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Introduction

Several procedures for the analysis of folded plate structures have been

developed [7,8,9,16,22,23,25] for the determination of stresses throughout
such structures. Many folded plate roofs have been built based on these analyses
and have apparently performed quite satisfactorily. Some experimental studies
[2, 8,15] have also been performed and, in general, indicate results for stresses
which agree satisfactorily with those obtained from theoretical analyses. To
the writers' knowledge however, no analysis has been presented previously to
indicate the possibility of buckling in a folded plate structure. A possibility
exists that some sort of buckling could take place under the action of live loads
smaller in magnitude than the service loads obtained by conventional
techniques, especially for structures with large length to depth ratios. Such buckling
as may occur could be either a general instability of the entire structure
accompanied by a distortion of the cross-section (analogous to lateral instability
of long beams), or a local buckling of the individual plate elements. This paper
is concerned solely with the latter problem. Only single span, single-cell,
simply supported structures subjected to uniform load on the horizontal pro-
jection are considered herein.
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General Description of the Local Buckling Problem

An individual plate element of a folded plate structure may be considered
to be elastically supported along its longitudinal edges and simply supported
along its transverse edges. Such a plate is subjected to uniform normal and
tangential loads which give rise, through the structural action of the folded
plate system, to internal normal shears and moments, and to in-plane forces,
shears and moments. Following Bleich [3], the buckling may be considered
to be caused essentially by the in-plane forces. To correctly perform the
analysis, all of these in-plane forces should be taken into account at the same time.
In order to simplify this extremely complex problem, the local plate buckling
is assumed to be caused primarily by either transverse in-plane forces or by
the combined action of shearing and longitudinal in-plane forces. The first
case is denoted "Transverse Buckling" and may be expected to occur for
relatively low values of the span to depth ratio of the structure. The second

case is denoted "Shear-Longitudinal Buckling" and may be expected to occur
for relatively large values of the span to depth ratio. Such an analysis is an
approximation at best and should be thought of as merely a first step in a
general treatment of this problem. It is hoped that the analysis presented
herein will provide sufficient insight into the problem to indicate possible
directions for further refinement.

Transverse Buckling Analysis

The procedure used herein to determine the load corresponding to transverse

buckling in an individual plate element of a folded plate structure is
based upon Rayleigh's Principle [20] and it utilizes a deflection field which
merely satisfies the boundary conditions for an individual plate. To find such

a deflection field, a general folded plate analysis may be used. Of the many
folded plate analyses available only a few [9, 22] are sufficiently general to be

applicable to a buckling analysis. The one used in this study is the method of
Goldberg and Leve [9]. The following assumptions are implicit in this method:

1. The structural system is assumed to act as a combination of slabs on elastic
foundations at the ridges for "out of plane" deflections and as plates or
beams for "in plane" deflections.

2. The plate elements are assumed to be supported on end diaphragms which
are perfectly rigid parallel to the plane of the diaphragm and are perfectly
flexible normal to the plane of the diaphragm.

3. The thickness of each plate is small compared to its other dimensions.
4. Small deflections are assumed throughout.
5. The material is assumed to be perfectly homogeneous, isotropic, and elastic.



THE STABILITY OF SINGLE-CELL FOLDED PLATE STRUCTURES 219

With these assumptions an "elasticity Solution" is obtained which relates
the internal forces and deformations to the applied loads.

Fig. 1 shows a typical plate element together with an x, y, z coordinate
system. Positive orientation for the internal forces and deformations are also
shown in this figure. The loads, forces, and deformations are expressed as

Fig. la. Coordinate system for
typical (*th) plate.

+Ptiy + M

+MX
+M

+ Nxi +uj

+ Nyij+V|
+N+0j, r -"-iNyx.

+w; +0i ¦ ^xi

Fig. lb. Plate element and associated forces
and displacements.

trigonometric series in the x-direction. For the ith. plate, the relationships
for the pertinent internal forces and deformations for a mode m of the trigonometric

series are [26]:
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In the above MFy., NFy., NFx., NFxy. are the internal forces induced
the applied loads and the condition of fixity at the edges and may be expres
for mode m as follows [9]:
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In Eqs. (1) the terms Alt through A18i reflect the influence of the ridge
deformations for mode m on the internal forces and deformations in the ith
plate. These terms are:
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In the above, 6j, wjk, vjk, üj, and Sk, wkj, vkj, uk are the maximum values
for a given mode m of the rotation, normal, transverse and longitudinal
displacements at edges j and k respectively of the ith plate. The plate coefficients

Di, D1 i, U2i, Alm, A2m, A3m, A4m, A5m, Aqm, Alm, A8m, ccm, Kcm, fCtm, vi, f^n, fai,
Uzt, jji5i, iA6i, \juli are defined in the Appendix.

wi is a Solution of the homogeneous plate equation which satisfies the
boundary conditions at the edges of the plate. In addition to the above,
expressions can also be determined for Mx., Mxy., Qx. and Qy..

Using the deflection field, wi, the total strain energy of bending, UTi, for a

load on the ith plate is calculated along with the total external energy of
the transverse loads, TT.. The change in strain energy from the previous
value as the load is increased by a specified increment is Ui. The corresponding
change in the external energy is Tt. The total external energy associated with
the normal load is i/jt. and the energy change as the load is increased by a

specified increment is i/ji. The change in kinetic energy associated with the
increase in load is Vi.

Following the principle of the conservation of energy [20],

h + Tt Ut+Vt. (3)

If Ui — Ti^0 all energy associated with the normal load is converted into
kinetic energy. The requirement for buckling is then that

TtZUi. (4)
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According to Rayleigh's Principle [20], the energies Ui and Wi calculated
using deflection fields which satisfy only the boundary conditions at the edges
of the plate will yield a possible Solution to the buckling problem if Eq. (4) is
satisfied. The Solution obtained will be the correct one if and only if the deflection

field also satisfies the equilibrium equation for the true buckled shape.
Otherwise the Solution obtained will be merely an upper bound.

The equation for the average external energy of the transverse force is,

approximately,
a bi/2

^=_ij jN4w)2<ixdy- (5)

o -bm

Substituting the deflection function, wi for mode n given by Eq. (le), and
the transverse force, Ny. for a different mode m given by Eq. (lb), into Eq. (5)

yields [26]:
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The total external energy is obtained by summing Eq. (6) over as many
modes m and n as desired. Note that the coefficients Alt, A3i, A17i, A18i are
determined for mode n and A5i, AQi, A7i, A8i are determined for mode m.

The equation for the internal strain energy of bending, UT. using linear,
small deflection theory is:

0 -bi/2 (7)

Substituting the deflection function, wi for mode m into Eq. (7) gives [26]:

7742). V*
UT. —-~ 2_j m4 (07* + Qsi sinh 2 ocm + Q9i smh2am + Q10i cosh 2 oJ. (8)

ra=l, 3,

«7< =^^[^!<(3-v<)+^i<(l-v4)] + --i(v<-l)(^1^18< + ^,^m);

In the above
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In the derivation of Eq. (6), the cross terms involving f-^—M (-0— -) with

m + 7i were omitted. The subscripts m and ti indicate the mth and nth Fourier
terms. Numerical results have indicated that this is justified as the series for
wi converges very rapidly compared to the series for Ny It was feit that the
approximation involved in the method did not justify a further refinement in
the external energy Eq. (6). For the internal energy, the cross terms have

no effect.
In order to perform the numerical Operations necessary in the analysis a

Computer program was written in FORTRAN IV for the IBM 7040 Computer.
This program was subsequently modified to run on the IBM 360-40 Computer
with FORTRAN IV level E. This program also includes an Option whereby
only a stress analysis is made. The data to be read into the program consists of:

1. Number of plates, maximum mode of the trigonometric series.
2. Boundary conditions at outside edges (either fixed or free).
3. Number of points where final stresses are to be calculated.
4. Controls for the type of Output desired (i. e. stress results or buckling results).
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5. Initial length, overall depth, incremental change in length.
6. hi,bi, Ei,vi, inclination and unit weight for each plate.
7. Initial uniform load on horizontal projection, load increment, maximum

load.

Briefly, the program carries out a stress analysis for some load level using
the method outlined by Goldberg and Leve [9], calculates Axi through A18i,
TT. and UT. for each plate and stores the energy values. The load is then
incremented and the process repeated which results in new values for TT. and
UTt. The differences between old and new values of TT. and UT. are calculated
and thus values of Tt and Ui for each plate are obtained. Eq. (4) is tested for
each plate and if it is not satisfied the load is once again incremented and new
energy differences are obtained. This process continues until Eq. (4) is satisfied
for some plate at which time the non-dimensionalized buckling load (qcr\F)
is printed out. The entire analysis is then repeated for as many structure
lengths as desired which finally yields a curve of buckling load versus length
to depth ratio.

Shear-Longitudinal Buckling Analysis

The effect of in-plane shearing and longitudinal stresses on the buckling
of a plate element is based upon the work of Lundquist and Stowtell [12,17,
18]. The following approximations are employed in applying the previously
developed plate buckling equations to the folded plate element.

1. The element is divided longitudinally into strips. Each strip is assumed
to be simply supported along its transverse edges and to be elastically supported
with regard to rotation along its longitudinal edges. The deflections, wi, along
the longitudinal edges are assumed to be zero (see Fig. 2).

strip in ith plate \.

Oxa

föcrxa

bi/2 -wj assumed
zero along
these lines

Fig. 2. Strip element of typical (ith) plate.

2. Each strip is assumed to be acted upon by constant shearing and
longitudinal stresses obtained by averaging the actual stresses over its width and
length.
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3. The rotational stiffness along an edge, S0, is defined by the equation,

M
s» Te (9)

for each mode and My and 6 are given by Eqs. (la) and (lf).
4. With regard to shear buckling, the length to width ratio of the strip is

assumed to be infinite.
5. The critical shearing and longitudinal stresses are [12, 18]:

- - "'M'h7,K. <><»
i2(i-i*)»;«

''E<h7,K, dK12(1-"?)«'

in which 1cs and kc are the shear buckling and longitudinal buckling coefficients
which depend upon the stiffness of the restraining medium. These are set

forth in the Appendix.
6. The interaction of shear buckling and longitudinal buckling is assumed

to be given with sufficient accuracy by the following formula [17,19]:

Ij^Y + ^*l^19 (12)

in which rXVa and aXa are respectively the average shearing and average
longitudinal stress in a strip.

The average shearing stress for a strip rxya is determined by integrating
the shearing stress rxy over the half length and width of the strip and dividing
by the half area, or,

a/2 bii

^-h\ \ £ ^dxdy. (13)
a0iJ J m i73,... ni

0 bn

Nxy is expressed by Eq. (1 d) for a given mode m of the trigonometric series.

Substituting this function in Eq. (13) yields:

m+3

(-1) 2 In ^um7Tb2i n _i™w6ii2 v (-1) 2 /^ i m>irb2i ^ i?
T*V* WZ h ^—^ &« COsh-—^+ Ö12* COSh-

'% m=l,3,

^ rnnboi ^ • i mirb^t ~ \ /i a\+ Q13,smh—-^+ö14,smh—-^ + CP< (14)
a a j

where Q1U b2i(2CpiXßm + D,mA13i) + -—D'm(Alu--Aui);
liv IT

Ql2i — — bii(2Cpi\em + D'mA13i) — ^~~ ^m (^14*~~^15*) '
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0i3* -2^*A6m7^(l+amCOtham + y:^j

014*= 2^*^6m77777^^(1+amC0tnam +p% 6mm77 y ' -m—m •

1+^

r 4<*A*
** ^m2772'

E^m-rr

2(l+v,)a"

6^ and 62i correspond to values of y at edges 1 and 2 of a strip and b't is
the strip width.

The average longitudinal stress aXa for a strip is determined by integrating
the longitudinal stress over the length and width of the strip and dividing by
the strip area as:

a b<2i

^=7bJS E Mx%=l V ±{Sxit + Sxtt), (15)
i%/ •/ m=l,3,... m=l,3,...0 bi*

where ö^., äa.2i are the maximum longitudinal stresses for mode m at edges
1 and 2 of the strip respectively. This expression is obtained using a linear
distribution of ax in the y direction which is a valid approximation even for
the smallest length to depth ratio (approximately five to one) considered in
this work.

The values of äXli, äX2. are determined from Eq. (lc) by substituting for
y the values of blt and b2i, for x the value a\2, and by dividing by hi.

A Computer program was written in FORTRAN IV level E for the IBM
360-40 Computer to perform the necessary calculations in this analysis. The
following data is needed for the program:

1. Number of plates, maximum mode of the trigonometric series.
2. Boundary conditions at outside edges.
3. Controls for desired Output.
4. Maximum number of strips for calculation of critical stresses in the half

width of each plate.
5. Initial length, overall depth, incremental change in length.
6. hi,bi, Ei,vi, inclination and unit weight for each plate.
7. Initial uniform load on horizontal projection, load increment, maximum

load.



228 S. E. SWARTZ - S. A. GURALNICK

For a given load and strip width the stresses throughout the structure and
the coefficients Ali through A18i for each plate are determined. For each strip
in the structure the edge stiffnesses and the minimum average shear and
longitudinal buckling coefficients as given by Lundquist and Stowell
[12,17,18] are calculated. The values of rXVa and aXa obtained from Eqs. (14)
and (15) for each strip are determined and the interaction equation, Eq. (12),
is applied. If the equation is not satisfied for any strip, the load is increased
and the entire procedure is repeated. When Eq. (12) is satisfied for some strip
the value of the buckling load (qcr/E) is stored and the process is repeated for
a new strip width. The new value of the buckling load obtained is compared
to the previous value and the smaller is retained. When the minimum buckling
value is determined the process is terminated.

The above analysis is repeated for different structure lengths to obtain a

r Qcr a
eurve of -^vs^.Hi a

Results of Buckling Analyses

Five examples of folded plate roofs were analyzed using the above procedures.

These are shown in Figs. 3 and 4. Fig. 3 shows the cross-sections of
two füll scale concrete roofs. Fig. 4 shows the cross-sections for three types
of small scale, aluminum model folded plate roofs.

Dimensionless critical load versus span to depth ratio curves for these
structures obtained from the Computer programs described previously are
presented in Figs. 5 through 9. The curves for transverse buckling were obtained
using three modes of the trigonometric series. The load tolerance was +2.5 psf.
In each case the theory indicated that the inclined plates buckled first. The
Computer running time was approximately one hour for each curve.

The curves for shear-longitudinal buckling were obtained using three modes
of the trigonometric series and a load tolerance of + 5 psf. The Computer running
time for each curve was approximately two hours. The Type I roofs exhibited
buckling in the top plate due primarily to the longitudinal stresses. In the
Type II roofs the inclined plates buckled under the combination of shearing

10-8

10-8

d 6.85
40

10-8

10-8"

d=8.85

Ji=l.97", i/ 0.2. Unit weight 150 lb/ft3.

Fig. 3 a. Concrete roof, type I cross-section.

2-0

h 1.97", v 0.2. Unit weight 150 lb/ft3.

Fig. 3b. Concrete roof, type II cross-section.
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d=5 14"

40

Type I cross-section

d 664

1.5" Type IT cross -section

Type UT cross-section

ft 0.0625", v=l/3. Unit weight 170.5 lb/ft3

Fig. 4. Aluminum model roofs.

and longitudinal stresses for span to depth ratios less than about eight to one.
For larger ratios the center plates buckled under the action of longitudinal
stresses. The Type III roofs buckled under a combination of shearing and
longitudinal stresses. The optimum number of strips for inclined plate buckling
was two and for the center plate buckling was one.

From Figs. 5 through 9 comparisons between the transverse and shear -

longitudinal critical load curves indicate that transverse buckling predominates

ct|lu

transverse buckling"

"shear- longitudinal
buckling"

B

A- "transverse buckling"

B- "shear-longitudinal
3 00-

i

buckling"

t|üJ

critical

load

ro OO

A \

ess

imension

TD
1 oo-

"^-
5 10 15 20

span to depth ratio ~r

Fig. 5. Critical load versus span to depth
ratio for type I concrete roof.

Fig. 6. Critical load versus span to depth
ratio for type II concrete roof.



230 S. E. SWARTZ - S. A. GURALNICK

o
Or|ui

A- transverse buckling"

"shear-longitudinal
buckling"

5 10 15

span to depth ratio j
Fig. 7. Critical load versus span to depth
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Fig. 8. Critical load versus span to depth
ratio for type II aluminum model roof.

Fig. 9. Critical load versus span to depth
ratio for type III aluminum model roof.

for span to depth ratios less than about fifteen to one for Type I and II structures

and ten to one for Type III structures.
As is to be expected, the results indicate that folded plate structures with

small span to depth ratios have very high buckling loads; but as the span to
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depth ratio increases the buckling load decreases rapidly. Beyond a span to
depth ratio of approximately ten to one the transverse buckling curves decrease

very slowly whereas the shear-longitudinal curves decrease at a higher rate.

Conclusions

An analysis of folded plate structures to predict loads at which its plate
elements will buckle has been presented. This problem was treated by
introducing the approximation that one of two types of stress patterns would
create the buckled state; that is, either transverse in-plane stresses would
cause buckling or eise a combination of shearing and longitudinal in-plane
stresses would. In reality, all of these stresses acting together will cause
buckling.

The energy method employed in the transverse buckling analysis will
always lead to an upper bound estimate of the critical load. In applying this
method, the effect of the surface loads was essentially neglected. As reported
by Bleich [3], the surface load on a plate may increase or decrease the buckling
strength depending upon the deflection pattern in the buckled state and the
end conditions.

The shear-longitudinal buckling analysis presented herein utilizes the work
of others. The formulas for critical shearing stress, critical longitudinal stress,
and the interaction between the two are based upon the energy principle and

upon the assumption that constant stresses pertain throughout the region of
interest. This results in a prediction of constant length between the nodal
points of the buckled surface. In the actual case, the stresses vary in a
nonlinear fashion along the length of the structure but were, for purposes of
simplification, assumed to be constant throughout each plate. This approximation

has been used previously in treating the problem of local buckling of
beam flanges and webs [3].

In summary, the following conclusions may be drawn from this study:
1. Folded plate structures of practical dimensions, subjected to uniformly

distributed, surface loads, may, in some instances, exhibit local plate buckling.
2. As a consequence of the above statement, it appears likely that present

design methods for folded plates which do not take into account the possibility
of buckling may be unconservative.

3. The type of local buckling which predominates depends upon the span
to depth ratio and the geometric properties of the cross-section. Results
obtained in this study indicate that buckling will be caused mainly by transverse

stresses for small span to depth ratios and by shearing and longitudinal
stresses for large span to depth ratios.

4. There are many parameters that affect the buckling strength which
should be considered in addition to those used in this study. Among these are
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plate thickness, plate inclination, shape of cross-section, presence of
intermediate stiffeners, multiple-cell cross-sections and type of surface load. Some

of these topics will be considered in subsequent reports.
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Appendix I. Notation

-A-u A18i Force-disj

Dt Ey\
12 (1-v?)

Du EiM
24(l+v,)*

D2i
Etht

2(1+^)"

D' Eim7T
2(l+vt)a-

Et, vi Young 's Modulus and Poisson 's Ratio respectively for
the ith plate.

MXi,Myi,Mxm,
Nx.,Ny.,Nxy., Internal moments, forces, shears in the ith plate.
Qxi j QVi

Fvi' Fxi' Fy^ — Internal moment, forces, shears in the ith plate corre-
FxVi sponding to fixity at the ridges.

Qu—Qiu Coefficients in external energy equation, internal energy
equation and average shear equation.

Bi,B'i,Si,S'i,Cpi Coefficients in expressions for Qxi—Q14^.

TJi,Ti Change in internal strain energy and external energy of
transverse forces respectively in ith plate.

a Length of structure.
bi — Width of ith plate.

b'i,bli,b2i Width and edges of longitudinal strip in ith plate
respectively.

d Depth of roof cross-section.

hi Thickness of ith plate.



THE STABILITY OF SINGLE-CELL FOLDED PLATE STRUCTURES 233

j, k The edges of the ith plate corresponding to y \bi and

y —\bt respectively.
kc Plate longitudinal stress buckling coefficient.

imymyyymihiyym
7T* e*

120 y+yiyj
In the above,

_ iSpb'j
€ - Dt '

A half wave length of assumed buckled surface,

Plate shearing stress buckling coefficient.

-^ö- [(-r)2^2- + (Ä)2^iCosV + ^2(l +2sinV)sm2(pL\A/ cos29? ybj l T z r
In the above,

c
€il-7J+e(l-i) + i

C 2

ijy_y i\ ß_±\ + y
1,120 772

"^ S^"1-eU ifi) ~l~
2

e2(Ä-i)+e(l-i)+l
'2 " y^\12Ö t^ +8/ + 6\2 "^2"/+ 2

and,

Coscp iG3+YCl + cl9
where

0._ 7-^
G,

ersP
A\2

&cm amcotham.
Km am ^anh am.

m, n Trigonometric mode numbers.

pni, pti Loads acting on the ith plate in the z and y directions
respectively.

q, qcr Uniform vertical live load and live load corresponding
to buckling respectively.

wi, 6i The z component of displacement and the rotation in the
ith plate respectively.
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_/' Jk' _Jk' J The maximum values of the x, y, z components of dis-
k' kj > kj 9 k placement and the rotation at edges j and k respectively

of the ith plate.

x,y,z Coordinate directions in the ith plate.
mirb,

OL

2a '

Km (amsecham + sinham)-1.

Km (am csch am-cosh aj-1.
Km (am csch am +cosh aj"1.
Km (amsecnam-smnam)_1-

Km ' (amSecnam-MtSmnam)_1-

Km (amcscllam+^cosham)"1-
Km (amcscnam-^cosnam)_1-
Km (amSecham + /x<sinhaOT)-1.

3-v,
ri l+v<

2
H-li 1-^
f*Si 1"V

2v,
Pu l+*i'

2
Pbi l+vy

Pßi

3 + v,
p7i 1+V
Gx ' uy ' TiC2/ Stress

Buckling longitudinal and shearing stresses and average
longitudinal and shearing stresses respectively for a

longitudinal strip.
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Summary

An approximate analysis of an arbitrary, single-cell, folded plate structure
to predict the transverse load at which one or more of its individual constituent
plates will buckle is presented. The problem is treated by introducing the
approximation that one of two types of stress pattern may induce buckling;
that is, either transverse in-plane stresses or a combination of shear and
longitudinal in-plane stresses. The energy method employed in the transverse

buckling analysis will always lead to an upper bound estimate of the critical
load. In the shear-longitudinal buckling analysis, the equations for critical
shearing stress, critical longitudinal stress, and the interaction between the
two are based upon the energy principle and upon the assumption that constant
stresses pertain throughout the region of interest.

Resume

Une analyse approximative des voiles prismatiques unicellulaires quel-
conques permet aux auteurs de prevoir la charge transversale ä laquelle une
ou plusieurs de ses plaques Constituantes deviendront instables. Le probleme
est simplifie en supposant que le voilement peut etre provoque par les deux
types de repartition des tensions suivants: soit par des tensions transversales
planes, soit par une combinaison de tensions de cisaillement et de tensions

longitudinales. La methode energetique appliquee ä 1'analyse du voilement
transversal menera toujours ä une limite superieure de la charge critique.
Dans 1'analyse du second cas (tensions de cisaillement et tensions longitudinales),

le principe de l'energie et la supposition de tensions constantes d'un
bout ä l'autre de la region interessante permettent d'etablir les equations
pour la tension de cisaillement critique, la tension longitudinale critique et
leur interaction.

Zusammenfassung

Es wird eine Näherungslösung der Querlast, unter der ein oder mehrere
Einzelscheiben ausbeulen, für ein beliebiges, einzelliges Faltwerk angegeben.
Das Problem wird für die Näherung behandelt, daß eine oder zwei Spannungsformen

Beulen verursachen, entweder ebene Querspannungen oder eine
Verbindung von Schub- und ebenen Längsspannungen. Im ersten Fall führt die
Energiemethode für Querbeulen immer zu einem oberen Wert der geschätzten
Beullast. Im zweiten Fall des Schub-Längsbeulens fußen die Gleichungen für
die Beulschub-, Beullängsspannung sowie das Zusammenwirken derselben auf
dem Energieprinzip unter der Voraussetzung, daß die Spannungen im
wirksamen Bereich konstant bleiben.
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