rotules dues ä la flexion, la capacite de rotation peut etre tres
inferieure a celle calculee d'apres les methodes usuelles. Par consequent, il est
necessaire de developper une nouvelle methode de calcul qui donne des resultats

sürs. Au contraire, dans des rotules dues au cisaillement, les deformations
qui s'etendent sur un large domaine provoquent une grande capacite de

rotation.

Zusammenfassung

Es wurden Versuche an 10 zweifeldrigen Stahlbetonbalken gemacht zwecks
Studium des Einflusses von Schubbeanspruchung und Verbund auf die
Rotationsfähigkeit plastischer Stahlbeton-Gelenke.

Je nach Höhe der Schubbeanspruchung entsteht ein Biegeriß-Gelenk"
oder ein Schubriß-Gelenk". In Biegeriß-Gelenken kann die Rotationsfähigkeit

wesentlich kleiner sein als sie sich nach üblichen Methoden berechnen
läßt. Daher wird eine neuartige Berechnungsmethode entwickelt, die sichere
Resultate liefert. Demgegenüber entstehen in Schubriß-Gelenken plastische
Verformungen über einen weiten Bereich, die eine entsprechend große
Rotationsfähigkeit bewirken.
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