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A Method for Analyzing Deformations of Plane Trusses

Methode pour le calcul des deformations des treillis plans

Eine Methode zur Berechnung der Deformationen ebener Fachwerke

J. Dundurs, Instructor in Civil Engineering, The Technological Institute
of Northwestern University, Evanston, Illinois

Introduction

At least for the case of a statically determinate truss, it is possible to give
the deflection problem a purely geometrical formulation: Given the axial
deformations of the members, find the configuration in which the members
will fit together. This statement of the problem leads to the simple graphical
method of Williot and Mohr. Attempts to put it on an algebraic basis,
however, have resulted in manipulative difficulties.

In the analysis of plane mechanisms, complex numbers have been effec-
tively used to deal with the geometrical problems1). The success of this
approach is mainly due to the fact that a complex number, being an ordered
pair of real numbers, permits one to operate with two components
simultaneously and thus automatically takes into account the two-dimensional
nature of the problem. This suggests the use of complex numbers in the analysis

of the deformations of plane trusses.
In this discussion, it is convenient to begin with a special case and to

generalize the results later. The basic relationships and a computational
procedure will be developed for a simple truss consisting only of triangles. The
results can be easily extended to cover other kinds of simple trusses as well as
Compound, complex and statically indeterminate types.

The Basic Relationships

Consider the triangle MN P in a plane truss formed by the bars k, k+ 1

and k + 2 (k= l, 2, as shown in fig. 1. Assume that a convenient coordinate

x) For the method and a bibliography on the subject see a paper by G. H. Martin
and M. F. Spotts, Trans. ASME 79 (1957), 687.
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system xy has been chosen, and let the joints M, N and P be located in the

xy plane by the complex numbers zM, zN and zP. Furthermore, assigning
directions to the three bars allows them to be represented as the complex
numbers zk, zk+1 and zk+2.

k*2

Fig. 1.

The starting relationships are established from the geometry of the truss
in the undeformed state. Considering the complex numbers as vectors, it is

seen from fig. 1 that
*k+l'+ Zk+2 — Z,k>

— ZM + Zk

(la)
^+i- (!b)

Eq. (la) is simply a condition that the three bars form a closed polygon, in
this case a triangle. Assuming that the position of the k-th bar (that is, the
positions of joints M and N) has been established by some previous considerations,

eq. (lb) locates the Joint P in terms of zM and zk+1. Another relation
that can be written in a similar manner is

ZP — ZN~Zk+2- (2)

However, eq. (2) is not independent of the previous relationships, as is easily
shown by substituting zM + zk for zN in eq. (2),

zP zM + zk — zk+2 zM + zk+1.

The deformation of a truss due to the changes in length of the bars involves
rotations of the bars as well as displacements of the joints. Consequently, the
complex numbers which describe the bars and locate the joints will experience
certain changes as the truss is deformed. If the increment in the complex
number z is denoted by A z, the closing condition, which corresponds to eq. (1 a)
for the undeformed state, becomes

{zk+1 + Azk+1) + (zk+2 + Azk+2) (zk + Azk).

By the use of eq. (1 a) this simplifies to

Azk+1 + Azk+2 Azk. (3a)
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Similarly,
AzP AzM + Azck+l- (3b)

Thus the increments in the complex numbers satisfy relationships that are analogous
to those satisfied by the original complex numbers, and, as a matter of fact, can
be obtained from the latter if each z is replaced by the corresponding A z.

Express the complex number representing bar k, i.e., zk in the polar form

zk lkei6*,

where lk is the length of the &-th bar and dk is the argument of zk or the angle
measured from the x axis to the bar. At this point the usual assumption will
be made that all deviations from the original configuration are very small. In
other words, the elongations of the bars are small compared to their lengths,
and the bars rotate through only small angles as the truss is deformed. Since
both lk and 9k change,

Azk=^Alk + ^A6k e*<>>Alk + lke«>nA6k ^h+iAekyke^

where A lk and A 6k denote the changes in lk and 6k, respectively. Recognizing
A lkßk as the strain ek in the k-th bar,

Azk (ek + iAek)zk. (4)

Eq. (4) has a very simple geometrical meaning as interpreted in fig. 2.

Note that ek zk for a positive ek (tension in the fc-th bar) has the same direction
as zk, whereas iA 6kzk for a positive A 6k is a vector turned through 90° counter-
clockwise from the direction of zh.

AQ.z

z, +Az

£uZ

Ad

Fig. 2.

The Substitution of A zk as given by eq. (4) and of A zk+1 and A zk+2 written
by analogy into eq. (3) yields

(ek+i + iAek+i)zk+i + (*ki-2 + iddk+2)zk+2 (€k + iA6k)zk. (5 a)

AzP AzM + (ek^ + iAdk+1)zk+1. (5b)
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Consider, first, eq. (5a): zk, zk+1 and zk+2 are known from the initial
geometry. After the forces in the members have been obtained in the usual way
and the sizes of the members established, the strains can be computed from
ek Pk/EkAk, where Pk is the force in the k-th member, Ek is the modulus
of elasticity and Ak is the cross-sectional area of the k-th member2). Tensile
forces and strains are to be considered as positive, compressive forces and
strains as negative. This agrees with the sign Convention as required by
Alk eklk, positive Alk meaning an increase in length of the fc-th bar (or
modulus of zk). Again assuming that the position of the k-th bar in the deformed
state has been established by some previous considerations, the only unknowns
in eq. (5 a) are the rotations of bars k+ 1 and k + 2, namely, A 9k+1 and A 6k+2.

Also, note that eq. (5a) is linear in these quantities. Since every equation in
complex numbers is equivalent to two equations in terms of real numbers,
eq. (5a) can be solved for A6k+1 and A6k+2. There is a slight complication,
however, which will be demonstrated in more detail in example 1. It will
happen quite frequently that A 9k contains the unknown rotation of one bar
dealt with previously. Consequently, A 0k+1 and A 9k+2 must be expressed in
terms of this unknown rotation which, however, can be evaluated later in the
calculation on the basis of conditions at one of the supports.

The Interpretation of eq. (5b) is quite simple; it permits the finding of the
displacement of Joint P, provided the displacement of Joint M is known since,
presumably, A 0k+1 has been evaluated from eq. (5a).

It is not worthwhile to develop additional relationships, as for example,
to solve eq. (5 a) for A 9k+1 and A 9k+2 in general terms, because the equations
become rather unwieldy. Hence, with eq. (4) taken as the basic relationship,
the application of complex numbers to the truss deformation problem is best
demonstrated by a specific example.

Ay

120m

120in 120m 120in

1^500010 t'300001b

Fig. 3.

2) In principle, it makes no difference as* to what causes the change in length of a
member, hence, the deformation of a truss due to causes other than loading need not be
excluded.
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Example 1: Simple Truss

The truss to be analyzed is shown in fig. 3. Again, quantities with number
subscripts are associated with the bars, while letters and quantities with letter
subscripts refer to the joints. The cross-sectional areas of the members are
given as A1 AS A5 A7 A9 2.94 in2, ^42 ^44 ^46 ^48= 19.22 in2, and the
modulus of elasticity for all members has the value E 30x IO6 lb/in2.

The numerical calculations will be carried to an accuracy that can be
obtained from a slide rule. Computation of forces and strains in the members
gives the values listed below:

P1 + 80000 lb ex + 0.907 X 10~3

Po - 89400 lb e2 - 0.155 X 10" 3

P3 + 45000 lb e3 + 0.510 X 10~3

P4 - 50300 lb €4 - 0.087 X 10~3

P5 + 80000 lb €b + 0.907 X 10~3

P6 - 39100 lb e6 - 0.068 X 10~3

P7 + 52500 lb e7 + 0.595 X 10~3

P8 - 49500 lb e8 - 0.086 X 10~3

P9 + 35000 lb e9 + 0.397 X IO"3

The next step is to assign directions to the bars so that they can be
represented by complex numbers. Some foresight has been used here to avoid minus
signs in the relationships corresponding to eq. (3a). The directions assumed
and a convenient coordinate system are shown in fig. 3. Then

z1=l20 in. zG 120 + i60 in.

z2 120-M 60 in. z7 — i 120 in.

z3 — i 60 in. z8 120-il20in
z4 120-i60 in. z9 -120 in.

z5 -120 in.

Using eq. (4), Azk (ek + iA9k)zk, the changes in the complex numbers
describing the bars can be computed:

Az±

Az2

Az3

Az±

Azb

Az6

108.8 xl0-*) + i (120 A9J,

- 18.6 X IO"3 - 60 A 92) + i (- 9.3 X IO"3 + 120 A 92),

6OJ03)-M(-3O.6xlO-3),

- 10.4 x IO"3 + 60ZI 04) + i (5.2 x 10~3 + 120 A 94),

- 108.8 X IO-3) + i - 120 A ö5),

- 8.2 x IO"3-60A ö6) + i(-4.1 xl0~3+ 120A9Q),
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Az7 (120 A97) + i(- 71.4 X 10~3),

A z8 - 10.3 x IO-3 + 120 A 98) + i (10.3 x 10~3 + 120 J 08),

Az9 (-47.6xl0-3) + i(-120JÖ9).

The condition that the triangle AEB closes after the deformation of the
truss is A z2 + A z3 A zx, where this is most conveniently obtained by thinking
about the relationship satisfied by the z's before the deformation (in this case

z2 + z3 z1) and then replacing the z's with zlz's. This approach is to be pre-
ferred over an attempt to use eq. (3a) literally, since the algebraic signs of
the Zlz's depend upon the directions assigned to the bars (for example, if z1

had been taken to the left, the condition would read Az2-\-Az3=—Az1).
Substituting the previously computed values of Az±, Az2 and A z3 in the
closing condition, separating the real and imaginary parts, and solving for
A 92 and A 93 in terms of A 9X gives

A92 Jö1 + 0.33xlO"3,
A93 4 02 + 2.12xlO-3 Jö1 + 2.45xl0~3.

The closing conditions of the other triangles and the results obtained are
listed below:

AECB: Az4 + Az5 Az3,

A94 A91 + 4:A4xl0-z,
A95 J01 + 4.74xlO-3.

AEFC: AzQ + Az7 Az4,
A96 A9i + 5.11 xlO-3,
A97 Jö1 + 4.76xlO-3.

AFDC: Az8 + Az9 Az7,
A98 A9± +5.24x10-*,
A99 A91 +5.92x10-3.

The rotation A 91 can now be evaluated from the condition that the Joint
D is free to move in a horizontal direction only, i.e., the coefficient of the
imaginary part of A zD must vanish. Since zD z1 — z5 — z9,

3(Azjj) =$(Az1-Az5-Az9) 120 A91+120 A95+120 A99 0,

where 8 denotes the coefficient of the imaginary part of a complex number.
This value of A 9X is now used to find the rotations of all other members:

A01 - 3.55 x IO-3 rad. A 96 + 1.56 x IO"3 rad.

A92 - 3.22 x IO-3 rad. A 97 + 1.21 x 10~3 rad.

A93 -1.10xl0-3rad. A 98 + 1.69 X 10~3 rad.
A 04 + 0.89 X IO-3 rad. A 99 + 2.37 x 10~3 rad.

A95 +1.19xl0-3rad.
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where a minus sign indicates a clockwise rotation.
Again, thinking first about the relationship between the 2's and then

translating it into terms of Az's and with the use of the A 9's computed
previously:

A zA 0 in.

AzB A zx 0.109--i 0.426 in.

Azc =AzB-Az5 0.218-10.283 in.

A zD A zc — A z9 0.266 in.

AzE AzB-Az3 0.175-i0.395 in,

AzF Azc — Az7 0.073-i0.212 in

Since all real parts here are positive and all coefficients of the imaginary parts
are negative, the displacements of all joints are to the right and down.

General Applicability of the Method

It remains to be shown that the approach described and illustrated with
a specific example will lead to a Solution for all types of plane trusses. Consider,
first, only simple trusses.

To this end recall the rule for the generation of a simple truss: A simple
truss will be obtained if, beginning with one bar, each additional Joint is
connected to the previous configuration by means of two bars which do not
lie in the same straight line. For example, consider the truss of fig. 4, where

Fig. 4.

the members are numbered in the order of their inclusion into the structure.
Obviously the first five bars must form triangles. Note that A92, A03, A94
and A 95 can always be expressed in terms of A 9X as before. Furthermore, each
additional pair of bars included (such as 6, 7 and 8, 9) gives an additional
polygon whose closing condition is sufficient to allow evaluation of the rotations
of the pair of bars added in terms of A 0X. Thus the consideration of triangle
4-6-7 will give A 06 and A 97, whereas the quadrangle 2-6-8-9 can be used to
find A 98 and A99. It is seen that this process can be carried on indefinitely,
or that for m members there will be |(m — 1) polygons whose closing conditions
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will give m — 1 equations for the evaluation of m — 1 rotations in terms of,

say, A 9±s). However, since the rotation of one bar is a part of the rigid body
displacement of the truss in the deformed state, A 91 can always be found from
the conditions at one of the supports. Also, it is clear from example 1 that the
position of one Joint, which is known from the support conditions, and the
rotations of the members are all that is needed to calculate the displacement
of every Joint.

It is interesting to note that a systematic evaluation of the rotations must
proceed in the same order as that followed when the truss was generated,
whereas the analysis of forces by the method of joints is done in the opposite
order or by "breaking down" the truss. Thus for the iT-truss shown in fig. 5,

the calculation of rotations should be started with triangle 1-2-3 and then
continued with triangle 3-4-5, etc. Of course, it is possible to start with triangle
14-16-17, but then in the next step the closing condition of quadrangle
11-13-14-15 will contain three unknown rotations, and the analysis must be

carried further in terms of two A 0's (say A 016 and A Qlh) until triangle 1-2-3
is reached, where one of them can be eliminated.

s\w^

Fig. 5.

20

Fig. 6.

In order to discuss Compound trusses, recall that a Compound truss can
be formed by interconnecting two simple trusses with three bars whose axes
do not intersect at a point; a common Joint between the two simple trusses

may be used to replace two of the interconnecting bars. An example of this
is shown in fig. 6, where the interconnecting bars are 19, 20 and 21. In each

3) Only those polygons are to be counted which give independent closing relationships.
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of the simple trusses, rotations of all bars can be expressed in terms of the
rotation of one bar as was done previously. The three interconnecting bars
introduce three unknown rotations, but there always will be two additional
polygons (such as 7-19-17-15-11-20 and 3-20-9-21 in fig. 6), so that the four
additional relationships between the rotations can be used to reduce the number
of unknown rotations to one. Or, if mx and m2 denote the numbers of bars in
the simple trusses, the total number of bars in the Compound truss is
m mx + m2 + 3, whereas the total number of polygons in the truss is \ (m1 — 1) +
+ \(m2— l) + 2 |(m1 + m2 + 3 — l) |(m— 1), thus giving us m—1 relationships

for the rotations. The last unknown rotation can again be evaluated on
the basis of a condition at one of the supports. The Situation is similar when
two of the interconnecting bars are replaced by a common Joint between the
simple trusses. Then there is available only one additional polygon giving
two relationships, but since one interconnecting bar introduces only one
unknown rotation, again the rotations in the two simple trusses can be related.
The argument is easily extended to cases where the Compound truss is formed
by interconnecting three or more simple trusses.

The last type of statically determinate trusses to be considered, the so-
called complex truss, is formed by removing one or more bars from a simple
or a Compound truss and adding the same number of new bars between existing
joints. If a bar is removed from a statically determinate truss, one part of the
truss is able to move with respect to the other part with one degree of freedom.
For example, if bar 5 is removed from the simple truss shown in fig. 7 a, a
four-bar linkage is obtained consisting of I, 4, II and III interconnected with
12 and IV as indicated in fig. 7b. Then there are several pairs of joints, such
as A and B, which could move with respect to each other. In case the bar
to be added is used to connect a pair of such joints, the stiffness of the truss
will be restored, provided that the distance between the two joints did not
have a maximum or minimum value in the relative motion between the joints.
Thus, substituting bar 16 for 5, the complex truss shown in fig. 7 c is obtained.

b*) c

Fig. 7.
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It is clear from the process of generating a complex truss that the number
of bars is not changed, and that the number of polygons giving independent
closing conditions remains the same. In the truss of fig. 7 c, the closing
conditions of 3-4-6-7 and 1-11-14-16 would replace the closing conditions of 3-4-5
and 5-6-7. The only complication that arises in this type of truss is that the
rotations of certain bars cannot be expressed in terms of the rotation of only
one bar, as in the case of a simple truss. Thus for the truss shown in fig. 7 c,

triangle 1-2-3 permits, say, A 92 and A 93 to be expressed in terms of A 91, but
then the quadrangle 3-4-6-7 introduces three bars not dealt with previously
and, say, A 96 and A 97 must be expressed in terms of A 9X and A 04. The same
applies for A 98,. ,A915. The one missing relationship can be recovered later,
however, from the polygon 1-11-14-16.

It may be remarked in passing that the application of complex numbers
to the deformation problem permits one to take advantage of special simpli-
fying circumstances, such as symmetry. For example, in the truss of fig. 8, half
of the work in analyzing the rotations can be saved by noticing that A 910 0

(this permits one to solve for A 9X regardless of the condition at the right
support), and that A912= —A99,A913= —A91X, etc.

\ * 8 / K
'

16

/2 3 *\
7

/9
W

V
15

/l7 18
2lK

/ 1 5 V /3 \ 19 2/ >

1 '/>
' 'P

Fig. 8.

Example 2: Statically Indeterminate Truss

Before proceeding with a general discussion of statically indeterminate
trusses, a specific example for illustrative purposes will be considered.

k

1a D

zs

zjV. yT Z6

^z,

l2

Z<) 71"in.

B
100 in

C

a)
' '90i90lb

/>

90001b >

b)

Fig. 9.
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The hypothetical truss to be analysed for forces in the members and deflections

is shown in fig. 9 a. The cross-sectional area of every member is 1.00 in2
and the modulus of elasticity has the value of 30 X IO6 lb/in2.

By taking bar 6 (BD) as the redundant member and assuming it to be in
tension, the given truss can be thought of as a statically determinate structure
loaded, besides the 9000-lb external load, by the two forces P6 whose magnitude

must be determined on the basis of the compatibility of the deformations
(fig. 9b). The forces and strains in members 1 to 5 then can be easily evaluated
in terms of P6 or e6. Thus,

P1 -0.6P6lb
P2 -12000-0.8 P6lb
P3 + 15000+ P6lb
P4 -0.6P6lb
P5 -0.8P6lb

€l -0.6e6
€2 - 0.400 XlO-3-0.8 cß

e3 + 0.500 Xl0~3 + e6

0.6 66

0.8 €R

€4 -0.6 6ß

fc6

After assigning directions to the bars and with a coordinate system such
as that shown in fig. 9 a, the bars are described by the following complex
numbers:

z1 i 75 in.

z2= 100 in.

z3 -100 + i75 in.

24 i 15 in.

z5 - 100 in.
z 100 + i75 in.

The changes in the complex numbers describing the bars can be computed
from eq. (4). In this case, however, bar 1 cannot rotate (A 01 O):

Azx i(-45e6),
Az2 (-4O.OxlO-3-8Oe6) + i(lOOZl02),

Az3 (- 50.0 x IO-3 - 100 e6 -15 A 93) + i (37.5 x IO"3 + 75 e6 - 100 A 63),

Az4 (-75J04) + i(-45€6),
Az5 (8Oe6) + i(-lOOJ05),
Az6 (100e6-15A96)+i (15€6 + 100A96).

The Solution is conveniently started by considering the primary truss of
fig. 9b. The closing condition of triangle BC A (which is A z2 + A z3 A zx) gives
upon Separation of real and imaginary parts and solving for A 92 and A 63,

A92 - 3.60 €6-1.575 XlO"3,
A93 - 2.40 €6- 1.200 XlO"3.

Similarly, the closing condition of triangle CDA (Az4 + Az5 Az3) gives

/J04 -0.533 XlO-3,
A9h - 3.60 e6-1.575 XlO-3.
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Finally, because of the presence of the redundant bar 6, an additional condition
is imposed which can be obtained either from the triangle BCD or the triangle
BDA. Using the triangle BDA (which gives AzQ + Az5 Az1), two relations
are obtained upon Separation of the real and imaginary parts:

lOOe6-75Zl06 + 8Oe6 0,

75eß + lOOJ0fi-lOOJ0, -456TXVV^Ji/6 xyjyj^j i/5 — -*^t6€a.

The first of these equations gives

J06 2.4Oe6,

whereas the second can be used to find e6, since A 05 had been expressed in
terms of A 06 before:

efi -0.219 XlO"3.

The known strain in bar 6 permits the force in this bar and, consequently,
the forces in all other bars to be calculated. Furthermore, the rotations of
bars can be evaluated. The results follow:

Pl" + 3940 lb A91 0 rad.

p* -6750 1b J02 -0.788XlO"3 rad.

p* + 8440 lb A93 -0.675xl0~3rad.
p*- + 3940 lb J04 -0.533XlO"3 rad.

p5 +5250 lb A95 -0.788xl0~3rad.
Pe - 6560 lb A96 -0.525xl0"3rad.

The minus sign on a force indicates compression, and a negative A 9 represents
a clockwise rotation.

Finally, by use of the A 0's computed above,

A zA 0 in.

AzB -Az1 -i0.0098 in.
A zc A zB + A z2 - 0.0225 - i 0.0886 in.

AzD= - A z5 0.0175-10.0788 in.

In the coordinate system used, negative components of a displacement indicate
motion to the left and down, respectively.

Comments on Statically Indeterminate Trusses

The previous example indicates that in analysing a statically indeterminate
truss by means of complex numbers the conventional approach used in other
methods can be employed successfully. That is, the force in a redundant
member or from a redundant support is carried through the calculation as an
unknown until it can be evaluated from the conditions of geometric compa-
tibility of deformations.



A Method for Analyzing Deformations of Plane Trusses 13

A truss with one or more internal indeterminacies may be thought of as
being obtained from a determinate truss by including one or more bars between
existing joints. An example is shown in fig. 10, where bar 10 may be considered
to be the redundant member. In the analysis by complex numbers, each
redundant bar introduces two unknowns, namely, the force or strain in the
bar and the rotation of the bar. At the same time, however, an additional
polygon is obtained whose closing condition is always sufficient for finding the
two unknowns. It is interesting to note that, although each redundant member
generates several additional polygons, only one of these will yield an independent

closing condition. Thus for the truss of fig. 10, the primary system gives

F G

t\z r}'

V7777717,

Fig. 10.

A zß + A z7 A z5 and Az8 + Az9 AzQ. In addition, the redundant member
dictates the condition Az8 + Az10 Az5 if the triangle FGB is used. On the
other hand, using triangle GC B, A z9 + A z7 A z10. It is easy to show, however,
that the last relationship can be obtained from the previous three, and hence
is not independent.

A truss becomes externally indeterminate if it is constrained in more ways
than are required for support in a statically determinate manner. In case the
redundant support is a roller or its equivalent, one unknown force is introduced,
but at the same time an additional condition is obtained pertaining to the
deflections. A redundant hinge gives two unknown components of a force and
also two conditions on deflections. In either case, the number of additional
unknowns is equal to the number of additional conditions. As a matter of
fact, it makes little difference in the application of the method of what type
the indeterminacy is, except that external indeterminacies tend to affect the
forces in a larger number of bars than do most internal indeterminacies.

The analysis of assembly and thermal stresses as well as the effect of the
settlement of supports requires no special extension of this method, and such
problems are easily formulated in terms of complex numbers.

Summary

Assigning directions to the members of any plane truss allows the members
to be described by complex numbers. The increments in these complex numbers
upon the deformation of the truss may be expressed in terms of the strains
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and the rotations of the members by eq. (4). The conditions of geometric
compatibility that must be satisfied by the increments are readily obtained
from the original geometry of the truss, and are of a sufficient number to
permit the Solution for the unknown rotations of the members and, in the
case of a statically indeterminate truss, also for the strains in the redundant
members. The displacements of the joints may be computed by using the
rotations of the members previously evaluated.

Resume

Lorsqu'une direction est assignee a chacune des barres d'un treillis plan, il
est possible de representer ces barres par des nombres complexes. Les variations
de ces nombres complexes par suite de la deformation du treillis sont expri-
mees suivant l'equation (4) en fonetion des allongements et des rotations des

barres. Le nombre des conditions geometriques de compatibilite qui resultent
de la forme initiale du Systeme porteur et qui doivent etre satisfaites par ces

variations des nombres complexes est süffisant pour la determination des

rotations inconnues des barres, ainsi que des rotations qui se produisent dans
les barres surabondantes dans le cas d'un ouvrage statiquement indetermine.
Le deplacement des noeuds peut etre calcule ä l'aide des rotations ainsi deter-
minees des barres.

Zusammenfassung

Wenn allen Stäben eines ebenen Fachwerkes je eine Richtung zugewiesen
wird, können sie mit komplexen Zahlen beschrieben werden. Die Veränderungen

dieser komplexen Zahlen infolge der Deformation des Fachwerkes werden
nach Gl. (4) in Funktion der Dehnungen und Drehungen der Stäbe ausgedrückt.
Dabei genügt die Anzahl der sich aus der ursprünglichen Tragwerksform
ergebenden geometrischen Verträglichkeitsbedingungen, die durch diese

Veränderungen der komplexen Zahlen erfüllt werden müssen, für die Bestimmung
der unbekannten Stabdrehungen sowie auch der Drehungen in den
überzähligen Stäben im Falle eines statisch unbestimmten Fachwerkes. Die
Verschiebung der Knotenpunkte kann mit Hilfe der oben ermittelten Drehungen
der Stäbe berechnet werden.
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