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Creep Failure of Nonlinear Rotational Shells

Rupture par fluage de voiles minces axisymetriques non-lineaires

Kriechbruch nichtlinearer Rotationsschalen
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1.Introduction
The authors have established [l] a criterion of the attain-

ment of critical states in linear viscoelastic bodies. The idea
of the criterion can also be extended to the ränge of nonlinear
viscoelastic behavior, if the phenomenon of failure is considered

as a critical state.
The criterion is founded on an energetical basis and for

a certain group of nonlinear viscoelastic materials it states
that such a critical state as, for example, creep rupture
depends in general on a function of the accumulated energy and the
dissipated power accompanying the deformation process. Thus, if
Wg Stands for the accumulated energy and W-r, is the dissipated
power, the condition of creep rupture is stated as follows:

{(W..WJ const. (1.1)

In some cases, however, the accumulated part of energy may
be neglectfully small. Moreover, there are materials which are
not able to accumulate energy at all as, for example, the pure
creeping ones. In these cases it seems reasonable to represent
the criterion (l.l) in the following different form:

f (Wß) const (1.2)

where Wr> is the deviatoric dissipated energy per unit volume of
the body. It follows from the condition (1.2) that the dissipated
energy is considered as a certain measure of the attainment of
the critical state. The correct form of this condition should be
founded on experimental results.

The problem of attainment of a critical state as, for example,

creep rupture may turn out to be essential when analysing
the conditions occurring for thin-walled metallic structures un-
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der high pressure, especially, high temperature Containers,
pneumatic structures, etc.

Por such problems, we apply the criterion (l.2) to geomet-
rically nonlinear rotational shells in the membrane state under
internal pressure in order to evaluate the critical time of
failure as a consequence of the creep process. Accordingly, we
assume that the material of Shells exhibits pure creep only.

2.Physical and geometrical equations

In general, we assume that an isotropic incompressible material
of shells creeps according to the integral law \_2~\

where e•^ Stands for the creep strain tensor, 8jj is the stress
deviator and N denotes a nonlinear integral Operator of the
form

Ns::y--f siiCt)aTH[t,'C>6fx)]dt (2.2)

Here, H is the generalized creep function depending on the
effective stress

sCO=f[s:jCt)^(t)] (2.3)

t standing for time, t0 being the initial instant and dx d/oV.
As shown in [2] the generalized creep function H Covers both the
linear and nolinear ränge of creep. However, in the present
paper we use only its nonlinear representation.

In particular, the creep function may be assumed in such
a form as to satisfy the following condition:

atH[t/c,*(t)] »r[i(t)]atcct-t) (2.^
where P is a nonlinear magnifying factor and C the creep factor.
The last representation of the creep function is very useful
when considering the non-steady states of creep in which the
deformation stabilizes after an infinite period of time.

Por the state of creep of metallic materials, the derivative
of the creep factor becomes a constant, i.e., C is a linear function

of time

C(t-X) c(t-t) (2.5)

where c is a constant. In the last case, Eq.(2.2) takes the form
t

N°Ä4 =j njWF0 [>(*)] dt (2.6)

As it is seen from Eq.(2.6),we assume that the state of stress is
variable with time. We shall show later that in the case of creep
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of nonlinear shells in membrane state, the stress state is always
ä non-steady one in the presence of a constant internal pressure.
The stresses are found to drop to zero in an infinite period of
time.

According to Eqs.(2.2) and (2.6), the initial conditions
at t equal t0 are assumed to be of zero value, i.e., there are
no deformations at the initial instant. However, these conditions
may not be zero, if we consider a creep process at T > tQ In
this case there is an initial deformation state expressed instan-
taneously by the values of integrals within the limits tQ t

The equations (2.1) and (2.6) can be written in terms of
strain rates as follows:

*5j Nsij e - N06Lj, (2.7)

where the dots over the Operators are syinbolic. Por example, in
the case of the second relation (2.7) we find

N0A-j 5:j(t)F0[i>(t)] • (2.8)
We apply the physical equations (2.1) or (2.6) in order to

investigate the critical states of rotational membranes of small
and constant thickness which deform under constant internal pressure.

In deriving the geometrical relations for such membranes we
assume that in the time-interval considered, the strain tensor
and strain rate tensor are small quantities, the rotation angles
being also small; the normal component of displacement is suppos-
ed to have a finite value. Further, we assume that the undeformed
surface is generated by the revolution of a plane curve which
does not imply any singularities. In order to simplify the
equations we restrict ourselves to shallow rotational membranes. Por
such membranes we obtain a set of two equations of equilibrium [2]

where ffy and CT^ are the stresses in the directions of the main
curvatures k-j and k2 respectively, w is the displacement normal
to the surface, p the constant internal pressure, h the thickness

of the membrane and P denotes the surface coordinate. The
symbol do represents the derivative d/do

To the set of Eqs. (2.9) and (2.10) we now join the equation
of compatibility of deformations [2]

?c^ea H-ea-e,--^(cl?w)Z4.d<?(«?üiw)-^w (2.11)

where e.. eii» eo e22 are the main strains.
Further, we introduce the following substitutions:

-&\p 1 Z i^ 1 ösf ' 3-£ '
(2.12)

w-^, k^Rk, k2=Ru2
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where R is the value of the larger radius of main curvatures.
On the basis of Eq.(2.12), the stress deviator components

expressed by stress components become

»,- s«= icsv*«o ^(H^-jfi •
o-14)

By introducing the quantities of Eq.(2.12), we satisfy Eq.(2.9)
and Eq.(2.10) takes the form

^[kr^v7d/^dfw)] + (2dfz- fXKa- 2gdTw) A. (2.15)

If -fri*€ use of the physical relations (2.1) is made, then the
main strains become

e( Ns,= N[yD(3f -2d,z)], e2* Naa-N[4fD(*idfx-3f)|. (2.16)

and the condition of compatibility may be written as follows fsee
Eq.(2.1l)]:

2VFd, (/7N52)-N61 -29^WTw)S2g/rdf0fk2w)-gk1w (2.17)

The set of equations (2.15) and (2.17) is a system determining
two unknown functions: the non-dimensional stress function z and
the non-dimensional deflection w Thus, the Solution of the above
system of equations gives the Solution of the problem of creeping
nonlinear membranes.

In the particular case of physical relations (2.6), we put in
Eq.(2.17) N0 instead of N. In this very case the condition of
compatibility may be presented in terms of strain rates and the relations

(2.8) applied.

3.Concept of analogy

It has been found [2] that in the case of purely creeping
nonlinear rotational membranes it is possible to obtain the creep
Solution by seoarating the variables r and t in the fundamental set
of Eqs.(2.15) and (2.17). Then the time-independent set of equations

is analogous to the corresponding system of the instantaneous
problem, if only the nonlinear functions of deviatoric stress

intensity are of similar forms in both cases. The time-dependent
set of equations can be solved in a closed form. It follows from
the last Solution that the creep process of nonlinear membranes is
always unsteady. If the form of the generalized creep function is
assumed according to Eq. (2.4) where the creep factor is expressed
by exponential functions, then the Solution describes a stabilizing
process of creep. On the other hand, if the particular case of
Eq. (2.6) is considered and creep is unlimited, a complete relaxation

of stresses occurs after an infinite period of time and strains
become infinite. From the physical point of view such a state of
the membrane cannot occur and at a certain finite time-instant the
creep rupture takes place. We assume as a measure of reaching this
point the value of dissipated energy during the creep process. Thus,
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if a certain critical value of energy is dissipated through creep
resistance, the membrane is considered as collapsed. From an
appropriate condition of the form (1.2) it is then possible to find the
critical time of creep failure.

4. Shallow spherical membrane

We shall consider in detail a shallow spherical membrane with
the radius of curvature R For such a membrane we obtain the
following system of equations

tr<(k-d*w)t cra(k-4;d.w) «£ » k=./R, (4.1)

.4
?dse* + ea-ei -y(d?^) +d?(okw)- kw (4.2)

and Eq. (2.9)
The equation (4.1) may be at once integrated by using Eq.(2.9),

the constant of integration being equal zero. Thus, instead of
Eq. (4.1) ,we obtain

V=S(k-£-,V (4.3)

Further, we introduce the following notations:

t-(l)\ *-£«; > D-pf^)1, w--| (4.4)

k VR R R/h 5= W/1

where "1 is the maximum value of the variable 9 (*or 1» "t 1)•
With the above notations,the streBS deviator components have

the form of Eqs.(2.13) and (2.14), and the strains are given by the
formula (2.16).

Considering the radius of curvature R as time dependent, we dif-
ferentiate Eq.(4.2) with respect to time and thus obtain

9ds€a +V®i =-clsÄdsw + d,(<$kw) + d?(<jk*)-kw-kw (4.5)

Finally, by using the second of Eqs.(2.7) and introducing the
notations (4.4), we represent Eqs. (4.3) and (4.5) in the following
form:

«,»-*!•-*' (4.0

+ 2r[dTvv(29a-dTw-U) + ^-dvw]S:0

Here the Operator N0 is given by Eq. (2.8).
It is seen from the set of Eqs. (4.6) and (4.7) that the

displacement w can be easily eliminated from the second equation by
means of the first one.

Schlussbericht



114 Ib - CREEP FAILURE OF NONLINEAR ROTATIONAL SHELLS

Now, let us assume that the nonlinear function of effective
stress appearing in Eq. (2.8) is a power function of the form

Fo[»W]*f-Ban"1(*0 i (4.8)
where B and n are physical constants, the last being an odd natural

number.
According to Eq.(2.3) and Eqs. (2.13) (2-14) the effective

stress is expressed as follows

sa(r,t) *D4£(<\t) (4.9)

where

ß(T,t)*ftC*)«<i(dtz)*-6dfz.£ +3(-fr)a • (4.10)

Introducing Eq. (4.8) together with Eqs. (4.9) and (4.10) and
eliminating the displacement in Eq. (4.7) we finally obtain

a*Cn-iY8fidS+cnMXpd,Iofjd,s]==iT[f(#ffS)^r4.iii

where p
** =BD1RT1 '

(4.12)

The method of Solution of the problem for a creeping membrane
is founded on the basis of an analogy as stated above. We assume
the Solution of Eq.(4.1l) in the form

z(f,t) z°(r) <pCt) (4-13)

and put 0
kW-k/M-W •

C4.u)

If we introduce the Solution (4.13) into Eq. (4.11) then after
separating the variables we find

o r Z °

p O 0 9
where

Äcfr) =^0(z^) -i(dTzT-6dTz0^ +3(7-)", (4.16)

A being a constant.
The time-independent part of Eq.(4.15) is analogous to the

equation for an instantaneous problem, if only the physical equation

is of a form analogous to Eq. (4.8) Thus, if the Solution of
the instantaneous problem is known, we are able to obtain the creep
Solution in a formal way. The time-independent Solution is obtained

by representing the stress function in the form of power series.



W. OLSZAK - Z. BYCHAWSKI 115

On the other hand, the time-dependent part of Eq.(4.15) maybe written as follows:

^(t)+^[cp(t)]n+3 0. (4.17)

The variables in .Eq.(4.17) are separable and the Solution is given
by the formula

(-—)
<pft)«%I>Y*<Po Cn^2)(i-b)] (4.18)

where the constant of integration H>. "fCt") According to the
Solution (4.18) we consider as initial instant of the observed creep
process a certain intermediate time-point at which the past creepeffects are taken into account instantaneously.

In order to obtain the appropriate Solution for the displacement
w, we assume the last in the form

W(r.t) - wV)fCt) (4.19)

and by putting it into Eq.(4.6) we obtain

[4 k r-i f"° A

-T-gi-70] *,w =^Ki)- /, ' (4-2°)

Prom the last result- we obtain the relation between the two
time functions i|/ and 1p

+ Cfc) [<fCt)] (4.21)

As may be seen from Eq.(4.18) the function tf tends to zero
with time tending to infinity. This means that the stresses fsee
Eq. (4.13)] drop to zero and their relaxation is complete after an
infinite period of time. On the other hand, the function 41

increases infinitely with time and thus the displacement w £see Eq.
(4.19)J becomes infinite.

5. Critical time of failure
In order to find the critical time of failure we use the

criterion for the critical creep state in the form (1.2) where the
function f is assumed as a linear one. Thus, we obtain the condition

WD con&t. K2, > (5.1)
p

where K is the critical value of dissipated energy through the
creep resistance.

The power of dissipation is given by the relation containing
the stress components and strain rate components

WD= o-t. Cf,t)6cj(r,t) (5.2)

and the condition takes the form
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wd j °ry (x)^ Cc) dt K1
(5#3)

Here, by t we denote the time-instant at which the creep rupture
takes place. Evidently, the initial instant £ should also be
considered as a certain critical time-point as, for example, the
instant of reaching the stage at which the elastic effects can be
neglected. In this case, the value of dissipated energy WD(t)= W
characterizes the process up to this stage.

In the particular case of a spherical membrane, the condition
(5.3) takes the form

i*
WI> J[c;(r,x)e1(rlr)+crlCrlx)£a(r^)]dt; K2\ f5-4)

where a<(r,t) £zWt), Sz(t^J>{ldrZ0(^~^Cr)]^

£,C*.tWV)Lo[iDC^°-2dTz0)], Vf,t>-ffOLT>iD('*dr^.^*§).

In the Eq.(5.5) L0 is related to the Operator L as follows

L«*n"W (5.6)

On the basis of Eqs.(5.4) and (5.5) the condition (5.4) may
now be written

t*
WD W°(OJ [pfWl^dk -Kfc, (5.7)

t
e-

the value of which can easily be evaluated on the basis of Eqs.
where W° Stands for a time-independent energetical coefficient
the value of whic
(5.4) and (5.5).

In order to obtain the critical time of creep rupture, we
calculate the value of the integral

II
n+4 K

brf\ 6xmvP> ' (5.8)
i

by substituting the function vj? according to the Solution (4.18).
Denoting by

x-^iV**-«*4^ > A-^-M^Va)- (5.9)

we obtain, instead of Eq.(5-8),
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TT J * dx " W° ' (5.io)

where x x(t
Carrying out the integration in Eq.(5.10), we finally obtain

It is seen from the result obtained that, if the criterion
(5.3) is applied, we are able to predict the critical time of
creep rupture and thus bound the unlimited creep process predict-
ed by the creep Solution. Since only dissipation is involved during

the process, it seems reasonable to found the prediction of
creep rupture on the basis of the amount of dissipated energy
which thus constitutes a certain measure of reaching this critical

state.

\f\ Z.Bychawski, W.Olszak, Energetic Interpretation of critical
states in viscoelastic bodies (in Polish), IBTP Reports, Ho. 2,
Warsaw, 1967.

[23 Z.Bychawski, W.Olszak, Rheological states of geometrically
nonlinear rotational membranes, The Second IUTAM Symposium
on the Theory of Thin Shells, Copenhagen, 1967.

SUMMARY

On the basis of the authors criterion of attainment of critical
states in viscoelastic bodies, the problem of creep failure

of nonlinear rotational Shells is investigated. For a spherical
membrane the critical time of failure is found by introducing the
dissipated energy through creep resistance as a measure of attainment

of this state.

RESUME

En se basant sur la condition des etats critiques proposee
par les auteurs, on considere,le probleme de la rupture par fluage
pour les voiles minces nonlineaires. Pour une membrane, le temps,
critique de rupture est calcule en introduisant l'energie dissipee
fax la resistance de fluage comme une mesure pour atteindre cet
tat.
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ZUSAMMENFASSUNG

Die Verfasser haben ein Kriterium für das Erreichen des
kritischen Zustandes infolge Kriecherscheinungen formuliert und
dasselbe zur Analyse des Problems des Kriechbruches von
nichtlinearen Schalen im Membranzustand angewandt. Als Resultat findet
man die kritische Zeit, in welcher Kriechbrucherscheinungen in
einer sphärischen Membran eintreten. Als entsprechendes Mass wird
dabei voraussetzungsgemäss die durch den Kriechwiderstand
zerstreute (dissipierte) Energie eingeführt.
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