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Introduction

The development of new construction methods resulting in orthotropic
structures especially in bridge construction has renewed interest in the problem
of orthotropy. Although series solutions are available for the analysis of ortho-
tropic plates and shells, slow convergence can make their use inconvenient
even with the use of digital computers. It appears desirable to present an
analysis for simple spans which avoids this major difficulty without sacrifice
of accuracy in practical design.

The idealization of an actual structure of different rigidities in two ortho-
gonal directions into an equivalent orthotropic plate on simple parallel supports
is governed by the familiar equation

Mt w Mw *w

+2H 2~ 4D

DmW ax28y2 yg‘y—4=ﬁ9(x,y)- (1)

This is due to HuBER [1], and its application to bridge decks with negligible
torsional rigidity (H =0) was first introduced by Guyon [2] and later extended
by MASSONNET [3] to cover all cases falling between the torsionless and iso-
tropic cases. Hence it is apparent that the Guyon-Massonnet solutions are
applicable only to those bridge deck where the square of half the total tor-
sional rigidity does not exceed the product of the flexural rigidities in the two
orthogonal directions (H*<D,D,). In terms of Massonnet’s parameter

o , the equations are valid only for «<1. For bridge decks with

" VD.D,
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low flexural rigidities and for multi-cell bridge decks with high torsional
rigidity, this condition may be exceeded and thus the Guyon-Massonnet
solution is no longer valid. The authors [4,5] have analyzed the case where
H?2zD,D, or (i.e. «a=1). Such bridge decks are designated torsionally stiff-
flexurally soft to cover those cases falling between the extremes of the iso-
tropix slab and the articulated deck (D, =0).

These analyses are for concentrated loads acting on the deck and as such
are handicapped by the slow convergence of the series especially for moments,
shears and reactive forces. Moreover, the use of concentrated loads to simulate
the loads due to actual tyres is unrealistic since the actual live load imposed
by traffic on a highway bridge is spread over an area, depending on vehicle
weight, and tyre dimensions and inflation pressure. The loaded area of the
bridge deck is larger than the contact area between the tyre and the roadway
because of the load distributing action of the wearing surface, and depends
upon its thickness and rigidity.

The use of rectangular patch loads to represent the tyre pressures on a
bridge deck is realistic, and it will be shown that this approach overcomes
the problem of convergence. Thus the evaluation of design parameters such
as bending moment, becomes very convenient as it requires few harmonics
of the series to give reasonable accuracy.

Theoretical Analysis

The effect of rectangular patch loads on simply supported orthotropic
bridge decks may be obtained directly from the equation derived for concen-
trated load by integrating the function over a finite rectangular area. Using
this method the analysis begins by considering a point load acting on the deck
as has been done previously [4, 5].

The governing differential equation for a rectangular orthotropic plate is
defined by Eq. (1) where the flexural rigidities per unit width in the x and y
directions are D, and D, respectively and the torsional rigidity 2 H is given by

2H=(Da¢y+Dyx+D1+D2)’ (2)

where D, and D,, are the torsional rigidities of the plate in the x and y direc-
tions respectively and D, and D, are the contributions of bending to the total
torsional rigidity of the bridge deck. With these rigidities, the bending and
torsional moments, shearing and reactive forces are functions of the deflection
w as shown in Eq. (3).

2w 2w 2w 2w
M, =_(Dx.ﬁ+1)1-a-?—ﬁ); M, =—(Dyay2+D28x2);
2 P (3)
M - 2w M = Fw

o= Davgazy ve =~ Dua gy’
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[ Bw Pw
Voo == |Pagm+ Dy +D)8x8y2]

[ Bw B w
v, ——_Dyay?, (D, +D)8x28y]’
R F Bw Bw (3)
e = P+ Puet Day+ D)o 8y2]

3w Pw

R, =‘_Dy5§§+(Dw+Dw+Dz)m]-

The solution of the differential equation based on Levy’s method may be
classified into three distinet cases depending upon the relative rigidities of the
deck. These are summarized as follows:

Case 1. H?®> D,D, (Special case D,=0)
Case 2. H*=D,D,
Case 3. H? < D,D, (Special case H=0)

Bridge decks within the first category have been classified by the authors
[5] as torsionally stiff-flexurally soft bridge decks. These are characterized
either by low flexural rigidity as in the multi-beam bridge deck with trans-
verse shear connectors or by high torsional rigidity as in the multi-cell bridge
decks. The solution of this particular case is based on the potitive roots of the
characteristic equation.

X X
(simple support
/-edge beam edge beam\
Yo ,
\ }"‘Y. —’l

station

foad

-y
L———nb /o ‘?' b —

c lmple suppor

Fig. 1. Coordinate axes for point load acting on bridge deck.
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The second category covers the familiar isotropic case where the flexural
and torsional rigidities are equal. The solution may be employed for the analysis
of uniform, solid slabs commonly encountered in practice.

The third and last category may be defined as torsionally soft-flexurally
stiff bridge decks. These have a characteristically high flexural rigidity as
compared with their torsional rigidity. Most composite bridge decks especially
those of T-beam construction are under this case; the solution is based on the
complex roots of the characteristic equation.

MassoNNET [3] has derived the expression for deflection for the second and
third cases. The authors [4, 5] have previously analysed the first case for
concentrated loads acting on the deck. It has been shown that for a concen-
trated load P acting at a distance ¢ from the simple support as shown in Fig. 1,
the equation for deflection at any point x may be written as

2]

2PI3 1. . '
w—_-774Dx257;h74—81nan081nanx]{1, (4)
nw
where % = F (5)

and K, is a coefficient appropriate for each case written as K,;, K;, or K3
for cases 1, 2 or 3 respectively.

Considering now a wheel load W uniformly distributed over a rectangular
area 2ux2v as shown in Fig. 2, the deflection function due to this finite
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Fig. 2. Coordinate axes for rectangular patch load acting on bridge deck.
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rectangular patch load is obtained by integrating the deflection from (c—u)
to (c+u) along the z-axis and from —v to +v along the y-axis and the equation
becomes

o c+u v
2W I3 1. , 1
w:W;F&nanxf&nanede%flfldn. (6)
c—u —-v
v
Setting K = ?zib JKI dn, (7)

where K may be written as K}, K;; or K5 as appropriate, the equation for
deflection reduces to

WLt o1 . :
—5 Sin e, 4 Sin «,, ¢ Sin o, (K ). (8)

= 5
uvmt D, =n

With the expression for deflection known, the moments, shears and reactive
forces due to a rectangular patch load are obtained by successive differentiation
and these are summarized as follows:

Case 1. Torsionally Stiff- Flexurally Soft Bridge Decks
(H2zD,D,;0z1)
Deflection:
4 [e 0]
WL %SinanuSinancSincxnx(Kl*l). (8a)

won®D, =n

Longitudinal Moment:

e o)

W L2 1. . . D
M, = Py Z;FSmocnuSmancSmanx(Kl*l—D—lKg‘l). (9)
n= X
Transverse Moment:
WL 1, . . D D
M, = —uvn3:;1nTSlna”usmancsma”x(ﬁzKﬁ_DfKﬁ)' (10)
Longitudinal Twist:
WL 1, , D,
w=uvﬂ3;$SlnanuSmancCos%x(D;’K:;“l). (11)
Transverse Twist:
WL 1, , D,,
M, = —uvﬂ3;;ﬁSmcxnuSmancCOSanx( DZ; K:;“l) (12)
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Longitudinal Shear:

WL\ 1, . D,,+D
e = o _I%ESmanuSmocncCOSanx[K{“l—(—”-ﬁw——l)lfg‘l]. (13)
Transverse Shear:

W L 1 D,+D
vV, = Sin a,, % Sin e, ¢ Sin « x[K* (——2—”—”)]{*]. (14)
v u vl an e D, 31

Longitudinal Reactive Force:

R, = WL Z%SinanuSinancCOSocnx[K{"l—(Dx”+Dyw+Dl)K§“1]- (15)

2
wvm? =

Transverse Reactive Force:

R, =- WL 2Smoc uSin a, ¢ Sin « x[K;“l ( vt Dye +D)K§“1] (16)
uvn? =n D,
" H ]/ H\> D,
Settlng ry = ‘/*D; + (ﬁ;) —D— (17)
H H\* D
and r =}/——]/(——) - == (18)
2 D, D, D,
the dimensionless terms K3¥, K¥, K} and K} are defined as follows:
For {54
D
S =B~ _ o—Bor+h)) — — (g—Biér—) _ g—Pr1Er+d)
Kll 2Dy(7'%—7'§) [Tg( 2(&1 e—Pe(61 ) 7'1( 1(§1— e~ P1E1+Y) (19)
+ A*¥Cosh B, &+ Bk Cosh B, &, + C ¥ Sinh B, £, + D ¥ Sinh B, 50] ,
D
¥ . rx  r(e—Palri—h) _ og—Babr+d)) — (e—Brér—) _ g—Pré1t+)
K = 3D (2 —pgy ePET0 - BB — (BB =B Er ) (20)

+72 A% Cosh B, &, + 13 B Cosh B, &, +7"2O* Sinh B, &, + 72 D* Sinh B, &,],

1
L - e—Br1&i—) _ p—Pr&r+)y — _— (p—B21—¥h) _ —Baé1+¢)
Bi= g0 BG B Sl B
+7r; A¥Sinh B, &+ 7, B¥ Sinh 8, &, + 7, O* Cosh B, &y +7, D} Cosh B, fo] ,
1
* - —Bi&r—y) _ p—Brér+)) — —Ba(é1—) _ p—P2E1+Y)
K& 2(rE—13) [+{rs(e e )7y (e € )} (22)

+ 73 A} Sinh B, £, +73 B Sinh B, &, + 73 0¥ Cosh B8, £, +73 D Cosh B, &,] .

The expressions for stations at the centre of the load where ¢, =0, are
obtained by setting &, and ¢ equal to /2 and doubling the result. This is done
for the particular solution only and following this, the equations for K¥, K¥,
K} and KF are as follows:
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For £, =0
D 2 2
* = x| "] Py (1 —pPY
Kll 2Dy (7,%_?%) [Tg (1 (9 ) 7,% (1 € ) (23)
+ A Cosh B, £+ B3 Cosh , €+ O Sinh f, €+ D} Sinh fo] ,
D, _ _
Ka= 5D, pi—p B =) (24
+73 A¥ Cosh B, £+ 1% B¥ Cosh B, &)+ 3 C¥Sinh B8, &, +r2 D% Sinh B8, &,],
1 ) ) '
K3 = m[—i—?lfl;{‘ Sinh B, é,+ 7, B Sinh 3, &, &)
+ 7, O Cosh B, &g +7, D Cosh B, &1,
1 . .
K¥ = m [+73 A% Sinh B, & +73 B Sinh B, &, -

+73C% Cosh B, & +r3 Dj¥ Cosh B, &,].

The positive and negative signs used for K} and K} are for station to the
right and left of the load respectively.
The constants used are defined as follows:

A — S5 —84) byy — (811 +55) bay

, 27a
2 (a3 b1y —ay; b3y) ( )
(Sfi+8%) ag; — (S5 —8%) ayy
BE = , 27b
2 (ag; b1y — a4, b3) ( )
(S +8%) dyy — (8§ — 85 ds,
O* = , 27 ¢
" 2 (cg1dy1—C11d3;) ( )
(81*1 —83) €31 — (S +88) enn
D¥* = , 27d
" 2 (cg1dyy —C11d3y) ( )
where
Sti= - |G +(D, Dy ;I_J [e~Brm— _ o~Bunitih]
11 - 11 (28a)
——|GJ «,+(D,r3—D,)— [e—Fatm—) _ g—Fatm+)]
e L Ty |
Sfi= o |Gyt (D13 =Dy) | [ePatmh - Brimrh]
th . 1 . (28b)
_E [G J o, + ( Dy r3—D 2)E] [6—132(7)2—z/1)_e—ﬁ2(7)2+l/1)],
1
S{;kl = ;%‘ [E 1 o, + (Dy 7”% ——D2 —-ny _Dyx) 7'1] [e_ﬁl(’nl*‘ﬁ) — 6—31(7714—(/1)]
(28 ¢)

1
) (B Io,+(D,r3—Dy—D,,—D,,)ry][ePon—b —e=Fatmtd]
2
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S4*1 = —',;12— [E 1 oyt (Dy 7‘% _-DZ - D;zy - Dyw) 7‘1] [3—31(7)2—‘55) - e—,31(172+l/1)]
1

. (28d)

+ ) [E I a,+(D,13—Dy— D, — D, )ry] [eFrm—d — e—Patrt)]

and the terms a,;,b,; . . . d3; are given by the following:

au = (D, r}—D,)Cosh B, — GJ «, 7, Sinh g, (29a)
(D r3— D,)Cosh By — G J «, 7, Sinh B,, (29Db)
dy = (D r2—D,)Sinh B, — G J «,, r, Cosh B, (29d)
a3y = BEl«,Coshpy—r,(D,r3—Dy—D,,—D,,)Sinhf,, (29e)
by; = El«,CoshBy,—r,(D,r}—Dy—D,,—D,,)SinhB,, (291)
¢33 = BEl«,Sinhf,—r,(D,r3—D,—D,,—D,,)CoshpB,, (292)

ds; = El«,Sinhfy,—ry(Dyri—Dy,—D,,—D,,)Coshp,. (29h)
The dimensionless parameters B; and 8, are defined as follows:

B _ nrrb}/H V H\* D,
Bl—anb’rl——L D_y+ (ﬁ—) —‘D—‘, (30)

Yy Y

B _nwb]/H ]/H 2 D,
/82—‘1nb”2———‘L —D-y‘— (D—) - (31)

Yy Yy

The location of the station relative to the centre of the bridge and load
respectively are given by

- o
and & = Abs [%] . (33)

Referring to Fig. 2, £; may be conveniently written as
&1 = Abs[1+&,—1.]. (34)

The width of the patch load relative to the width of the bridge is given by 4,
thus
g =v/b. ‘ (35)

Case 3. Torstonally Soft- Flexurally Stiff Bridge Decks
H*=D,D,; «=1)

Most orthotropic bridge decks will be in this category and following the
same procedure as was done for case 1, the following equations are obtained
for deflection, moments, shears and reactive forces.
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Deflection:
WLt 1, . :
w = m;ﬁg&nanu&nanc&nanx(K{"g). (36)

Longitudinal Moment:

2
M, = Jj‘;i 7 Slncx u Sin «,, ¢ Sin « x(K 1131 K2*3) (37)
Transverse Moment:
WL 1, : : D, D
M, =—uvws;ﬁSmcxnuSmancSmanx(D—K;‘ -—,le*?,) (38)
Longitudinal Twisting Moment:
W D
M, = Sin «,, uSmcx cCos « x( “’K*) (39)
¥ u v Z D, %
Transverse Twisting Moment:
W L2 Dy 1o 4
= . 40
M,, s nZln Sin e,, % Sin «,, ¢ Cos « x(Dy K33) (40)
Longitudinal Shear:
V, = uvZsz%SinanuSinanc Cosanx(K{‘;,——D—I;—D@Kz*g). (41)
n=1 &
Transverse Shear:
Dy+ D,
VvV, = um} Z 5 Sin o, % Sin e, ¢ Sin o x(K;’;,, ~il—);JK;§3). (42)
Longitudinal Reactive Force:
R, = quf Z " Sin e, u Sin «,, ¢ Cos &, @ (K{"3 Dy +%”+DWK2*3). (43)
n=1 x
Transverse Reactive Force:
Dy+D,, +D,,
R, = — o Z Sin «, % Sin «,, ¢ Sin «,, (K;‘} 2 Dz Y Kg’;,) (44)
D, H
] 1/17 * D,
With ry= ) (45)
P E
and Py = _D_l/2~D£ (46)
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the coefficients K3, K3, K¥ and K} may be defined as follows:

For ¢, Sy
e —— s 12747, Co8 By (6 — ) + (3 — r3) Sin By (6~ )] - Focéb
13 — 4’-Dy a7y (7,%_*_7.2)2 374 4151 3 4 4\51

—[27374 Cos By (é1+ ) + (r§ —13) Sin B, (&, + )] e PsErth}
+ A% Cosh B, ¢, Cos B, €y + B,k Cosh B &, Sin B, &,

+—Orﬂr;, Sinh B; £, Cos B, &, + D, Sinh 5 £, Sin g, fo] 5

K = g poe - [(Sinfy (6, — ) e Bbd—Sin B, (&, +) - Bucbur)
4Dy a g

(47)

w

+ A% {(r§ —73) Cosh B3 £ Cos By £y — 2r374 Sinh B £, Sin B, £}

+ BX{(r2—r%) Cosh B3 &, Sin B, &y + 2 57, Sinh B £, Cos B, &y} (48)
+ Cx{(ri— r3)Sinh B3 £, Cos B, €y — 2 37, Cosh B3 €, Sin B, €}

+D}{(r3—r%) Sinh B, £,Sin B, &g+ 2737, Cosh B, &, Cos B, &}

1
4737,

[(r3+ o ([ Sin By (6 +) 474 Cos By (& + )] e Prcéis)
—[r3Sin By (¢, — ) + 74 Cos By (¢, — )] e Pe€i=h)}

+ A% {r;Sinh B3 £, Cos By £y —r4 Cosh B £, Sin B, £o}

+ B {r;Sinh B; £,Sin B, &, + 7, Cosh B3 &, Cos By &0}

+ C¥{ry Cosh By ¢, Cos B, &y — 1y Sinh B; &, Sin B, &}

+ D} {rs Cosh B3 &,Sin B, £y +r, Sinh B3 &, Cos B, fo}] ,

(49)

374[ +{[r4 Cos By (§, — ) —ry Sin By (£, —3p)] e Pobrh
—[rg Cos By (& +) —r3Sin By (¢ + ) e Poér+h)}
+ A {(r3—3ryry) Sinh B3 &, Cos By §o + (r§ — 3 7, 73) Cosh B €, Sin B, &}
+ BE{(r3—3ryr})Sinh B, £,Sin B, &y — (r3 — 3 r,72) Cosh B3 &, Cos B, &}
+CE{(r§— 3737 Cosh B3 £y Cos By &g + (r§ — 3 7,73) Sinh B3 €, Sin B, £}
+ D3 {(r}—3ryr7) Cosh B3 fo Sin By £ — (7§ — 3 7,73) Sinh 5 &, Cos B4 &}

(50)

Eqs. (47-50) are valid for &, S ¢ and special expressions for stations under
the centre of the load defined by &£ =0 may be derived following the same
procedure adopted for Case 1. This is achieved by substituting /2 for £, and ¢
and doubling the results for the particular solution only, and following this,
the coefficient K, K¥;, K¥ and KJ; for £, =0 are as follows:
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For &, =0
D 2 .
K= iD, :3 T [(7'%—{—72)2{2 r37y—[27374 Cos Byif + (r§—r}) Sin B plePe}

+ A% Cosh B3 £, Cos B, &y + B, Cosh B3 €, Sin B, &
+ C%Sinh B85 ¢, Cos B, &, + D Sinh B8, £, Sin 8, 'fo] ,

Ky = g 2 (= 28in By ey
+ Ax{(r3—r%) Cosh B; &, Cos B &y — 2737, Sinh B3 €, Sin B, &}
+ B {(r§ —r3) Cosh B3 £, Sin B, £+ 2 rgr, Sinh B3 £, Cos B, £o}
+ O {(r§ —r3) Sinh B3 £ Cos B, & — 2 57, Cosh B3 £, Sin B, &}
+ Dy {(r§ —r§) Sinh B3 £, Sin B, £+ 237, Cosh B3 &, Cos B, £,}],
3= 47‘174
[+ A5 {rs Sinh B3 &, Cos B, £y —r, Cosh B £, Sin B, £y}
+ B, {rs Sinh B3 &, Sin B, £, +7, Cosh 5 €, Cos B, £o}
+ Ok {rs Cosh B3 & Cosh B, &y — 7, Sinh B3 £, Sin B, £,}
+ Dj {r; Cosh B3 £, 8in B, & + 7, Sinh B; £, Cos B, £o}]
& = 4717“4

[+ Ak {(r§—3r373) Sinh B5 £, Cos By &y + (r§ — 37, 73) Cosh B3 £, Sin B, £}

149

(51)

(52)

(53)

. 4
+ B {(r3 —3r373) Sinh B3 £ Sin B, &y — (r§ — 37, 73) Cosh B3 £, Cos B, &4} (5

+ O {(r3—3ryr}) Cosh B3 &y Cos By &y + (3 — 3 74 75) Sinh B; £, Sin B, £}
+ DE{(r3—3rzr?) Cosh B3 &, Sin By &y — (r; — 37, 7r3) Sinh B3 £, Cos B, &y }] .-

The dimensionless parameters used are as follows:

D, H

nmb |/ 1D, T D,
B3=°‘nbr3= L 9

D, H

nwb D, D,

(55)

(56)

The parameters £&,, £, and i are the same as in case 1. The upper and lower
signs of K¥ and K} are for stations to the right and left of the load respec-

tively.



150 R. P. PAMA - A. R. CUSENS

The constants used are

(S;.%_}—SZ?,) d33 (833 43) d13

A* =
2 (ay3d33 — az3dy3)

m

(57a)

B* — (S5 —8%) a3 — (S5 +88%) s (57b)

" 2 (by3¢33 —C13b33) ’
(S35 +88) b13— (Si5 — 835) by
2 (by3 ¢33 — €13 b33)

D* = (83— 88) 013 — (Si5+ 555) a3,
" 2 (@13d33 —a33d43) ’

Co = , (57 ¢)

(57d)

where

[ -
13 —

1 ) [{GJ“n_r:;[Dz—Dy (r§+r§)]}

(r§+ri (r3+73)
{[r3 Sin By (n, — 1) + 7, Cos By (ny + )] e-Pem—h)
— [r3Sin By (1, +3) +7,Cos By (m: +3) e_’83(m+¢)}

_ {u [Dy+ Dy (75 + ri)]}
(r3+73)

: {[7'3 Cos B4 (7)1 — l,li) —7, Sin B4 (7)1 — 1/:)] e—Bs(m—)
—[r3Cos By (1 + ) —7,Sin By (n, +¢) e—Bs(n1+¢)}] ’
s L o _13[Dy— D, (r§+13)]
S”_W%wﬂ“GJ” (r2+712) }
A{[r3Sin By (15 — ) + 74, Cos By (my — )] e Po )
—[r3Sin B4 (pa+¢) +7,Cos B, (772 + )] e—Bs =t

_ {74 [Dy+ D, (r§+ 7‘3)]}
(r§+73)

’ {[7'3 Cos ,84 (7]2 - lﬁ) -7y Sin /94 (1]2 —- 1/;)] e—Bs(n2—)
—[r3Cos By (ny + ) — 7, Sin B, (ny + )] e—Bz<v72+x/:)}] ,

(58a)

(58Db)

5% = Grayms D) (=) + Dot Doy 4 D] (3 4+18) — B L, 1)
{[r3Sin B, (n, =) + 7, Cos B, (1, — )] e Psm—)
—[r38in By (ny +3) + 7, Cos By (1, + )] e Pam+h} (58 ¢)
+{2D,r3ry(r3+r5) —Ela,r
{[r3 Cos By (11 — ) — 7, Sin By (ny —3h)] e~ Psm—h
—[rg Cos By (ny + ) —74Sin By (ny + )] e~Bsm+P]
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1
SZ?; = W[{Elannl—szT?»rtl (7'%‘1"7'%)}
{[r3 Cos By (ma—tb) — 74 Sin By (1, — )] e~ Psr—p
—[r3 Cos By (g +b) — 1, Sin By (ny + )] e~Potn+)} (58d)

+{E1o,r3— (r3+73)[D,(ri—13)+Dy+ D, +D,1T}
AlrsSin By (ny — 1) + 7, Cos By (n, — )] e Pam—h
— [r3Sin By (g + ) + 74 Cos By (my + )] ePatm—h}],

a3 = [Dy— D, (r3—7%)] Cosh B3Cos B, +2 D, r3r,Sinh 83 Sin 8,
+ G J a, (r3Sinh B; Cos B, — 7, Cosh B;SinB,) ,

b3 = [Dy— D, (r5—1r%)] Cosh B3 Sin B, —2 D, r37,Sinh 8; Cos 8,
+ G J «, (r3Sinh B, Sin B8, +r, Cosh 8, Cos B,) ,

€13 = [Dy— D, (r3—r})]Sinh B3 Cos 4+ 2 D, r37, Cosh B3 Sin B,
+ G J «,, (r3 Cosh 85 Cos B, — r, Sinh B, Sin ,),

(h9a)

(59b)

(59 ¢)

dyg = [Dy— D, (r3—7%)]8inh B38in B, —2 D, r37, Cosh B; Cos 3,
+ G J «,, (r4 Cosh B3 Sin B, + r,Sinh 8, Cos ) ,

Q33 = [r3(Dy+Dyy +D,yy) — D, (r3 —37473)]Sinh B3 Cos B,
—[ry(Dy+ Dy, +D,,)+ D, (r3—37,73)] Cosh B3 8in 8, (59e)
+ E I «, CoshB;Cosf,,

bss = [r3(Dy+ D,y +D,,)— D, (r}—3ry7])]Sinh B3 8in B,
+[ry(Dy+D,,+D,,)+ D, (r3—3r,r3)] Cosh ;5 Cos 3, (59f1)
+ £ I «,,Cosh 8;8in §,,

¢ss = [r3(Dy+ Dy, +D,,)—D, (r3—37r37])] Cosh B; Cos B,
—[r4(Dy+Dyy+D,yp) + D, (r§— 37,r3)]Sinh B3 Sin B, (59g)
+ B I «, Sinh B; Cos 8,,

dy3 = [r3(Dg+Dgy+ Dyy) — D, (r3 —37373)] Cosh B3 Sin B,
+[ry(Dy+ D,y + D, )+ D, (r;—37,r3)] Sinh B3 Cos B, (69h)
+ B I a,, Sinh B, Sin 8, .

(59d)

Similar equations for isotropic and articulated bridge decks have been
derived but are not included here. The isotropic case can be obtained from
Case 1 by means of a digital computer, setting H =1.0001 and D, =D, =1.
By assuming a value of H=0.9999 and D,=D,=1, the isotropic case can
also be obtained from Case 3. When this is done the three results coincide,



152 R. P. PAMA - A, R. CUSENS

providing a good check of the solutions and confirming the continuity of the
functions from H2> D, D, to H*> <D, D, with the isotropic case as the dividing
line. The case of the articulated bridge deck may be obtained by computer
from Case 1 by setting a very small value for D, (say 0.0001 D,) and not zero.
The results check very favourably with the exact solution for the special case
where D, is zero.

Another check was made on the validity of the equations by allocating a
very small value to the dimensions of the rectangular load w and v (about
0.0001 b) and the results coincide with those for concentrated loads [5].

Examining the equations for deflection, it is apparent that the convergence
of the series is controlled by 1/n% and as such converges rapidly compared
with 1/n® for concentrated loads. With this convergence, the first harmonic
gives values sufficiently accurate for design purposes. The equations for
longitudinal, transverse and twisting moments are controlled by the term
1/n3 and again, even the first harmonic will be sufficient for preliminary design.
Shearing and reactive forces converge as a function of 1/n% and a few harmonics
only will be needed to obtain reliable results. This is a considerable improve-
ment on the present equations based on concentrated loads where the expres-
sions for moments, shears and reactive forces do not converge rapidly.

The present analysis incorporates the flexural and torsional rigidities of
the edge-stiffening beams at the edges of the deck. If these beams are not
present, E I and G J are set to zero. Using these edge beam rigidities, equations
for different boundary conditions at the edges of the bridge may be obtained
for the analysis not only of bridge decks, but also of orthotropic floor slabs.

Discussion and Conclusions

The expressions for deflection, moments, shears and reactive forces may
be conveniently presented in the form of a dimensionless distribution coefficient
which may be defined as the ratio of the actual value to the mean value at
that transverse section.

For example, the mean deflection at a section distance x from the support
due to a patch load of length 2% whose centre is at a distance ¢ from the
support may be written as

oo}

W LA 1
w

=-—— ) —Sine, uSina, ¢cSine, x 60

and the distribution coefficient for deflection may be expressed as

é ngl
v

=Sin o, u Sin «,, ¢ Sin o, x (K §)

3|~

K (for deflection) = (61)

. .
%;Sm o, uSin a, ¢ Sin o,

S
18

1
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and since the series converges rapidly, the distribution coefficient for deflec-
tion considering the first harmonic only is

K (for deflection) = véK{k : (62)

The case of concentrated load acting on the deck may be obtained from
Eq. (62) by studying the limit of % K as uw and v approach zero and it may
be shown that

lim (véKik) = (Kyq1, Ky 0r Kys), (63)
8
where K,,, K,, and K,; are defined in Eq. (4).

Similarly, for longitudinal and transverse moments, the distribution
coefficients may be written as

b i %SinanuSinancSinzxnx(K{" —%K;‘)
K (for M,) = - b 53 , (64)
nzln—aSin o, uSin e, € Sin o,
b i %—SincxnuSinancSinanx(%Kg‘~%K§")
K (for M) = —— *=1 . i (65)

v & 1 g . .
2 —Sin«, uSina,cSina, x
n=1"

Note that in Eq. (65) the distribution coefficient for transverse moment is the
ratio of the transverse moment M, to the mean longitudinal moment M.

A similar case holds true for twisting moments M,, and M, thus

b L n;il%lgSinanuSinocncCOSanx(PI%K;;")
K (for M,,) = -

(66)

éln—ZSin a, wSin a, ¢ Cos o,

Two examples are shown in Fig. 3 to illustrate the effect of rectangular
patch loads on orthotropic bridge decks. The decks are square in plan and
one was chosen with torsional parameter « <1 and the other with «> 1. The
patch load covers 109, of the width of the deck (i.e. y=v/b=0.10). Central
and eccentric load positions are shown for each case. The curves are presented
in the form dimensionless distribution coefficients for deflection K defined by
Eq. (61).

The theory as presented provides a logical and effective method of pre-
dicting the distribution of rectangular patch loads on an orthotropic deck
with or without edge stiffening beams. With these equations, it is possible to
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analyze all types of orthotropic bridge decks from the torsionless type to the
articulated plate. It has been shown theoretically that by dissipating the load
over a finite rectangular area, the problem of convergence is overcome and
the theoretical results are accurate even if the first harmonic of the series
only is used.

Reference Stations
b 34b b2 bA [o] bA4 b2 34b b
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\
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Fig. 3. Transverse profiles of torsionally soft-flexurally stiff and torsionally stiff-flexurally soft
bridge decks under central and eccentric patch load with ¥ = 0.10.

Summing up, this paper has presented equations for finding the deflections,
bending and torsional moments, and shearing and reactive forces due to
rectangular patch loads acting on simply supported orthotropic bridge decks
classified according to their relative rigidities in flexure and torsion. The
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application of the theory necessitates an accurate and reliable method of
determining the flexural and torsional rigidities of the deck and further
investigation both experimental and theoretical is required.
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Summary

The paper presents the analysis of simply supported orthotropic bridge
decks due to rectangular patch loads. The deck is classified into three main
categories depending on their relative rigidities in flexure and torsion. Series
solutions were employed to determine the expressions for deflection, bending
and torsional moments, shearing and reactive forces. ‘

Résumé

Ce rapport présente 1’analyse des effets de charges concentrées sur les ponts
orthotropes simples. Les plaques sont réparties en trois catégories principales
suivant leur rigidité a la flexion et & la torsion.

Les expressions du fléchissement, des moments de flexion et de torsions,
des efforts tranchants et des réactions furent déterminées & 1’aide des séries.
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Zusammenfassung

Der Beitrag zeigt die Berechnung einfach aufgelegter orthotroper Briicken-
platten unter Radlasten. Die Platte ist in drei Hauptklassen eingeteilt, die
von der relativen Biege- und Drillsteifigkeit abhingen. Reihenentwicklungen
sind zur Bestimmung der Durchbiegung, der Biege- und Drillmomente, Quer-
und Auflagerkrifte angewandt worden.
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